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Transport in weak dynamic disorder: A unified theory
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For quantum particles, it is well known that static disorder would lead to Anderson localization (AL) while
dynamic (evolving) disorder would destroy AL and facilitate the transport. In this article, we study the transport
behavior of a quantum particle in weak dynamic disorder. Based on Wigner representation, we obtain the radiative
transfer equation (a linear Boltzmann equation) in the weak dynamic disorder limit, which could lead to not only
all the existing transport behaviors in the literature but also new transport behaviors (for example, Lévy flight in
momentum space). Furthermore, for dimensions greater than one, though we can formally derive the diffusive
transport approximation, we argue that this diffusive transport is not physical but the nondiffusive transport should
persist forever. This provides a possible resolution for the long-standing puzzle whether diffusive or nondiffusive
transport would prevail in the long time limit. Our result would have major implications for the hypertransport
of light, matter wave dynamics in disordered media, and directed polymer problems.
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I. INTRODUCTION

In 1958, Philip Anderson argued that static disorder would
arrest transport in the context of disordered crystals [1]. This
phenomenon, known as Anderson localization (AL), is very
general and has been observed in a variety of systems [2–8].
When the disorder is dynamic (evolving) rather than static in
time, it is widely accepted that AL would be destroyed [1,9].
Notable recent topics on this effect include quantum Brownian
motor [10], energy transfer in biological complexes [11,12],
and quantum walk in disordered environments [13–15].

Despite its fundamental importance, the kind of transport
behavior that would be induced by dynamic disorder in the
long time limit is still highly debated. It is only agreed that
when the disorder is uncorrelated in time, the mean-square
displacements in momentum 〈|p|2〉 and in position 〈|x|2〉,
respectively, grow with exponents 1 and 3 in time [16,17]. For
the disorder with correlation in time in real physical systems,
however, diverse transport behaviors have been predicted for
the past 20 years [18–22]. Studies based on Newton’s equation
showed that 〈|p|2〉 ∼ t2/5 in dimensions greater than one
[18,19] while different nondiffusive universal classes would
appear in one dimension [20,21]. Meanwhile, a speculative
argument suggested that these nondiffusive transport behaviors
would transit to the diffusive transport (〈|x|2〉 ∼ t) in the
long time limit [22]. Notice that these results are based on
continuous models which essentially differ from tight-binding
models [23–25].

Experimentally, photonic lattice systems and ultracold atom
systems have been proved to be promising candidates to
address issues related to quantum transport in disordered
media [26,27]. More recently, the hypertransport—transport
at a rate faster than ballistic—of an optical beam was observed
in a two-dimensional photonic lattice system with highly
controllable dynamic disorder [28]. However, the fundamental
issue for how long this hypertransport can persist remains
largely unexplored [20,21].
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In this article, we aim to develop a unified theory to address
the transport behavior of a quantum particle in weak dynamic
disorder. In contrast to the previous works, all of which
are based on the Fokker-Planck approximation of Newton’s
equation [18–22], our theory utilizes the Wigner representation
of Schrödinger equation—a first-principle description [29,30].
We derive the radiative transfer approximation (a linear
Boltzmann equation) of the Wigner representation at the weak
disorder limit. This Boltzmann equation can lead to not only all
existing transport behaviors in the literature [18–21] but also
new transport behaviors. For instance, we demonstrate that for
special dynamic disorder, Lévy flight in momentum space is
possible in intermediate time scales. Furthermore, when the
evolving velocity of the particle is much faster than that of the
disorder, we formally derive the diffusive transport behavior in
dimensions greater than one. Nevertheless, we argue that this
diffusive transport is not physical but the behavior 〈|p|2〉 ∼ t2/5

should persist in the long time limit in dimensions greater
than one. Our study resolves the debate regarding whether
the transport behavior in the long time limit is diffusive
or nondiffusive and provides insights for understanding the
hypertransport phenomenon observed in Ref. [28].

The article is organized as follows. In Sec. II, the model and
assumptions will be presented. The main results which include
different asymptotic behaviors will be presented and explained
in Sec. III. The detailed derivation of the main results will be
deferred in Sec. IV. In Sec. V, we utilize the main results
to explain the hypertransport phenomenon of light observed
in the experiment [28]. We then conclude the article with a
summary in Sec. VI.

II. MODEL AND ASSUMPTIONS

We consider a d-dimensional (d � 1) spatially continuous
Schrödinger equation,

ih̄
∂ψ

∂t
= − h̄2

2m
∇2

xψ + V0u(x,t)ψ, (1)

where V0u(x,t) is the dynamic disorder and V0 is the amplitude
of the disorder. The power spectrum density S(kr ,ω) of u(x,t)
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is assumed to be isotropic with respect to kr . We also assume
that there exist finite k0 and v0 such that

S(kr ,ω) = 0 if |kr | > k0 or ω/|kr | � v0 (2)

and

S(kr ,ω) ∼ S(kr ,0) if ω/|kr | � v0. (3)

Here k0 and v0 can be respectively regarded as the charac-
teristic wave number and phase velocity of the disorder. In
essence, this assumption means that both the spectrum and the
largest phase velocity of the disorder are finite, which should
be satisfied in most of real physical systems (for example,
the system studied in Ref. [28]). For simplicity, we also
assume that the initial wave packet has a narrow bandwidth
and respectively denote the typical wave number, wave vector,
angular frequency, and phase velocity as k, k, ω(k) (equal to
h̄k2/2m) and v(k) (equal to h̄k/2m). The disorder is assumed
to be weak. That is, V0 � h̄ω(k). We also denote V0/2h̄ω(k)
as ε1/2.

III. MAIN RESULTS

In this section, we present the main results. In Sec. III A, we
first introduce some properties of Wigner function, which is the
main tool to explore the different asymptotic behaviors in this
article. Then the radiative transfer regime, the Fokker-Planck
regime, and the discussion of the existence of diffusive
transport regime will be addressed in Secs. III B, III C,
and III D, respectively.

A. Wigner function

We first introduce Wigner function W (x,p,t) with respect
to ψ(x,t) [29], which is defined as follows:∫

ψ

(
x − h̄y

2
,t

)
ψ

(
x + h̄y

2
,t

)
eip·y dy

(2π )d
.

For Wigner function W (x,p,t), the following facts hold:
(1) ∫

W (x,p,t)|x|2dxdp =
∫

|x|2|ψ |2dx.

Therefore, the mean-square displacement in position 〈|x|2〉
equals the ensemble average of

∫
W (x,p,t)|x|2dxdp.

(2) ∫
W (x,p,t)|p|2dxdp = h̄2

∫
|∇xψ |2dx.

Therefore, the mean-square displacement in momentum 〈|p|2〉
equals the ensemble average of

∫
W (x,p,t)|p|2dxdp.

(3) More importantly, W (x,p,t) satisfies the following
random Wigner equation:

∂W

∂t
+ p

m
· ∇xW

= −iV0

∫
û

(
pr

h̄
,ω

)
·
[
W

(
p − pr

2

)
− W

(
p + pr

2

)]

× ei( pr ·x
h̄

−ωt) dprdω

(2πh̄)d+1
, (4)

where û(kr ,ω) is the Fourier transform of u(x,t), defined as∫
u(x,t)e−i(kr ·x−ωt)dxdt .
Readers should refer to Ref. [30] for detailed derivations of

these facts.

B. Radiative transfer regime

In the weak disorder limit ε → 0, we found that the
ensemble average of ε−dW (x/ε,p,t/ε) can be approximated
by WR(x,p,t), which satisfies the following radiative transfer
equation:

∂WR

∂t
+ p

m
· ∇xWR

= 4ω2(k)
∫

S

(
p′ − p

h̄
,v(k)

|p′|2 − |p|2
h̄2k

)

× [WR(p′) − WR(p)]
dp′

(2πh̄)d
. (5)

The detailed derivation of this equation can be seen in
Sec. IV A. We note that this result is enlightened by Ref. [30]
and the corresponding dimensionless form exists in the
mathematical literature. In Eq. (5), the quantity

S

(
p′ − p

h̄
,v(k)

|p′|2 − |p|2
h̄2k

)
(6)

represents the scattering intensity between the spectral compo-
nent of the particle with momentum p and that of the disorder
with momentum p′ − p. According to different ratios of k to
k0 as well as max{v(k),v(k0)} to v0, we could obtain different
asymptotic regimes, (i), (ii), (iii), and (iv), as illustrated
in Fig. 1 and discussed below. For simplicity, we denote
max{v(k),v(k0)} as v(k) ∨ v(k0).

(i) When k � k0 and v(k) ∨ v(k0) � v0 (fast evolving
disorder), for p equal to h̄k and |p′ − p| less than h̄k0,

v(k)||p′|2 − |p|2|/h̄k

|p′ − p| � 3(v(k) ∨ v(k0)) � v0.

According to assumption (3), the scattering intensity (6) can
be approximated by S((p′ − p)/h̄,0). That is, there is no
preferred direction for the scattering between the particle and
the disorder [see Fig. 1(i)]. Especially when S(kr ,0) has the
following special form:

S(kr ,0) ∼ 1/|kr |d+θ ,θ ∈ (1,2),

Lévy flight of the particle in momentum space arises,
i.e., 〈|p|2〉 ∼ t2/θ [31]. Similarly to the finite-size effect in
Ref. [32], this Lévy flight can only persist for finite time due
to finite k0. For general S(kr ,ω), the following relation:

d〈|p − h̄k|2〉/dt > 0 (7)

holds. The detailed derivation can be seen in Sec. IV A.
(ii) When k � k0 and v(k) ∨ v(k0) � v0 (slow evolving

disorder), the stochastic acceleration of the particle would
become slower, as explained below. Under assumption (2),
the intensity (6) would be nonzero only when

v(k)||p′|2 − |p|2|/h̄k

|p′ − p| � v0.
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(iii) fast evolving

p|2 t

pr

k k0

p

(iv) slow evolving

p|2 t2/5

pr

k k0

p

(i) fast evolving

Possible Lévy flight

pr

k k0

p

(ii) slow evolving

pr

k k0

p

FIG. 1. (Color online) Illustration of different transport behaviors
of a quantum particle in weak dynamic (evolving) disorder in
dimensions greater than 1. Here k0 is the characteristic wave number
of the disorder while k is the typical wave number of the particle.
The smaller black dots are spectral components of the disorder with
momenta pr (|pr | � h̄k0) while the larger black dot is the spectral
component of the particle with momentum p (|p| = h̄k). The fast
and slow evolving disorders respectively correspond to the scenario
that max{v(k),v(k0)} � v0 and max{v(k),v(k0)} � v0, where v0 is the
characteristic phase velocity of the disorder while v(k) is the typical
phase velocity of the particle. In the long time limit, regimes (i), (ii),
and (iii) would transit to regime (iv).

Therefore, when v(k) � v0, for p = h̄k and fixed |p′ − p|,
the particle prefers to be scattered into those p′ satisfying
|p′| = |p| [see Fig. 1(ii)], rendering the acceleration slower. In
this regime, the relation (7) still holds.

C. Fokker-Planck regime

When k � k0, WR(x,p,t) can be further approximated by
WF (x,p,t) satisfying the following equation:

∂WF

∂t
+ p

m
· ∇xWF

= 2ω2(k)∇p ·
( ∫

S

(
pr

h̄
,2v(k)

p · pr

h̄2k

)
pr ⊗ pr

dpr

(2πh̄)d

)
×∇pWF (x,p,t). (8)

The detailed derivation can be seen in Sec. IV B. We note
that this equation coincides with the Fokker-Planck equation
derived in Refs. [20,21], which can be connected with the
famous Chirikov resonance theory [33]. The quantity

S

(
pr

h̄
,2v(k)

p · pr

h̄2k

)
(9)

represents the resonance intensity between the spectral compo-
nent of the particle with momentum p and that of the disorder
with momentum pr . Based on Eq. (8), we found regimes
(iii) and (iv).
(iii) When k � k0 and v(k) � v0 (fast evolving disorder),

〈|p|2〉 ∼ t and 〈|x|2〉 ∼ t3, similar to that discussed in Ref. [34].

This can be explained by the following argument. For p equal
to h̄k,

2v(k)|p · pr |/h̄k

|pr | � v0.

Therefore, under assumption (3), the resonance density (9) can
be approximated by S(pr/h̄,0). That is, there is no preferred
direction for the resonance between the particle and the
disorder [see Fig. 1(iii)] and the diffusion tensor of Eq. (8)
is independent of p, resulting in the hypertransport behavior
〈|p|2〉 ∼ t and 〈|x|2〉 ∼ t3.

(iv) When k � k0 and v(k) � v0 (slow evolving disorder),
the stochastic acceleration would slow down, which can
be explained below. Under assumption (2), the resonance
density (9) is nonzero only when

2v(k)|p · pr |/h̄k

|pr | � v0. (10)

Therefore, when v(k) � v0, for p = h̄k, the particle tends to
be scattered by those spectral components of the disorder with
momenta pr perpendicular to p rather than those with momenta
pr parallel to p [see Fig. 1(iv)]. This renders the stochastic
acceleration of the particle slower. In this context, as derived
in Ref. [21], 〈|p|2〉 ∼ t2/5 in dimensions greater than one while
〈|p|2〉 saturates in one dimension under assumption (2).

Now let us address the relation between these behaviors.
As shown above, for all dimensions, 〈|p − h̄k|2〉 for regimes
(i), (ii), and (iii) would grow in time. This means that with
time increasing, there are more and more spectral components
of the particle with large momentum being excited. Notice
that both v(k) and k monotonically increase with respect to k.
Therefore, v(k) and k would respectively become much larger
than v0 and k0 in the long time scale, resulting in the transition
from regimes (i), (ii), and (iii) to regime (iv) (see Fig. 1). We
note that the transition from regime (iii) to regime (iv) has been
found in Ref. [22].

D. Is diffusive transport possible?

In Ref. [22], it is further claimed that the nondiffusive
transport behavior 〈|p|2〉 ∼ t2/5 might transit to the diffusive
transport behavior 〈|x|2〉 ∼ t in the long time limit. Now
we will check this claim for dimensions greater than one.
With the formulation of Fokker-Plank equation (8), we provide
a formal way to obtain the diffusive transport behavior as
below. For p = h̄k → ∞ and fixed |pr |, according to the
condition (10), the resonance intensity (9) would concentrate
to those pr which satisfy

p · pr = 0.

That is, under the effect of the disorder, the spectral component
of the particle with momentum p would diffuse on the sphere
of radius h̄k in momentum space. Mathematically, this means
that intensity (9) can be approximated by

δ

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)
,

where S0(pr/h̄) is defined by
∫

S(pr/h̄,ω)dω. In this context,
WF would be approximated by WD , satisfying the following
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equation:

∂WD

∂t
+ p

m
· ∇xWD

= 2ω2(k)∇p ·
( ∫

δ

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)

× pr ⊗ pr

dpr

(2πh̄)d

)
∇pWD(x,p,t). (11)

It is easy to check that 〈|p|2〉 for Eq. (11) saturates (see the
derivation in Sec. IV C). Consequently, diffusive transport
would prevail in dimensions greater than one (see the detailed
derivation in Sec. IV C).

Notice that the derived diffusive transport is based on the
assumption that for fixed p, the resonance intensity concen-
trates on those pr perpendicular to p. However, according
to resonance intensity (9), which is related to the Chirikov
resonance theory [20,33], for any finite p, there are still
amounts of pr which are not perpendicular to p but resonate
with p [see Fig. 1 (iv)]. These pr would lead to the increase of
〈|p − h̄k|2〉. Furthermore, as shown in Ref. [21], 〈|p|2〉 ∼ t2/5.
Therefore, we believe that the diffusive transport is not physical
and 〈|p|2〉 ∼ t2/5 would persist forever in dimensions greater
than one. We speculate that it is also highly probable that
diffusive transport would not arise in one dimension, as there
is no perpendicular components to alter the direction of p.

IV. DERIVATION OF THE MAIN RESULTS

Here we present the derivations of the main results in
Sec. III. The derivations related to the radiative transfer regime,
the Fokker-Planck regime, and the diffusive transport regime
respectively correspond to Sec. IV A, IV B, and IV C.

A. Radiative transfer regime

In this subsection, we will derive radiative transfer equa-
tion (5) as well as relation (7) for both regime (i) and regime
(ii).

1. Derivation of radiative transfer equation (5)

To make the derivation more transparent, we divide it into
three steps. In the first step, we will transform equation (4) into
a dimensionless form. Based on the dimensionless form, we
derive the dimensionless form of Eq. (5) in the second step. In
the third step, we define WR(x,p,t) and prove that WR(x,p,t)
satisfies equation (5).

(1) Step 1: We note that ε = (V0/2h̄ω(k))2. Then we make
the following transformation:

x → x/kε, t → t/2ω(k)ε, ψ → (kε)d/2ψε.

The Wigner function Wε(x,p,t) corresponding to ψε(x,t) is
defined as∫

ψε

(
x − εy

2
,t

)
ψε

(
x + εy

2
,t

)
eip·y dy

(2π )d
.

According to the relation between ψ and ψε , the following
relation holds:

W (x,p,t) = (ε/h̄)dWε(kεx,p/h̄k,2ω(k)εt). (12)

Similar to W (x,p,t), Wε(x,p,t) satisfies the following dimen-
sionless Wigner equation,

∂Wε

∂t
+ p · ∇xW

ε

= −i√
ε

∫
ρ̂(pr ,ω)

[
Wε

(
p − pr

2

)
− Wε

(
p + pr

2

)]

× ei(pr ·z−ωτ ) dprdω

(2π )d+1
, (13)

where z � x/ε,τ � t/ε, and ρ̂ is the Fourier transform
of ρ(x,t) (defined by u(x/k,t/2ω(k))). Denote the power
spectrum density of ρ(x,t) as Sρ(kr ,ω). It is easy to find that
Sρ(kr ,ω) = 2kdω(k)S(kkr ,2ω(k)ω).

(2) Step 2: Now we come to address the asymptotic behavior
of Wε . We use the asymptotic techniques developed in
Ref. [30]. Assume that Wε has the following expansion:

Wε(x,p,t) = W0(x,p,t) + ε1/2W1(x,z,p,t,τ )

+ εW2(x,z,p,t,τ ) + · · · . (14)

Substituting expansion (14) into Eq. (13), we obtain the
following equations:

For O (ε− 1
2 ) :

∂W1

∂τ
+ p · ∇zW1 + θW1

= −i

∫
ρ̂(pr ,ω)

[
W0

(
p − pr

2

)
− W0

(
p + pr

2

)]

× ei(pr ·z−ωτ ) dprdω

(2π )d+1
. (15)

For O (1) :
∂W0

∂t
+ p · ∇xW0 + ∂W2

∂τ
+ p · ∇zW2

= −i

∫
ρ̂(pr ,ω)

[
W1

(
p − pr

2

)
− W1

(
p + pr

2

)]

× ei(z·pr−ωτ ) dprdω

(2π )d+1
. (16)

In Eq. (15), we have added the term θW1, which will be
eliminated by letting θ → 0 in the end. According to Eq. (15),
W1(x,z,p,t,τ ) can be expressed as∫

W̃1(x,pr ,p,t,ω)ei(pr ·z−ωτ ) dprdω

(2π )d+1
, (17)

where

W̃1(x,pr ,p,t,ω) � −i

iω + ip · pr + θ
· ρ̂(pr ,ω)

×
[
W0

(
p − pr

2

)
− W0

(
p + pr

2

)]
.

For simplicity, denote the ensemble average as E. Taking
the ensemble average for Eq. (16) and assuming E{ ∂W2

∂τ
+

p · ∇zW2} = 0, we can get

∂W0

∂t
+ p · ∇xW0 = LRW0, (18)
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where

LRW0 � −iE

{ ∫
ρ̂(pr ,ω)

[
W1

(
p − pr

2

)
− W1

(
p + pr

2

)]

× ei(z·pr−ωτ ) dprdω

(2π )d+1

}
. (19)

Inserting the expression (17) of W1 into Eq. (19) and using the
fact that

E{ρ̂(p1,ω1)ρ̂(p2,ω2)} = Sρ(p1,ω1)δp1+p2δω1+ω2 ,

we can get

LRW0 =
∫

Sρ(pr ,ω)

{
θ

θ2 + [(p + pr/2) · pr − ω]2

+ θ

θ2 + [(p + ηpr/2) · pr + ω]2

}

× [W0(p + pr ) − W0(p)]
dprdω

(2π )d+1
.

Using the fact that

1

π

θ

x2 + θ2
→ δ(x), as θ → 0 + ,

where δ(x) is the Dirac δ function, we can obtain

LRW0

=
∫

Sρ

(
pr ,

(
p + pr

2

)
· pr

)
[W0(p + pr ) − W0(p)]

dpr

(2π )d

=
∫

Sρ

(
p′ − p,

|p′|2 − |p|2
2

)
[W0(p′) − W0(p)]

dp′

(2π )d
.

By combining Eq. (18) with this expression, we obtain the
dimensionless form of Eq. (5).

(3) Step 3: We introduce WR(x,p,t) as follows:

WR(x,p,t) � h̄−dW0(kx,p/h̄k,2ω(k)t). (20)

When V0/h̄ω(k) � 1, since EWε → W0 as ε → 0, according
to relation (12),

ε−dEW (x/ε,p,t/ε) → WR(x,p,t) (21)

as ε → 0. Now let us check whether WR(x,p,t) satisfies
Eq. (5). According to the definition of WR(x,p,t), the following
relations hold:

h̄d ∂WR(x,p,t)

∂t
= 2ω(k)

∂W0(kx,p/h̄k,2ω(k)t)
∂t

,

h̄d ∂WR(x,p,t)

∂xi

= k
∂W0(kx,p/h̄k,2ω(k)t)

∂xi

.

Using the facts that

(LRW0)(p/h̄k) = (h̄k)−d

∫
Sρ

(
p′ − p

h̄k
,
|p′|2 − |p|2

2h̄2k2

)

× [WR(p′) − WR(p)]
dp′

(2π )d

and

Sρ(kr ,ω) = 2kdω(k)S(kkr ,2ω(k)ω),

we get

(LRW0)(p/h̄k) = 2ω(k)
∫

S

(
p′ − p

h̄
,v(k)

|p′|2 − |p|2
h̄2k

)

× [WR(p′) − WR(p)]
dp′

(2πh̄)d
.

These facts lead to Eq. (5), which completes the derivation.

2. Derivation of relation (7) for regime (i) and regime (ii)

To derive relation (7), we introduce the following as-
sumption: WR(x,h̄k + p,t) is isotropic with respect to p and
monotonically decreases with respect to |p|. Then we can prove

d〈|p − h̄k|2〉/dt > 0 (22)

for regime (i).
Proof.

d

dt
〈|p − h̄k|2〉 = d

dt

∫
|p − h̄k|2W (x,p,t)dxdp

∼ d

dt

∫
|p − h̄k|2WR(p,t)dp

= 4ω2(k)
∫ ∫

|p − h̄k|2S
(

p′ − p
h̄

,0

)

× [WR(p′) − WR(p)]
dp′dp
(2πh̄)d

= 4ω2(k)
∫ ∫

|p′ − h̄k|2S
(

p − p′

h̄
,0

)

× [WR(p) − WR(p′)]
dpdp′

(2πh̄)d

= 2ω2(k)
∫ ∫

(|p − h̄k|2 − |p′ − h̄k|2)

× S

(
p′ − p

h̄
,0

)
[WR(p′) − WR(p)]

dp′dp
(2πh̄)d

> 0.

Here, we have used the assumption to obtain the last
inequality. �

Similarly, we can prove relation (22) for regime (ii).

B. Fokker-Planck regime

In this subsection, based on radiative transfer equation (5),
we derive Fokker-Planck equation (8). We assume k � k0

in this Fokker-Planck regime. To simplify the derivation, we
transform Eq. (5) into the following form:

∂WR

∂t
+ p

m
· ∇xWR

= 4ω2(k)
∫

S

(
pr

h̄
,v(k) · |p + pr |2 − |p|2

h̄2k

)

× [WR(p + pr ) − WR(p)]
dpr

(2πh̄)d
. (23)

Since |p| = h̄k � h̄k0 � h̄|kr | = |pr |, by taking the Taylor
expansion, we can get that the right-hand term of Eq. (23) can
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be approximated by

4ω2(k)
∫ {

∂ωS

(
pr

h̄
,v(k)

2p · pr

h̄2k

)
v(k)

|pr |2
h̄2k

pr · ∇pWF (p)

+
∑
i,j

S

(
pr

h̄
,v(k)

2p · pr

h̄2k

)
1

2
priprj ∂pipj

WF (p)

}
dpr

(2πh̄)d
,

which equals

2ω2(k)∇p ·
( ∫

S

(
pr

h̄
,2v(k)

p · pr

h̄2k

)

× pr ⊗ pr

dpr

(2πh̄)d

)
∇pWF (x,p,t).

This completes the derivation of Eq. (8).

C. Diffusive transport regime

In this subsection, we address the properties of Eq. (11) for
dimensions greater than one. Two properties would be derived.
The first is about the saturation of 〈|p|2〉. The second is about
the diffusive transport approximation.

1. Derivation of the saturation of 〈|p|2〉
The following relation holds:

d
∫ |p|2WD(x,p,t)dxdp

dt
≡ 0.

Proof. According to Eq. (11), we obtain

d
∫ |p|2WD(x,p,t)dxdp

dt

= 2ω2(k)
∫

|p|2∇p ·
( ∫

δ

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)

× pr ⊗ pr

dpr

(2π )d

)
∇pWD(x,p,t)dxdp

= −4ω2(k)
∫

δ

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)

×(p · pr )(pr · ∇pWD(x,p,t))
dpr

(2π )d
dxdp.

Noticing that there exists a term like

δ

(
2v(k)p · pr

h̄2k

)
(p · pr ),

we complete the proof. �

2. Derivation of the diffusive transport approximation in
dimensions greater than one

In Sec. IV C1, we have shown that the mean-square
displacement in momentum 〈|p|2〉 saturates. Here, we will
further demonstrate that diffusive transport will arise when
〈|p|2〉 saturates in dimensions greater than one. To this end,
we rescale time and space of equation (11) as follows:

t → t/ξ 2, x → x/ξ,

where ξ is a small dimensionless parameter. With this
rescaling, we get the following equation:

ξ 2 ∂W
ξ

D

∂t
+ ξ

p
m

· ∇xW
ξ

D

= 2ω2(k)∇p ·
( ∫

δ

(
2v(k)p · pr

h̄2k

)

× S0

(
pr

h̄

)
pr ⊗ pr

dpr

(2πh̄)d

)
∇pW

ξ

D(x,p,t). (24)

For simplicity, denote the right-hand side term as
LDW

ξ

D(x,p,t). Assume that

W
ξ

D(x,p,t) = WD,0(x,p,t) + ξWD,1(x,p,t)

+ ξ 2WD,2(x,p,t) + · · · .

Inserting this expansion into equation (24), we get the
following equations:

O(1) : LDWD,0(p) = 0, (25)

O(ξ ) : (LDWD,1)(p) = p
m

· ∇xWD,0, (26)

O(ξ 2) : (LDWD,2)(p) = ∂WD,0

∂t
+ p

m
· ∇xWD,1. (27)

According to Lemma 1, Eq. (25) would result in the fact that

WD,0(p) = WD,0(|p|).
Assume that WD,1(x,p,t) = C(|p|) p

m
· ∇xWD,0. According to

Lemma 2, Eq. (26) becomes

−C(|p|)λ(|p|)p · ∇xWD,0 = p · ∇xWD,0,

where λ(|p|) is given in Eq. (A1). Therefore,

WD,1 = − 1

λ(|p|)
p
m

· ∇xWD,0. (28)

To ensure Eq. (27) is solvable, according to the Fredholm
alternative theorem,∫

|p′|=|p|

{
∂WD,0

∂t
+ p′

m
· ∇xWD,1

}
d�(p̂′) = 0.

Substituting Eq. (28) into the above equation, we can get∫
|p′|=|p|

{
∂WD,0

∂t
− p′

m
· ∇x

(
1

λ(|p|)
p′

m
· ∇xWD,0

)}
d�(p̂′) = 0.

Notice that ∫
p̂′

i p̂
′
j d�(p̂′) = 0, if i �= j

and that ∫
(p̂′

i)
2d�(p̂′) = �d

d
, for i = 1, . . . ,d,

where �d is the surface area of d-dimensional unit sphere.
Therefore, we get the following diffusive transport equation:

∂WD,0

∂t
= D(|p|)∇2

xWD,0, (29)
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where the diffusion coefficient D(|p|) equals{
π2|p|3/(

dm3h̄2ω2(k)
∫ ∞

0 S0(k)k2dk
)
, d = 2,

2d−1πd |p|3/(
dm3h̄2ω2(k)�d−1

∫ ∞
0 S0(k)kddk

)
, d � 3.

(30)

Here, S0(|k|) is defined by S0(k). Equation (29) exactly means
that under the effect of the disorder, the spectral component of
the particle with momentum p would move on the sphere
of radius |p| in momentum space, rendering the transport
diffusive.

V. APPLICATIONS

Besides the fundamental significance, our results provide
a solid theoretical basis to explain and predict experimental
results. In the following, we will explain how they can
be applied to photonic lattice systems. In the transverse
localization scheme [26,28], a photonic lattice system can be
described by

i

k′
∂ψ

∂z
= − 1

2k′2 ∇2
xψ − �n(x,z)

n′ ψ, (31)

where z is the propagation coordinate and x = (x,y) is the
transverse coordinate. The wave number k′ is 2πωn′, where
ω is the optical frequency and n′ is the average refractive
index. ψ is the envelope such that optical field E(x,z,t) =
ψ(x,z)ei(k′z−ωt). The relative random fluctuation of refractive
index −�n/n′ can be written as V0u(k⊥0x,kz0z), where V0,
k⊥0, and kz0 are, respectively, the amplitude, the characteristic
transverse wave number, and the characteristic beating rate in z

of the disorder. In the experiment [28], kz0 = k⊥0δk/k′, where
δk is a highly controllable parameter. When δk varied from
zero to a sufficiently large nonzero value, the transition from
Anderson localization regime to the hypertransport regime was
observed [28].

However, it is natural to wonder how long the
hypertransport and momentum spectral expansion can persist
for when δk is nonzero? Our theory can provide the answer
for this question, provided that the paraxial equation (31)
is valid for describing the transport behavior of the light.
First, notice that the relevant wave number of the initial
wave packet is not k′ but the transverse wave number k⊥.
Let 1/k′ → h̄, 1 → m and z → t . Then we recover Eq. (1).
In the experiment of Ref. [28], V0/h̄ω(k⊥) = V0k

2
⊥/2k′2 � 1,

which fulfills our weak disorder assumption. Note that k⊥0 and
kz0/k⊥0 respectively are the k0 and v0 in assumption (2) and (3).
In the experiment of Ref. [28], k⊥ is about 0.07 μm−1, which
is much smaller than k0 (about 0.7μm−1), while v(k⊥) (equal
to k⊥/k′) is the same order as v0 (equal to δk/k′). According
to the main result, the system is in regime (ii), where spectral
expansion takes place. As time increases, the main result tells
us the system would enter into regime (iv), where 〈|p|2〉 ∼ t2/5.
As argued above, this hypertransport behavior would persist
until the system enters into a regime where paraxial equation
description is invalid.

The range of application of our results is not restricted to
photonic lattice systems but extends to ultracold atom systems
where the time dependence of the disorder could be induced
by a modulation of the intensity of the electronic field [6] and

to random directed polymer problems which can be described
by the imaginary version of Eq. (1) [22,35].

VI. CONCLUSION AND DISCUSSION

In this article, we have developed a unified theory to address
the transport behaviors of a quantum particle in weak dynamic
disorder by utilizing Wigner representation of the Schrödinger
equation. We have derived a linear Boltzmann equation,
which could lead to not only all the existing behaviors in
the literature but also new transport behaviors. Furthermore,
for dimensions greater than one, we have demonstrated that
〈|p|2〉 ∼ t2/5 should persist forever, which settles the dispute
whether diffusive or nondiffusive transport would prevail in
the long time limit.

Our results also draw prospects for exploring a variety of is-
sues relevant for transport behaviors in dynamically disordered
environments. For instance, it is interesting to incorporate
dissipation effect [36]. Moreover, with the growing interest
on many-body disordered quantum systems, it is extremely
important to study the interplay between interactions and
dynamic disorder. Here intriguing issues would arise when
the interactions are attractive, as attractive interactions tend to
localize the wave packet via self-trapping mechanisms while
dynamic disorder would delocalize the wave packet. In this
respect, some efforts have been made [37,38] and further
studies could be advanced with incorporation of photonic
lattice systems [28] and ultracold atom systems [6], where both
the dynamic disorder and the interactions can be introduced in
a highly controllable way. We note that the Wigner function
used here could be measured in experiments via interfero-
metric methods [39], which probably enables characterizing
transport behaviors of disordered quantum systems in a new
way. Finally, we note that all behaviors studied here belong to
the Bragg regime, where one spectral component of the particle
is scattered by one spectral component of the disorder at a time.
For the Raman-Nath regime, where one spectral component of
the particle would be scattered by several spectral components
of the disorder simultaneously, studies have begun to appear
[40].
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APPENDIX A: PROOF OF LEMMA 1 and 2

Lemma 1.

(LDf )(|p|) = 0.

Proof.

(LDf )(|p|) = 2ω2(k)
∑

i

∇pi

( ∫
δ

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)

×pripr · p
dpr

(2πh̄)d
f ′(|p|)

|p|
)

.
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We split the right-hand term into the summation of the
following three terms:

I = 2ω2(k) · 2v(k)

h̄2k

∫
δ′

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)

× |pr |2(p · pr )
dpr

(2πh̄)d
f ′(|p|)

|p| ,

II = 2ω2(k)
∫

δ

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)
|pr |2 dpr

(2πh̄)d
f ′(|p|)

|p|
and

III = 2ω2(k)
∫

δ

(
2v(k)p · pr

h̄2k

)
S0

(
pr

h̄

)

× (p · pr )2 dpr

(2πh̄)d

(
f ′(|p|)

|p|
)′

.

∀ fixed p, there exists an orthogonal matrix Q such that Qp =
(|p|,0, . . . ,0)T . Therefore,

I = 2ω2(k)
2v(k)

h̄2k

∫
δ′

(
2v(k)

h̄2k
|p|pr1

)
S0

(
pr

h̄

)

× |pr |2pr1
dpr

(2πh̄)d
f ′(|p|),

II = 2ω2(k)
∫

δ

(
2v(k)

h̄2k
|p|pr1

)
S0

(
pr

h̄

)
|pr |2 dpr

(2πh̄)d
f ′(|p|)

|p|
and

III = 2ω2(k)
∫

δ

(
2v(k)

h̄2k
|p|pr1

)
S0

(
pr

h̄

)

× |p|2p2
r1

dpr

(2πh̄)d

(
f ′(|p|)

|p|
)′

.

When d � 3, expanding I, II, and III in the spherical coordi-
nate, we get

I = 2ω2(k)
2v(k)

h̄2k

�d−1

(2πh̄)d

∫ ∞

0

∫ π

0
S0

(
r

h̄

)
rd+2

× δ′
(

2v(k)

h̄2k
|p|r cos θ

)
cos θ sind−2 θdθdrf ′(|p|),

II = 2ω2(k)
�d−1

(2πh̄)d

∫ ∞

0

∫ π

0
S0

(
r

h̄

)
rd+1

× δ

(
2v(k)

h̄2k
|p|r cos θ

)
sind−2 θdθdr

f ′(|p|)
|p| ,

and

III = 2ω2(k) · �d−1|p|2
(2πh̄)d

∫ ∞

0

∫ π

0
S0

(
r

h̄

)
rd+1

× δ

(
2v(k)

h̄2k
|p|r cos θ

)
cos2 θ sind−2 θdθdr

(
f ′(|p|)

|p|
)′

.

Here �d−1 is the surface area of a (d − 1)-dimensional unit
sphere. Using the following facts:∫ π

0
δ′(C cos θ ) cos θ sinn θdθ = −1/C2,∫ π

0
δ(C cos θ ) sinn θdθ = 1/C,

and ∫ π

0
δ(C cos θ ) cos2 θ sinn θdθ = 0,

we can get

I + II = 0, III = 0.

Therefore, (LDf )(|p|) = 0. When d = 2, we can similarly
prove

I + II = 0, III = 0.

Therefore, (LDf )(|p|) = 0. �
Lemma 2.

LD(p · f(|p|)) = −λ(|p|)p · f(|p|),
where

λ(|p|) =
⎧⎨
⎩

mh̄2ω2(k)
π2|p|3

∫ ∞
0 S0(kr )k2

r dkr d = 2,

2mh̄2ω2(k)
|p|3

�d−1

(2π)d
∫ ∞

0 S0(kr )kd
r dkr d � 3.

(A1)

Here �d−1 is the surface area of a (d − 1)-dimensional unit
sphere.

Proof. Notice that

∇pj
(p · f(|p|)) = fj (|p|) + pj

|p|p · f′(|p|).

Therefore, LD(p · f(|p|)) can be split into the summation of I
and II, where

I = 2ω2(k)
∑

i

∇pi

( ∫
δ

(
2v(k)

h̄2k
p · pr

)
S0

(
pr

h̄

)

×pripr · f(|p|) dpr

(2πh̄)d

)

and

II = 2ω2(k)
∑

i

∇pi

( ∫
δ

(
2v(k)

h̄2k
p · pr

)
S0

(
pr

h̄

)

×prip · pr

dpr

(2πh̄)d
p · f′(|p|)

|p|
)

.

Notice that there exists δ( 2v(k)
h̄2k

p · pr )p · pr in the kernel of the
integral of term II. Therefore, II = 0:

2ω2(k) · I = 2v(k)

h̄2k

∫
δ′

(
2v(k)

h̄2k
p · pr

)

× S0

(
pr

h̄

)
|pr |2pr · f(|p|) dpr

(2πh̄)d

+
∫

δ

(
2v(k)

h̄2k
p · pr

)
S0

(
pr

h̄

)

× (p · pr )pr · f′(|p|)
|p|

dpr

(2πh̄)d
. (A2)

The second term of the right-hand side of Eq. (A2) equals
zero, since there exists δ( 2v(k)

h̄2k
p · pr )p · pr in the kernel of

the integral. Now we come to calculate the first term. ∀
fixed p, there exists an orthogonal matrix Q such that Qp =
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(|p|,0, . . . ,0)T . Therefore, when d � 3,

I = 2ω2(k)
2v(k)

h̄2k

�d−1

(2πh̄)d

×
∫ ∞

0

∫ π

0
δ′

(
2v(k)

h̄2k
|p|r cos θ

)
S0

(
r

h̄

)
× rd+2 cos θ sind−2 θdθdr(Qf(|p|))1.

Since ∫ π

0
δ′(C cos θ ) cos θ sinn θdθ = −1/C2,

then

I = −2mh̄2ω2(k)

|p|2
�d−1

(2π )d

∫ ∞

0
S0(kr )kd

r dkr (Qf(|p|))1.

Using the fact that

(Qf(|p|))1 = 1

|p| (|p|, . . . ,0)T · Qf(|p|) = 1

|p|p · f(|p|),

we can get

I = −2mh̄2ω2(k)

|p|3
�d−1

(2π )d

∫ ∞

0
S0(kr )kd

r dkrp · f(|p|).

When d = 2,

I = 2ω2(k)
2v(k)

h̄2k

∫
δ′

(
2v(k)

h̄2k
p · pr

)

× S0

(
pr

h̄

)
|pr |2pr · f(|p|) dpr

(2πh̄)d

= 2ω2(k)
2v(k)

h̄2k

∫ ∞

0

∫ 2π

0
δ′

(
2v(k)

h̄2k
|p|r cos θ

)
S0

(
r

h̄

)

× r3[r cos θ (Qf(|p|))1 + r sin θ (Qf(|p|))2]
dθdr

(2πh̄)2

= 2ω2(k)
2v(k)

h̄2k

∫ ∞

0

∫ 2π

0
δ′

(
2v(k)

h̄2k
|p|r cos θ

)

× S0

(
r

h̄

)
r4 cos θ

dθdr

(2πh̄)2
(Qf(|p|))1

= −4ω2(k)

(
2v(k)

h̄2k

)−1

(|p|r)−2

×
∫ ∞

0
S0

(
r

h̄

)
r4 dr

(2πh̄)2
(Qf(|p|))1

= −mh̄2ω2(k)

π2|p|3
∫ ∞

0
S0(kr )k2

r dkrp · f(|p|).

This completes the proof. �
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