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Abstract. Motivated by the numerical study of spin-boson dynamics in quantum

open systems, we present a convergence analysis of the closure approximation for a

class of stochastic differential equations. We show that the naive Monte Carlo simu-
lation of the system by direct temporal discretization is not feasible through variance

analysis and numerical experiments. We also show that the Wiener chaos expansion

exhibits very slow convergence and high computational cost. Though efficient and
accurate, the rationale of the moment closure approach remains mysterious. We

rigorously prove that the low moments in the moment closure approximation of the

considered model are of exponential convergence to the exact result. It is further
extended to more general nonlinear problems and applied to the original spin-boson

model with similar structure.
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1. Introduction

In various fields of applied mathematics, the stochastic ordinary differential equa-

tions (SODEs) and stochastic partial differential equations (SPDEs) are known to be

an effective tool in modeling complicated systems. Examples include chemical reac-

tion networks [11, 16, 19], stochastic hydrodynamics [7, 9, 18], non-equilibrium sta-

tistical mechanics [6, 8, 17], and spin-boson dynamics in quantum dissipative sys-

tems [15, 20, 24, 25], etc.. Many features of these systems, such as small scale effects

and various uncertainties, can be well-described by suitable stochastic dynamics while

deterministic modeling either fails or turns out to be too complex. In these systems,
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the statistical quantities such as the mean, variance and high-order moments are of

interest.

The Monte Carlo method with suitable temporal discretization is the most direct

and popular method in solving these stochastic dynamical systems, but it may en-

counter great difficulty such as slow convergence and expensive computational cost.

In order to achieve a reliable estimate of the interested statistical quantity, a lot of

realizations have to be sampled due to the Monte Carlo half order convergence. This

situation could be very severe when the interested random variable has extremely large

variance. To overcome these difficulties, some approaches are taken to transform the

original system into another deterministic system involving the quantities we are in-

terested in. Some representative works include the polynomial chaos expansion or

generalized polynomial chaos expansion (gPC), which utilizes the polynomial spectral

representation of the random variables in the probability space [10,13,18,22,23], and

different kinds of moment closure approach in diverse research fields, such as the hy-

perbolic moment method for the Boltzmann equation [4, 5], moment closure method

in stochastic reaction network [12,14], conditional moment closure method in the tur-

bulent combustion problem [1], and flexible random-deterministic method in solving

the spin-boson model [24,25], etc.. These methods are effective for certain systems.

The moment closure methods share a similarity that the transformed system is de-

scribed by an infinite number of differential equations. Truncation of the system is

needed for numerical computations. Though efficient and accurate for many systems,

the rationale of the moment closure approach remains mysterious for most problems.

This can be exemplified by the following simple SODE

dXt = µXtdt+Xt(Wt + iVt)dt+Xt(dWt − idVt), X0 = 1, (1.1)

where Wt and Vt are independent standard Wiener processes with mean EWt = 0 and

covariance EWtWs = t ∧ s. If we define the generalised moments xn(t) = EXt(Wt +
iVt)

n and derive the relation among xn(t) according to Eq. (1.1), we get an infinite

ODE system as

dxn(t)

dt
= µxn(t) + 2nxn−1(t) + xn+1(t), n ∈ N, (1.2)

by noting the important relation (dWt± idVt)
2 = 0. We will also call (1.2) the moment

equations of (1.1) although xn(t) are not the usual moments in probability theory.

The final closure approximations share similar structures in different fields. To obtain

an implementable scheme, we make truncation at n = N , and thus xN+1 in the last

equation is abandoned. Theoretically, understanding the effectiveness of this moment

closure approach is not clear. Note that xN+1 is not a small number in general, therefore

we actually neglect at least an O(1) quantity in the N th moment (for some cases,

this may be even worse since xN+1 might be O(N) or bigger). This O(1) error will

propagate to the lower moments and the overall solution might be polluted eventually.

It is obvious that we can not hope to get the convergence of the high moments, but
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what will happen to the low moments? This situation is similar to the computation

of the eigenvalues for an unbounded operator [2], in which we only expect to get

the convergence of low-lying eigenvalues. This problem, to the best knowledge of the

authors, is seldom answered in the previous literature, although there are some related

partial results for the BGK model in kinetic theory [3].

In this paper, we are trying to understand the convergence of the moment closure

for a class of stochastic differential equations motivated by the numerical study for

the spin-boson dynamics in quantum open systems. We start from studying the con-

vergence of a toy model and then extend it to a more general setting, which includes

both linear and nonlinear systems. We show that the final convergence estimate for the

lowest moment has the form

|e0(t)| ≤
NβeCNt

(N !)d
‖xN+1‖L∞[0,t],

where e0(t) is the error of the lowest moment between the exact solution and numeri-

cal result by moment closure approximation, N is an integer we choose for truncation

and xN+1(t) is determined by N and the exact solution. In the analysis we fully take

advantage of the special structure of the moment closure system. This exponential con-

vergence estimate perfectly explains the numerical results we did for different model

problems.

The rest of the paper is organized as follows. In Section 2, we present the motivating

example and give an introduction to different methods. We will show the infeasibility

of the direct Monte Carlo simulation, inefficiency of the Wiener chaos expansion for the

considered model, and the good performance of moment closure method. In Section 3,

we extend our discussion to a general framework and prove its convergence estimate.

In Section 4, we generalize our results from linear to non-linear case. In Section 5,

numerical examples are listed to confirm our analysis. Then we apply the obtained

theorems to the realistic spin-boson model in chemical physics community in Section

6. Finally we draw the conclusion.

2. Motivating example and comparison of methods

2.1. Stochastic description of spin-boson model

The spin-boson model is a quantum dissipative system of fundamental importance [20,

24, 25]. It is comprised of two parts: a two-state system to be observed and a bath of

infinite harmonic oscillators coupled to the two state system. When only the reduced

density matrix of the system is interested, the effect of the harmonic oscillator bath can

be fully described by the spectral density function and we will arrive at an SDE:

idρs = [Hs + ḡ(t)fs, ρs]dt+
1

2
[fs, ρs](dW1(t) + idW4(t))

+
i

2
{fs, ρs}(dW2(t)− idW3(t)), (2.1)
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where i is the imaginary unit, ρs is the 2× 2 density matrix for the spin variable,

Hs = −1

2
σx = −1

2

(

0 1
1 0

)

, fs =
1

2
σz =

1

2

(

1 0
0 −1

)

,

are the Hamiltonian of the system and the matrix for the spin component in the spin-

boson interaction energy, respectively. Wj for j = 1, 2, 3, 4 are independent standard

Wiener processes. [A,B] = AB−BA and {A,B} = AB+BA are commutator and anti-

commutator operator, respectively. We have already set the Planck constant ~ and other

constants as 1 in the above formulation. Here ḡ(t) completely captures the influence of

the environment and can be called the bath-induced mean field. It can be described by

a kernel function α(t) as

ḡ(t) =
1

2

(

∫ t

0
α(t− s)(dW1(s)− idW4(s)− idW2(s) + dW3(s))

+ α∗(t− s)(dW1(s)− idW4(s) + idW2(s)− dW3(s))

)

≡1

2
(g1(t) + h1(t)), (2.2)

where α∗(t) is the conjugate of α(t).

It turns out that the direct Monte Carlo simulation with temporal discretization is

not feasible for this model. The critical issue is that the variance of ρs increases very fast

as time increases, which will be further analyzed in the next subsection. This property

makes the necessary number of realizations in Monte Carlo sampling grows too rapidly

in time to afford in practical computations. To overcome this issue, a hierarchical

approach is proposed for this system by Shao and his co-workers [24]. Specifically, let

us assume that the kernel function α can be written as a sum of exponentials. In the

simplest case, there is only one exponential

α(t) = γe−Ωt,

where γ is real and Ω is assumed to be a complex number with positive real part. The

differential equations for the two components of ḡ(t) can be derived as

dg1(t) = −Ωg1(t)dt+
γ

2
(dW1(t)− idW4(t)− idW2(t) + dW3(t)), (2.3a)

dh1(t) = −Ω∗h1(t)dt+
γ

2
(dW1(t)− idW4(t) + idW2(t)− dW3(t)). (2.3b)

Define auxiliary matrices

ρmn(t) = E(gm1 (t)hn1 (t)ρs(t)), m, n ∈ N. (2.4)
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We get the following hierarchical equations by using Itô’s formula and Eqs. (2.3a)-

(2.3b)

dρmn

dt
=− i[Hs, ρmn]− i[fs, ρm+1,n + ρm,n+1]

+ iγ(nρm,n−1fs −mfsρm−1,n)− (mΩ+ nΩ∗)ρmn. (2.5)

These equations are not closed without further treatment as long as a finite number

of terms are concerned. To numerically solve it, a truncation where all terms ρmn

with m + n > N are set to zero forms a closed set of differential equations. The

numerical results show this method is powerful for the considered system [24, 25].

After considering suitably simplified model at first, we will give rationales and theorems

why this closure approximation is effective in Section 6.

2.2. A toy model

To better understand the hierarchical approach, let us take a look at a toy model

at first. Let Xt be an one dimensional stochastic process described by the following

stochastic differential equation

dXt = µXtdt+XtWtdt+XtdWt, X0 = 1, (2.6)

where Wt is a standard Wiener process and µ is a real constant. This equation can be

essentially understood as a simplified scalar variant of Eq. (2.1) with α(t) = 1. We are

interested in the mean value of Xt. Of course this SDE is quite easy and can be solved

analytically:

Xt = exp

(

(

µ− 1

2

)

t+

∫ t

0
Wsds+Wt

)

. (2.7)

A direct calculation gives the mean and variance of Xt:

EXt = exp

(

µt+
t3

6
+

t2

2

)

,

Var(Xt) = exp

(

(

µ+
3

2

)

t+
2t3

3
+ 2t2

)

.

2.3. Difficulty of the Monte Carlo method

Although the toy model can be solved analytically, we can still get some insight from

it. As we know the convergence order of the Monte Carlo method is O(N− 1

2 ) where N
is the sampling size. Therefore if we expect the relative error obtained by Monte Carlo

simulation is less than one percent, we should ask

N− 1

2
σ(Xt)

EXt
≤ 0.01,
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Figure 1: Two sample paths of toy model drawn from stochastic simulation. Euler-Maruyama method is
used to solve this stochastic differential equation with fixed time step size ∆t = 1e − 5. These two paths
vary great in magnitudes, which brings severe numerical roundoff error in averaging.

where σ(Xt) =
√

Var(Xt) is the standard deviation of Xt. This requires

N ≈ Var(Xt)/(0.01EXt)
2.

Take µ = 1 and t = 2 for example, this number would be about 2.14 × 107. When the

time increases, this number grows exponentially. The huge number of paths makes the

direct Monte Carlo method impractical.

Another issue by direct Monte Carlo simulation associated with the near divergence

behavior of the variance is the numerical roundoff error. In taking the average among

different sampling trajectories we will encounter the sum of numbers with very differ-

ent magnitudes. This is explicitly shown in Fig. 1 for two typical trajectories. The range

in which the paths vary is so wide that the numerical roundoff error will completely

deteriorate the results.

2.4. Moment closure method

Using the idea in the hierarchical approach, we define xn(t) = E(XtW
n
t ). Applying

Itô’s formula to XtW
n
t (n ≥ 2) gives

dXtW
n
t =XtdW

n
t +W n

t dXt + dXtdW
n
t

=nXtW
n−1
t dWt +

1

2
n(n− 1)XtW

n−2
t dt+ µXtW

n
t dt

+XtW
n+1
t dt+XtW

n
t dWt + nXtW

n−1
t dt. (2.8)

Writing this equation into an integral form and taking expectation we get

EXtW
n
t =E

(

X0W
t
0 + n

∫ t

0
XsW

n−1
s ds+

1

2
n(n− 1)

∫ t

0
XsW

n−2
s ds

+ µ

∫ t

0
XsW

n
s ds+

∫ t

0
XsW

n+1
s ds

)

. (2.9)
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Figure 2: Efficiency comparison of Moment Closure method and WCE method for toy model. Red line is
the theoretical solution, blue × is the solution of moment closure method and green ◦ is the solution of
WCE method. The computation cost is compared under similar accuracy. Moment closure method takes
only 1.64 seconds to achieve 1.4% relative error of X(1) while WCE method takes 24,461 seconds (about
6.8 hours) to achieve 1.3% relative error. The ODE solver is Runge-Kutta 4-th order with time step size
10−5. For the WCE truncation, we choose N = K = 8. For the moment closure truncation we choose
N = 3.

With the notation xn(t) = EXtW
n
t we have

dxn(t)

dt
= nxn−1(t) +

1

2
n(n− 1)xn−2(t) + µxn(t) + xn+1(t), (2.10a)

xn(0) = 0, n ≥ 2. (2.10b)

For n = 0 and n = 1, an easy calculation gives

dx0(t)

dt
= µx0(t) + x1(t), (2.11a)

dx1(t)

dt
= x0(t) + µx1(t) + x2(t). (2.11b)

Define x−2(t) = x−1(t) = 0, we have that Eqs. (2.11a) and (2.11b) can be included

in Eq. (2.10) with a uniform expression. For the numerical solution, we will choose a

suitably large integer N and set the terms xn(t) to be zero for n > N . The numerical

result is shown in Fig. 2, which demonstrates the effectiveness of the moment closure

approach.

2.5. Inefficiency of the Wiener chaos expansion

The Wiener chaos expansion (WCE) has been utilized in solving SPDEs in stochas-

tic hydrodynamics [13, 18]. The basic idea is to represent the Wiener functional Xt

through Hermite polynomial spectral expansions, which is a general method to solve

the SDEs driven by Wiener processes.
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For any orthonormal basis {mj(s), j = 1, 2, · · · } in L2([0, T ]), define

ξj =

∫ T

0
mj(s)dWs, j = 1, 2, · · · . (2.12)

It is easy to show that ξj are independently identically distributed standard Gaussian

random variables and

Ws =

∫ T

0
1[0,s](τ)dWτ =

∞
∑

j=1

ξj

∫ s

0
mj(τ)dτ, (2.13)

where 1[0,s](τ) is the characteristic function of interval [0, s]. As a result, one can view

the solution Xt as a function of time t and the infinite random vector ξ = (ξ1, ξ2, · · · ).
Denote the set of multi-indices with finite number of non-zero components as

I =







α = (αj)j≥1, αj ∈ {0, 1, 2, · · · }, |α| =
∞
∑

j=1

αj < ∞







(2.14)

and define the Wick polynomial

Tα(ξ) =
∞
∏

j=1

Hαj
(ξj), α ∈ I, (2.15)

where

Hn(ξ) = (−1)n
1√
n!
e

ξ2

2
dn

dξn
e−

ξ2

2

is the normalized nth order Hermite polynomial. We have that the solution Xs of the

SDEs driven by Wiener process has the representation

Xs =
∑

α∈I
xα(s)Tα, xα(s) = E(XsTα), s ≤ T, (2.16)

if E|Xs|2 < ∞. The validity of the above assertion is ensured by Cameron-Martin

theorem [13]. Furthermore, the first two statistical moments of Xs can be given by

EXs = x0(s), EX2
s =

∑

α∈I
|xα(s)|2. (2.17)

With this idea, we can establish the equations for the WCE coefficients xα(t) for Eq. (2.6)

as

dxα
dt

= µxα +
∞
∑

j=1

(
√

αj + 1x
α

+

j
+
√
αjx

α
−

j
)Mj(t) +

∞
∑

j=1

√
αjx

α
−

j
mj(t), (2.18)

where α+
j = (· · · , αj−1, αj + 1, αj+1, · · · ), α−

j = (· · · , αj−1, αj − 1, αj+1, · · · ), mj(t) is

the orthonormal basis mentioned above and Mj(t) =
∫ t
0 mj(s)ds. We remark here that
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to establish Eq. (2.18) we should take the Wick product between the WCE of Xt and

dWt since the stochastic integral is assumed in Itô sense.

The numerical implementation requires the truncation in both ξ and α. Suppose

we want to keep only K Gaussian random variables and Wick polynomials up to N th

order. Define the truncated index set

IK,N = {α = (α1, · · · , αK), |α| ≤ N},

then the resulting approximation has
∑K

n=0

(

K+n−1
n

)

terms altogether.

Now we compare the efficiency of WCE with the moment closure method. We

apply both methods to the toy model (2.6) to get the mean value of Xt at t = 1. For the

truncated ordinary differential equations (ODEs), we use the fourth order Runge-Kutta

method to solve with fixed time stepsize ∆t = 10−5. We compare the time cost with the

same target accuracy: 1% relative error for Xt=1. To achieve this goal, we need to set

N = K = 8 in WCE and only N = 3 in moment closure method. The numerical results

are shown in Fig. 2. The relative error by moment closure method and WCE method

is 1.4% and 1.3%, respectively. The accuracy of both methods are close to each other

while the computational cost is quite different. We only need to solve a 4 dimensional

ODEs in moment closure method compared with a 12,870 dimensional ODEs in WCE

method. Also the ODEs in moment closure method are much simpler and easier for

implementation. The time cost clearly shows the efficiency of moment closure method.

The WCE takes about 24,461 seconds (about 6.8 hours) while moment closure method

only takes 1.64 seconds.

This difference becomes more apparent when the system involves multiple Wiener

processes. To achieve a good accuracy of the spin-boson dynamics (2.1), similar cutoff

(N = K = 8) is needed for WCE method. However the SDEs (2.1) has 4 Wiener pro-

cesses which means it will lead to a 128704 ≥ 1016 dimensional ODE system. We even

do not know whether we would encounter stiffness issue which is common for large

ODE systems. The huge computational cost makes that the WCE is not appropriate for

this problem.

3. Convergence of moment closure method

3.1. Simple case

Although the toy model (2.6) looks to be easy, detailed analysis is not so simple. To

understand the convergence of moment closure method in a more accessible way, we

consider the model (1.1) proposed in the introduction.

Though Eq. (1.1) involves two independent Wiener processes, the relation (dWt ±
idVt)

2 = 0 makes the moment system simpler. Define xn(t) = EXt(Wt + iVt)
n and take

moments we get the system (1.2) by defining x−1(t) = 0 for an unified expression. The

initial value of the ODE system is x0(0) = 1, xn(0) = 0, n ≥ 1. Truncate to a finite N
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we obtain

dy(t)

dt
= ANy(t), AN =





















µ 1
2 µ 1

4 µ 1
. . .

. . .
. . .

. . .
. . . 1
2N µ





















∈ R
(N+1)×(N+1), (3.1)

where y(t) = (y0(t), · · · , yN (t))T . We now show the exponential convergence of the

closure system in this simple case.

Theorem 3.1. The lowest moment y0(t) in the solution of ODEs (3.1) converges to x0(t)
as N goes to infinity, and the error estimate has the form

|x0(t)− y0(t)| ≤
e(|µ|+1+2N)t

N !2N
‖xN+1‖L∞[0,t]. (3.2)

Proof. From now on, we fix N and simplify the notation AN as A. To see why the

moment closure works, let us focus on the difference between the truncated variable

y(t) and the original one x(t) = (x0(t), · · · , xN (t))T . Define e(t) = x(t)− y(t) and the

ODEs for e(t) is
de(t)

dt
= Ae(t) + g(t), (3.3)

where g(t) = (0, · · · , 0, xN+1)
T is determined by the original SDE.

The ODE (3.3) can be solved as

e(t) =

∫ t

0
eA(t−s)g(s)ds

and we are interested in e0(t). Now we analyze the convergence by sufficiently utilizing

the special structure of A. Take D = diag{d0, · · · , dN} where dk = k!2k. It can be easily

shown that the matrix D−1AD = AT . With this observation, we obtain

|e0(t)| =
∣

∣

∣

(

∫ t

0
eA(t−s)g(s)ds

)

0

∣

∣

∣
=
∣

∣

∣

(

∫ t

0
DeA

T (t−s)D−1g(s)ds
)

0

∣

∣

∣

≤
∫ t

0
d0

∣

∣

∣

(

eA
T (t−s)

)

0N

∣

∣

∣

1

dN
|xN+1(s)|ds

≤
∫ t

0

d0
dN

e‖A
T ‖∞(t−s)|xN+1(s)|ds

≤
∫ t

0

e‖A
T ‖∞(t−s)

N !2N
|xN+1(s)|ds, (3.4)

where ‖A‖∞ is the L∞-norm of the matrix A. It is obvious that ‖AT ‖∞ = |µ|+1+2N .

Thus we get (3.2). �

. https://doi.org/10.4208/nmtma.2017.s06
Downloaded from https://www.cambridge.org/core. New York University, on 11 Oct 2017 at 13:57:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.4208/nmtma.2017.s06
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Convergence Analysis of the Moment Closure Approximation 309

Although the above analysis heavily depends on the tridiagonal structure of the co-

efficient matrix A, the convergence estimate (3.2) provides us many insights about the

moment closure method. The following points are indeed general for more complicated

problems to be considered later:

(1). For given t, the convergence is exponential as N → ∞. Taking advantage of

Stirling’s formula, we have that the leading order behavior of the error estimate is

exp (−N lnN −N ln 2 +N + 2Nt) . (3.5)

The convergence is exponential as long as the relation lnN + ln 2 > 1 + 2t holds and

N gets large.

(2). For given N , the convergence deteriorates when the time t increases. This fact is

straightforward from Eq. (3.5). Note the deterioration rate may be fast.

(3). The error estimate depends on the growth of truncated terms. In general, if the

truncated term xN+1 mildly grows, the final convergence is obviously true due to the

factorial term in the denominator. However, one can show that the terms like EXtW
n
t

for Eq. (2.6) or |EXt(Wt + iVt)
N | for Eq. (1.1) indeed grow in a factorial fashion. Thus

the rigorous proof for different examples should be checked case by case. In the above

example we have

∣

∣

∣

1

N !
EXt(Wt + iVt)

N
∣

∣

∣ ≤ (E|Xt|2)
1

2

( 1

(N !)2
E|Wt + iVt|2N

)
1

2

, (3.6a)

E|Xt|2 ≤ e(2Re(µ)+2)t+ 2

3
t3
E|X0|2, (3.6b)

1

(N !)2
E|Wt + iVt|2N ≤ 1

(N !)2

√

π

2
t2NE|Y |2N+1 ≤ 1

(N !)2
t2N (2N)!! ≤ 2N t2N

N !
, (3.6c)

where Re(µ) is the real part of µ, Y is a standard Gaussian random variable with mean

0 and variance 1, and the proof of (3.6a) is shown in Appendix A. This establishes the

estimate on |xN+1(t)| and thus the exponential convergence of the closure approxima-

tion. Similar arguments hold at least for most of the later examples.

The above points on the nature of the considered closure approximation will be

clearly demonstrated in Section 5 for numerical computations.

Remark 3.1. The estimate (3.2) can be similarly obtained if one takes the diagonal

matrix D = diag{d0, · · · , dN} where dk =
√
k!2k/2. With such choice we get a symmet-

ric tridiagonal matrix B = D−1AD with off-diagonal entries
√
2k. This will result in

the error estimate

|x0(t)− y0(t)| ≤
e(|µ|+2

√
2N)t

√
N !2N/2

‖xN+1‖L∞[0,t]. (3.7)

Here we see a trade-off between the growth in the exponential function in the nomina-

tor and the growth in the factorial term in the denominator. The choice dk =
√
k!2k/2

gives slower growth speed
√
N ! in the denominator but sharper estimate

√
N on the
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eigenvalues (the careful readers may find that the eigen-polynomials of AN satisfy

similar recursive relations for Hermite polynomials [21]). However, the bad growth

condition on the remainder term ‖xN+1‖L∞[0,t] in this example requires N ! in the de-

nominator, which is utilized in the theorem. Such trade-off is also clearly demonstrated

in the general Theoerem 3.2.

3.2. Main result

Our analysis is not limited to the scalar case. Assume there is an infinite ODE system

for variable xT = (xT
1 ,x

T
2 , · · · ) as

dx1

dt
= L11x1 + U12x2 + · · · + U1pxp,

dx2

dt
= L21x1 + L22x2 + U23x3 + · · · + U2,p+1xp+1,

· · ·
dxj

dt
= Lj1x1 + · · · + Ljjxj + Uj,j+1xj+1 + · · · + Uj,j+p−1xj+p−1, · · ·

where xj ∈ R
mj , Ljk ∈ R

mj×mk , Ujk ∈ R
mj×mk . To get an approximation to this

system, we choose an integer N and only keep the terms whose subscript is not bigger

than N . The ODEs after truncation read

dy1

dt
= L11y1 + U12y2 + · · ·+ U1pyp,

dy2

dt
= L21y1 + L22y2 + U23y3 + · · ·+ U2,p+1yp+1,

· · ·
dyN

dt
= LN1y1 + · · ·+ LN,N−1yN−1 + LN,NyN .

It is a linear ODE system which can be written in matrix form

dy

dt
= Ay, (3.8)

where

A =

























L11 · · · U1p 0

L21
. . .

. . . U2,p+1
. . .

...
...

. . .
. . .

. . . 0

· · · · · · · · · . . .
. . . UN−p+1,N

· · · · · · · · · · · · . . .
...

· · · · · · · · · · · · LN−1,N LN,N

























, (3.9)

and A consists of many sub-matrices. A is a block lower Hessenberg matrix with upper

bandwidth p, hereafter matrix in such form is referred to as a p-LH matrix. We need to
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Convergence Analysis of the Moment Closure Approximation 311

put some restrictions on these sub-matrices. To simplify the exposition, we first define

the notation . as

Notation 3.1. We say a matrix B . b where b is a positive number if |Bjk| ≤ Kb for some

positive K ∼ O(1) and all j, k.

For each partitioned matrix A as above, we have the decomposition A = L + U ,

where L is its lower triangular part and U is its upper triangular part excluding the

diagonals. Furthermore, we decompose L into two parts L = L̂+ L̃ where L̂ represents

the part which has O(1) entries independent of truncation number N , i.e., L̂jk ∼ O(1),
while the entries in the other part L̃ may depend on the truncation number N .

We make the following reasonable assumptions on the partitioned matrix A:

(A1) The non-zero elements in L̃ is located in the sub-matrices L̃j,j−k for k = 0 : q and

Lj,j−k . jαk ;

(A2) The non-zero elements in U is located in the sub-matrices Uj,j+k for k = 1 : p− 1
and Uj,j+k . jβk ;

(A3) The number of the non-zero elements in each row of A is O(1).
Here we employed the conventional notation j = n1 : n2 in matrix analysis, which

means j = n1, n1 + 1, · · · , n2 for natural numbers n1 ≤ n2.

Let us illustrate these assumptions through the following concrete example. Take

P =













12 11 13 0 0
21.5 + 1 22 21 23 0

1 31.5 32 31 33

1 1 41.5 + 1 42 41

2 1 1 51.5 52













.

We naturally define the matrices

U =













0 11 13 0 0
0 0 21 23 0
0 0 0 31 33

0 0 0 0 41

0 0 0 0 0













, L̃ =













12 0 0 0 0
21.5 22 0 0 0
0 31.5 32 0 0
0 0 41.5 42 0
0 0 0 51.5 52













,

and L̂ = P − L̃ − U . The corresponding parameters in Assumptions (A1)-(A3) are

p = 3, β1 = 1, β2 = 3 and q = 1, α0 = 2, α1 = 1.5.

Now we state the main theorem in this paper.

Theorem 3.2. For an infinite linear ODEs with a p-LH coefficient matrix, if the Assump-

tions (A1)-(A3) are satisfied, and there exists a positive real number d such that

d ≤ 1− βj
j

, j = 1 : p− 1, (3.10a)

d ≥ αj − 1

j
, j = 0 : q, (3.10b)
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then the lowest moments y1 in the solution of the truncated equations converge to the

original lowest moments x1 as N goes to infinity. We have the error estimate

‖x1 − y1‖∞ .
NβeCNt

((N − p+ 2)!)d
max

j=N+1:N+p−1
‖xj‖∞, (3.11)

where ‖x‖∞ is the L∞[0, t] norm of |x(·)|, C is a positive constant independent of N and

t and β = maxj=1:p−1 βj .

Proof. Define the difference between the original variables x(t) and truncated vari-

ables y(t) as ej(t) = xj(t)− yj(t) ∈ R
mj . We have

de(t)

dt
= Ae(t) + g(t), e(0) = 0. (3.12)

Here g(t) = (0, · · · , 0,gN−p+2(t), · · · ,gN (t)) and gj(t) =
∑j−N+p−1

k=1 Uj,N+kxN+k(t) is

only decided by the original system, thus

‖g‖∞ . Nβ max
j=N+1:N+p−1

‖xj‖∞.

Solving (3.12) we have

e(t) =

∫ t

0
eA(t−s)g(s)ds. (3.13)

Define the block diagonal matrix D = diag{D1, · · · ,DN} where Dj ∈ R
mj×mj are

diagonal matrices defined as Dj = diag{(j!)d, · · · , (j!)d}. Taking similarity transforma-

tion B = D−1AD, we get

e(t) =

∫ t

0
DeB(t−s)D−1g(s)ds. (3.14)

From condition (3.10a), we have the block upper triangular part of B

Bj,j+k = D−1
j Uj,j+kDj+k . jkd+βk ≤ j. (3.15)

For the block lower triangular part of B induced by L̃ and L̂, we have

D−1
j L̃j,j−kDj−k . jαk−kd ≤ j,

D−1
j L̂j,j−kDj−k . j−kd.

Using Assumption (A3) that the number of non-zero elements in each row is O(1), we

get

‖B‖∞ . N + max
j=1:N

j
∑

k=1

j−kd . N.

Defining matrix B̂(s) = eB(t−s), we have

‖B̂‖∞ ≤ e‖B‖∞(t−s) ≤ eCN(t−s).
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Simple calculation shows

e1(t) =

∫ t

0

B̂(s)1,N−p+2gN−p+2(s)

((N − p+ 2)!)d
+ · · ·+ B̂(s)1,NgN

(N !)d
ds. (3.16)

For each term inside the integral we have

∥

∥

∥

∥

∥

B̂(s)1,jgj(s)

(j!)d

∥

∥

∥

∥

∥

∞
≤

‖B̂(s)1,j‖∞‖gj(s)‖∞
(j!)d

.
NβeCN(t−s)maxj=N+1:N+p−1 ‖xj‖∞

((N − p+ 2)!)d
.

Substituting this into (3.16) we have

‖e1‖∞ .

∫ t

0

NβeCN(t−s)maxj=N+1:N+p−1 ‖xj(s)‖∞
((N − p+ 2)!)d

ds

.
NβeCNt

((N − p+ 2)!)d
max

j=N+1:N+p−1
‖xj‖∞. (3.17)

The proof is completed. �

From the final estimate and the whole proof procedure we can learn the following

important points and make possible extensions.

(1). The observation made in Section 3.1 for the simple case still holds in this general

situation. They are natural and will be verified by the numerical results in Section 5.

(2). When t is fixed, the convergence rate is dominated by

NβeCNt

((N − p+ 2)!)d

∼ exp (−d(N − p+ 2) ln(N − p+ 2) + d(N − p+ 2) + β lnN + CNt)

∼ exp (−dN lnN + dN + β lnN + CNt) .

Of course we need the truncated terms maxj=N+1:N+p−1 ‖xj‖∞ grow slower than ex-

ponential function as in the toy model case.

(3). Our general theorem is not limited to the moment closure for the considered class

of stochastic differential equations. No matter where the infinite ODEs come from, as

long as it satisfies the assumptions of the theorem, we will obtain the final estimate.

This extends the applicable range of our analysis.

(4). The convergence is not only correct for the lowest moments x1(t). Similar proof

can show that the lower moments xi also converge if i is independent of N .

(5) It is not difficult to find that all of the arguments above hold true if the absolute

value is replaced with the complex modulus when the coefficients L, U and the solution

x are complex variables. This enables the application to our motivating spin-boson

model in Section 6.
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Remark 3.2. For some problems, it is possible that the admissible d required by (3.10a)-

(3.10b) is negative or in an empty set. In such case, the current framework will be

invalid and we have to resort to other ideas.

Now we will demonstrate our restrictions on the growth of elements in coefficient

matrix are essential through counterexamples. Let us consider the ODEs

dxj
dt

= j2+αxj−1 + xj+1, j ≥ 1, (3.18)

where x0 ≡ 0 is defined to get a uniform expression and α > 0 is a strictly positive

number. This ODEs violate the criterion in our theorem, i.e., no positive number d
exists such that d ≤ 1 and d ≥ 2 + α − 1 = 1 + α are satisfied at the same time. Make

truncation to order N we get

dy

dt
= Ay, A =















0 1 0 · · · · · · · · ·
22+α 0 1 · · · · · · · · ·
0 32+α 0 1 0 · · ·
...

. . .
. . . · · · · · · 1

0 · · · · · · · · · N2+α 0















.

We will show the truncated system does not converge to the original system in general.

Lemma 3.1. We have the error estimate between the truncated variable y and the original

variable x:

|x1(t)− y1(t)| &
N (2+α)cN

(N + 2cN)!

∫ t

0
(t− s)N+2cNxN+1(s)ds,

where c > 1/α is a positive constant.

Proof. Define e(t) = x(t)− y(t) and the dynamics of e(t) can be derived as

de(t)

dt
= Ae(t) + g(t),

where g(t) = (0, · · · , 0, xN+1(t))
T and e(0) = 0. Simiarly we have the analytical solu-

tion

e(t) =

∫ t

0
eA(t−s)g(s)ds.

Thus

e1(t) =

∫ t

0
eA(t−s)(1, N)xN+1(s)ds,

where the notation eA(t−s)(1, N) denotes the (1, N)-element of matrix eA(t−s). From

now on, we will mix the notation Qjk or Q(j, k) in denoting the (j, k)-element of matrix

Q. Let us focus on the analysis of eA(t−s)(1, N). We decompose A as A = L+ U where

L and U are lower and upper triangular part of A.
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For any given integer k, (LU)kUN−1 is one term in the expansion of (L+U)N+2k−1.

Note that all elements in L and U are positive, we have

(L+ U)N+2k−1(1, N) ≥ (LU)kUN−1(1, N) = N (2+α)k(t− s)N+2k−1.

Using the expansion eA(t−s) =
∑∞

k=0
Ak(t−s)k

k! , we have

eA(t−s)(1, N) ≥
∞
∑

k=0

N (2+α)k(t− s)N+2k−1

(N + 2k − 1)!
.

Choose k = [cN ] where c > 1/α is a constant, we get

eA(t−s)(1, N) &
N (2+α)cN (t− s)N+2cN

(N + 2cN)!
.

Substitute this into the solution of e1(t) we get the desired estimate. �

We remark that generally y1 does not converge to x1. Using Stirling’s approxima-

tion we have

|x1(t)− y1(t)| & exp
(

(αc − 1)N lnN + (1 + 2c)N
)

∫ t

0
(t− s)N+2cNxN+1(s)ds.

Since αc > 1 we have the exponential term goes to infinity as N → ∞ if no special

behavior of xN+1 is provided.

4. Extension to nonlinear problems

In this section, we will extend our analysis to the nonlinear infinite ODE system

with similar lower Hessenberg structure. For simplicity, we will only give the detailed

proof when xi are scalar. The vectorial case can be established similarly. Now suppose

the original ODE system is

dx1
dt

= f1(x1, x2), (4.1a)

dx2
dt

= f2(x1, x2, x3), (4.1b)

· · ·
dxj
dt

= fj(x1, x2, · · · , xj , xj+1), · · · . (4.1c)
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We choose a suitable large integer N and make the corresponding truncation. Denote

the truncated equation as

dy1
dt

= f1(y1, y2), (4.2a)

dy2
dt

= f2(y1, y2, y3), (4.2b)

· · ·
dyN
dt

= fN (y1, y2, · · · , yN , 0), · · · . (4.2c)

To perform the analysis, we make the following assumption on the functions fj:

(A4) fj is Lipschitz with respect to all the variables, e.g.,

|fj(· · · , xk, · · · )− fj(· · · , yk, · · · )| ≤ Ajk|xk − yk|. (4.3)

Now let us state the convergence theorem for the nonlinear system (4.1b).

Theorem 4.1. For an infinite nonlinear ODEs (4.1b), if (A4) is satisfied and the Lipschitz

coefficients {Ajk} satisfy Assumptions (A1)-(A3), and there exists a positive number d
such that

d ≤ 1− β1, d ≥ αj − 1

j
, 0 ≤ j ≤ q,

then the solution of the lowest order variable y1 in truncated equation converges to the

original lowest order variable x1 as N goes to infinity. We have the estimate

|e1(t)| ≤
NβeCNt

(N !)d
‖xN+1‖∞, (4.4)

where C is a positive constant independent of N and t and β = β1.

Proof. Define ej(t) = xj(t)− yj(t) and it is easy to see that ej(0) = 0. The equation

for ej(t) (j < N) has the form

dej
dt

=fj(x1, x2, · · · , xj+1)− fj(y1, y2, · · · , yj+1)

=fj(x1, x2, · · · , xj+1)− fj(y1, x2, · · · , xj+1)

+ fj(y1, x2, · · · , xj+1)− fj(y1, y2, · · · , xj+1)

+ · · ·+ fj(y1, y2, · · · , xj+1)− fj(y1, y2, · · · , yj+1)

≤
j+1
∑

k=1

Ajk|ek|,

where the last inequality is due to the Lipschitz assumption. Also we have

dej
dt

≥ −
j+1
∑

k=1

Ajk|ek|.
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Similarly we have the estimation for eN

∣

∣

∣

∣

deN
dt

∣

∣

∣

∣

≤
N
∑

k=1

ANk|ek|+AN,N+1|xN+1|.

Let us define two ODE systems pǫj and qǫj as

dpǫj
dt

=

j+1
∑

k=1

Ajkp
ǫ
k + ǫ, j < N, (4.5a)

dpǫN
dt

=

N
∑

k=1

ANkp
ǫ
k +AN,N+1|xN+1|+ ǫ, (4.5b)

dqǫj
dt

= −
j+1
∑

k=1

Ajkp
ǫ
k − ǫ, j < N, (4.5c)

dqǫN
dt

= −
N
∑

k=1

ANkp
ǫ
k −AN,N+1|xN+1| − ǫ. (4.5d)

Here ǫ is a positive real number and both ODEs start from the initial value 0. It is

easy to show that pǫj = −qǫj ≥ 0. Now we claim that qǫj ≤ ej(t) ≤ pǫj(t) for all j, i.e.,

|ej(t)| ≤ pj(t). Otherwise, define

τ = inf
t

{

t ≥ 0, ∃j such that ej(t) ≥ pǫj(t) or ej(t) ≤ qǫj(t)
}

.

At time τ , there exists an index m such that em(τ) = pǫm(τ) or em(τ) = qǫm(τ). Without

loss of generality, we assume em(τ) = pǫm(τ). Since

d(em(t)− pǫm(t))

dt
≤ −ǫ < 0 at t = 0,

we have τ > 0 and there must exist an instant s0 < τ such that φ(s0) = em(s0) −
pǫm(s0) < 0. Based on the definition of τ , we have |ej(t)| ≤ pǫj(t) for 0 ≤ t ≤ τ and

arbitrary j.

If the index m < N , we have

φ′(t) =
d(em(t)− pǫm(t))

dt
≤

m+1
∑

k=1

Amk(|ek(t)| − pǫk(t)) − ǫ < 0, t ≤ τ.

Similarly if m = N , we also have φ′(t) < 0. Together with φ(s0) < 0 we should have

φ(τ) < 0, which contradicts with φ(τ) = 0.
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Finally, we take a sequence {ǫn}∞n=1, ǫn → 0+, then pǫni → pi and |e1| ≤ pǫn1 . This

naturally leads to |e1| ≤ p1, where {pj} is defined as

dpj
dt

=

j+1
∑

k=1

Ajkpk, j < N, (4.6a)

dpN
dt

=
N
∑

k=1

ANkpk +AN,N+1|xN+1|. (4.6b)

From Theorem 3.2 and the Assumptions on Lipschitz constants Ajk, we get the

estimate (4.4). �

Based on the final estimate and the whole proof procedure we can make the follow-

ing remarks.

(1). The theorem is not limited to the case xj being a scalar. As long as we have

the Lipschitz condition to construct a linear system controlling the original system, the

final estimate holds from our main Theorem 3.2. The extension to vectorial case is

straightforward from the proof above.

(2). The structure of nonlinear system does not have to be exactly the same as (4.1b)

in which the parameter p = 2. For example, we may have the ODEs as

dxj
dt

= fj(x1, · · · , xj , xj+1, xj+2),

which means p = 3. The result is still valid with reasonable modifications. We can

similarly construct a linear system to control the original system and apply our general

Theorem 3.2.

5. Numerical results

In this section, we will show some numerical results to confirm our analysis. All

ODEs are solved by the classical 4th order Runge-Kutta method with time stepsize

10−5.

5.1. Example 1

We test moment closure method on three different SDEs. The SDEs are

Case 1: dXt = Xt(Wt + iVt)dt+Xt(dWt − idVt), X0 = 1. (5.1a)

Case 2: dXt = XtWtdt+XtdWt, X0 = 1. (5.1b)

Case 3: dXt = Xt(Wt + iVt)
2dt+Xt(dWt − idVt), X0 = 1. (5.1c)
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These three SDEs can be analytically solved, the closed-form solution and mean value

is listed below as benchmark to compare with our numerical result.

Xt = exp

(∫ t

0
(Ws + iVs)ds+Wt − iVt

)

, EXt = exp
(

t2
)

. (5.2a)

Xt = exp

(∫ t

0
Wsds+Wt −

1

2
t

)

, EXt = exp

(

t3

6
+

t2

2

)

. (5.2b)

Xt = exp

(∫ t

0
(Ws + iVs)

2ds+Wt − iVt

)

, EXt = exp

(

4t3

3

)

. (5.2c)

For SDEs (5.1a), (5.1b) and (5.1c), we define corresponding auxiliary variables xn(t) =
EXt(Wt + iVt)

n, xn(t) = EXtW
n
t and xn(t) = EXt(Wt + iVt)

n. To get a uniform

expression, we define xi(t) = 0, i < 0 for these SDEs. With these notations, the

moment closure equation can be written as

dxn
dt

= xn+1(t) + 2nxn−1(t), (5.3a)

dxn(t)

dt
= xn+1(t) + nxn−1(t) +

1

2
n(n− 1)xn−2(t), (5.3b)

dxn(t)

dt
= xn+2(t) + 2nxn−1(t), (5.3c)

with the same initial conditions xi(0) = 0, i > 0 and x0(0) = 1.

These three examples satisfies Theorem 3.2 with different assumptions. For (5.3a),

the assumptions hold with α0 = 0, α1 = 1, β1 = 0, thus the restriction on d is 0 ≤ d ≤ 1.

For (5.3b), the assumptions hold with α0 = 0, α1 = 1, α2 = 2, β1 = 0, thus the

restriction on d is 1
2 ≤ d ≤ 1. For (5.3c), the assumptions hold with α0 = 0, α1 = 1,

β1 = 0, β2 = 0, thus the restriction on d is 0 ≤ d ≤ 1
2 .

We are interested in two things. One is the convergence rate with respect to the

truncation number N when the end time T is fixed. In the discussion of Theorem

3.2, we see the convergence rate with respect to N is O(exp(−N lnN)). We can solve

these three ODEs (5.3a), (5.3b) and (5.3c) with different truncation number N =
10, 12, 14, 16, 18, 20. The numerical error is computed at time t = 2, t = 2, t = 1 for

the three examples, respectively. Linear fitting is performed for the logarithm of the

numerical errors versus N lnN . The results are shown in Fig. 3(a). It clearly validates

our convergence estimates.

The other point of interest is the evolution of numerical error with respect to time

t when the truncation number N is fixed. We solve the ODEs to time t = 4 and record

the numerical error for fixed N = 25. The result is shown in Fig. 3(b). We can see that

at the beginning, the numerical error is very small. When time increases, the numerical

error becomes larger and at last the numerical result is totally incorrect.

We also check the convergence rate for low order moments x1(t), · · · , x4(t) rather

than only x0(t) for Case 1. The analytical solution of xi can be solved but may be too

complicated. We choose a large truncation number N = 50 and set the result as a good
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Figure 3: The results of three examples. Left panel: The truncation numberN varies in {10,12,14,16,18,20}.
The numerical error is computed at time t = 2, t = 2 and t = 1 for three cases separately. Blue ◦, green �
and red ⋄ represent the logarithm of numerical errors for three cases in Example 1, respectively. Red, blue
and green solid lines are the corresponding linear fitting to N lnN . Right panel: The evolution of numerical
error with respect to time until t = 4. Truncation number is fixed at N = 25 for all three examples.
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Figure 4: Convergence test of low moments x0, x1, · · · , x4 for Eq. (5.1a) with N varying from 10 to 20.
The result supports the convergence rate of type exp(−aN lnN).

approximation of analytical solution. We change N from 10 to 20 and compute the

numerical error to see the convergence, see Fig. 4. This confirms that the convergence

result of lower order terms in our remark is correct.

Remark 5.1. We should remark that the convergence analysis framework may not be

suitable for the Case 3 in Example 1. In this case, the maximal admissible exponent

d = 1/2. However, an estimate to EXt(Wt + iVt)
N with Hölder’s inequality yields the

growth order exp((N lnN − N)/2), which exactly cancels the exponential decaying

factors obtained from the diagonal matrix D. The perfect performance of the closure
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approximation shown in Fig. 3 means that the estimate (3.11) may be not sharp and

more delicate analysis needs to be developed to handle this situation. This is beyond

the scope of this paper, which will be considered in the future.

5.2. Example 2

We consider an SDE with two independent Brownian motions Wt and Vt here:

dXt = XtWtdt+ 2XtVtdt+XtdWt +XtdVt), X0 = 1. (5.4)

The analytical solution of Xt and its mean value is

Xt = exp

(∫ t

0
(Ws + 2Vs)ds+Wt + Vt − t

)

, EXt = exp

(

t3

3
+ t2

)

. (5.5)

Take xmn(t) = EXtW
m
t V n

t , n ≥ 0 and define

x−2,0(t) = x0,−2(t) = x−1,−1(t) = 0,

we get the ODEs

dxmn(t)

dt
=xm+1,n(t) + 2xm,n+1(t) +

1

2
m(m− 1)xm−2,n(t)

+
1

2
n(n− 1)xm,n−2(t) +mxm−1,n(t) + nxm,n−1(t). (5.6)

Such an ODE system corresponds to the case that xi is no longer a scalar. Define

xi = (x0,i, x1,i−1, · · · , xi,0)T and we can apply our theorem here. The Assumptions

(A1)-(A3) are satisfied with α0 = 0, α1 = 1, α2 = 2, β1 = 0 and the restrictions on

d is 1/2 ≤ d ≤ 1. We want to calculate the mean value in the time interval [0, 2] and

compare our numerical result of moment closure method with the analytical result. The

truncation of this system is straightforward by setting xn = 0, n > N . By varying the

truncation number N in {15, 17, 19, 21, 23, 25}, we testify our theorem. In Fig. 5(a), the

logarithm of numerical error at time t = 2 with respect to different N lnN is shown. In

Fig. 5(b), the evolution of the logarithm of numerical error is shown with fixed N = 20.

Both results validate our theoretical estimate and they also suggest the obtained rate

of convergence is almost tight.

6. Application to the realistic spin-boson model

In this section, we will apply the established theorems to our motivating spin-boson

model, which shows the power of the theoretical results. We will first consider the

single-exponential kernel function case, and then the general multi-exponential case.

. https://doi.org/10.4208/nmtma.2017.s06
Downloaded from https://www.cambridge.org/core. New York University, on 11 Oct 2017 at 13:57:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.4208/nmtma.2017.s06
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


322 Y. F. Cai, T. J. Li, J. S. Shao and Z. M. Wang

40 50 60 70 80 90
−7

−6

−5

−4

−3

−2

−1

N ln(N)

Lo
g(

er
ro

r)

 

 

Numerical Error
Linear Fitting

(a) Convergence rate

0 0.5 1 1.5 2
−16

−14

−12

−10

−8

−6

−4

−2

Time

Lo
g(

er
ro

r)

 

 

Numerical Error

(b) Evolution of error

Figure 5: Result of Example 2. Left panel: Logarithm of numerical error at time t = 2 versus N lnN .
N varies in {15, 17, 19, 21, 23, 25}. Red ◦ represents the numerical error and blue solid line is the linear
fitting result. Right panel: Logarithm of numerical error with respect to time with fixed truncation number
N = 20.

6.1. Single-exponential case

In the single-exponential case, we have the kernel function α(t) = γ exp(−Ωt). The

moments ρmn defined in (2.4) satisfies the system (2.5). Here we only consider the

simple truncation closure as

dymn

dt
=− i[Hs, ymn]− i[fs, ym+1,n + ym,n+1]

+ iγ(nym,n−1fs −mfsym−1,n)

− (mΩ+ nΩ∗)ymn for m,n ∈ N and m+ n = 0, 1, · · · , N, (6.1)

where ymn ∈ C
2×2 and ymn := 0 if m+ n < 0 or m+ n > N .

To apply Theorem 3.2, we need to rearrange the variables ρmn and ymn to form a

single vector. The rule to transform each matrix ρmn into the vector ρmn is defined as

ρmn =

(

ρ
(11)
mn ρ

(12)
mn

ρ
(21)
mn ρ

(22)
mn

)

7→ ρmn = (ρ(11)mn , ρ(12)mn , ρ(21)mn , ρ(22)mn ). (6.2)

Define x = (x0,x1, · · · ,xr, · · · ) where xr = (ρ0r,ρ1,r−1, · · · ,ρr0) ∈ C
4(r+1). We have

the ODE system for x as

dxr

dt
= Lr,r−1xr−1 + Lr,rxr + Ur,r+1xr+1, r ∈ N, (6.3)

where Lr,r−1 ∈ C
4(r+1)×4r, Lr,r ∈ C

4(r+1)×4(r+1) and Ur,r+1 ∈ C
4(r+1)×4(r+2) are matri-

ces with 4-by-4 subblocks

(Lr,r−1)jk =











−iγjΓ(fs·), j = k + 1,

iγ(r − j)Γ(·fs), j = k,

0, otherwise,

(6.4)
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for j = 0, · · · , r and k = 0, · · · , r − 1,

(Lrr)jk =

{

−(jΩ + (r − j)Ω∗)I − iΓ[Hs,·], j = k,

0, otherwise,
(6.5)

for j = 0, · · · , r and k = 0, · · · , r,

(Ur,r+1)jk =

{

−iΓ[fs,·], k = j or k = j + 1,

0 otherwise,
(6.6)

for j = 0, · · · , r and k = 0, · · · , r + 1. Here the symbols Γ(fs·), Γ(·fs), Γ[fs,·] and Γ[Hs,·]]
are constant matrices derived by transforming the matrix product and Poisson bracket

into matrix-vector product operations, which can be explicitly written as

Γ(fs·) =
1

2









1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









, Γ(·fs) =
1

2









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









,

Γ[Hs,·] =
1

2









0 1 −1 0
1 0 0 −1
−1 0 0 1
0 −1 1 0









, Γ[fs,·] =









0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0









.

It remains to show that this system actually satisfies the conditions of Theorem 3.2.

The Eqs. (6.4) and (6.5) show that we have Lr,r−1 . r and Lr,r . r so the assumption

(A1) is satisfied with q = 1, α0 = 1 and α1 = 1. The Eq. (6.6) shows that we have

Ur,r+1 . 1 so (A2) is satisfied with p = 1 and β1 = 0. The number of non-zeros in each

row of the matrix is obviously independent of N , so (A3) is satisfied as well. Finally we

have the constraint 0 ≤ d ≤ 1 from Theorem 3.2, and the theorem holds with d = 1,

which results in the error estimate

‖ρmn(t)− ymn(t)‖∞ .
NeCNt

(N + 1)!
‖xN+1‖∞ (6.7)

for m,n independent of N . The estimate of ‖xN+1‖∞ in the Appendix B ensures the

exponential convergence of the closure approximation.

6.2. Multi-exponential case

When the kernel function α(t) has the multi-exponential form

α(t) =

L
∑

l=1

γl exp(−Ωlt),

. https://doi.org/10.4208/nmtma.2017.s06
Downloaded from https://www.cambridge.org/core. New York University, on 11 Oct 2017 at 13:57:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.4208/nmtma.2017.s06
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


324 Y. F. Cai, T. J. Li, J. S. Shao and Z. M. Wang

where γl are real and Ωl are complex with positive real parts, we can also show the

exponential convergence of the closure approximations. To do this, let us derive the

closure system at first.

Define I the multi-indices

I = (m1,m2, · · · ,mL, n1, n2, · · · , nL), ml, nl ∈ N,

and ρI(t) as

ρI(t) = E

(

ρs(t)

L
∏

l=1

gml

l (t)hnl

l (t)
)

, (6.8)

where gl, hl for l = 1, 2, · · · , L are scalar functions defined as

gl(t) =

∫ t

0
γle

−Ωl(t−s)(dW1(s)− idW4(s)− idW2(s) + dW3(s)), (6.9a)

hl(t) =

∫ t

0
γle

−Ω∗

l
(t−s)(dW1(s)− idW4(s) + idW2(s)− dW3(s)). (6.9b)

Similar as in the single-exponential case, gl and hl satisfy the SDEs

dgl = −Ωlgldt+
γl
2
(dW1(s)− idW4(s)− idW2(s) + dW3(s)), (6.10a)

dhl = −Ω∗
l hldt+

γl
2
(dW1(s)− idW4(s) + idW2(s)− dW3(s)). (6.10b)

For national ease, we also define

ρI,ml− :=
(

ρs(t)
L
∏

k=1

(gmk

k (t)hnk

k (t))
/

gl(t)
)

, ρI,ml+ :=
(

ρs(t)
L
∏

k=1

(gmk

k (t)hnk

k (t)) · gl(t)
)

,

ρI,nl− :=
(

ρs(t)

L
∏

k=1

(gmk

k (t)hnk

k (t))
/

hl(t)
)

, ρI,nl+ :=
(

ρs(t)

L
∏

k=1

(gmk

k (t)hnk

k (t)) · hl(t)
)

.

Here we naturally assume ρI,ml− and ρI,nl− only defined for ml, nl ≥ 1. It is not difficult

to show that the moments ρI satisfy the following infinite system

dρI
dt

= −i[Hs, ρI ]−
L
∑

l=1

i[fs, ρI,ml+ + ρI,nl+]

+

L
∑

l=1

iγl(nlρI,nl−fs −mlfsρI,ml−)−
L
∑

l=1

(mlΩl + nlΩ
∗
l )ρI . (6.11)

Especially, ρI(t) for I = (0, · · · , 0, 0, · · · , 0) is the desired solution.

Define the order of the multi-index I as

|I| =
L
∑

l=1

(ml + nl).
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The straightforward closure by truncating the terms with |I| ≤ N can be made as in the

single-exponential case. To analyze the convergence, define x = (x0,x1, · · · ,xr, · · · ),
where xr = (ρIr0 ,ρIr1 , · · · ,ρIr,Kr

) for all the multi-indices |Irk| = r and Ir,k < Ir,k+1.

Here ρ is the 4-vector formed by rearranging the entries of matrix ρ as in the single-

exponential case, Kr is the combinatorial number of partitioning r into 2L natural

numbers, and ‘<’ is the natural partial ordering for multi-indices. From (6.11) one can

deduce the system of ODEs satisfied by x

dxr

dt
= Lr,r−1xr−1 + Lr,rxr + Ur,r+1xr+1, r ≥ 0. (6.12)

Finding the exact form of Lr,r−1, Lr,r and Ur,r+1 is cumbersome and unnecessary. It is

not difficult to find that Lr,r−1 is only related to

L
∑

l=1

iγl(nlρI,nl−fs −mlfsρI,ml−),

thus we have Lr,r−1 . r. Similarly, Lr,r is only related to

i[Hs, ρI ]− ρI

L
∑

l=1

(mlΩl + nlΩ
∗
l ),

and we also have Lr,r . r. Ur,r+1 is only related to

L
∑

l=1

i[fs, ρI,nl+ + ρI,ml+]

and thus

Ur,r+1 . 1.

Thus we find that the Assumptions (A1)-(A3) in Theorem 3.2 hold as well. With the

same argument as in the single-exponential case, we can choose d = 1 and get similar

error estimate like (6.7).

Now we numerically test the convergence rate of the closure approximation method

for the spin-boson model when L = 1, 2. For the single-exponential case we choose

γ = 400,Ω = 20. For the double-exponential case we choose γ1 = 400, γ2 = −100,Ω1 =
20,Ω2 = 10. The truncated ODE system is solved with an explicit 3rd-order Runge-

Kutta method with step size 10−4. The computation is carried on from t = 0 to t = 100.

As the exact solution to the system is unknown, the solution of the system truncated

with a sufficiently large cutoff Nref is chosen to be the reference solution for compar-

ison. We take Nref = 18 for the single-exponential case and Nref = 15 for the double-

exponential case, which is already accurate enough. The error for the ρs(t) agains the

cutoff number N is plotted in Fig. 6. The linear relation between the ln(error) and

N lnN clearly indicates the exponential convergence of the closure approximations.
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Figure 6: Convergence rate of the closure approximation for spin-boson model. The blue • and green �
represent the logarithm of numerical errors against N lnN for single and double-exponential cases, respec-
tively. The linear relation between the ln(error) and N lnN clearly indicates the exponential convergence
of the closure approximations.

7. Conclusions

In this paper, we have explored the validity and convergence rate of one type of

moment closure method. The method is straightforward and easy to implement. The

convergence rate is proven to be exponential which is much faster than most classical

methods. Such a fast convergence ensures that a moderate truncation number N will

give an acceptable result. The numerical results also show moment closure method is

fast and accurate compared with Monte Carlo simulations and WCE.

The way we get the closure system depends on the special structure of the model.

When a dynamical system is given, how to choose the appropriate moment closure vari-

ables is beyond our discussions. But our framework is not limited to systems described

by SDEs. Our assumptions are put on the infinite ODEs rather than the original SDEs.

In this sense, as long as we have a infinite ODEs and the assumptions are satisfied, no

matter where it comes from, we will get a convergence result.

Future work may include the construction of efficient moment closure methods and

analysis of the moment closure for more general SDEs. Both topics are challenging and

interesting in real applications.

Appendix A

Proof of (3.6a). From (1.1) we can obtain by Ito’s formula

d|Xt|2 = (2Re(µ) + 2 + 2Wt)|Xt|2dt+ 2|X2
t |dWt.

Define Yt = |Xt|2, we get

Yt = e
∫ t

0
(2Re(µ)+2+2Ws)dsY0 + 2

∫ t

0
e
∫ t

s
(2Re(µ)+2+2Wτ )dτYsdWs.
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This gives

EYt = E

(

e
∫ t

0
(2Re(µ)+2+2Ws)dsY0

)

= e(2Re(µ)+2)t+ 2

3
t3
EY0.

Here we naturally assume Y0 is independent of Wt. �

Appendix B

In this part, we will show that

1

N !
‖ρI‖∞ =

1

N !

∥

∥

∥
E

(

ρs(t)
L
∏

l=1

gml

l (t)hnl

l (t)
)∥

∥

∥

∞
. exp

(

− N

2
lnN +B0N

)

K(t) (B.1)

for |I| = N in the multi-exponential case, where B0 = (ln(4L) + 1)/2 + maxl σl and

K(t) is independent of N . This covers the single-exponential as a special case.

To do this, we first note that

∣

∣

∣
E

(

ρs(t)

L
∏

l=1

gml

l (t)hnl

l (t)
)∣

∣

∣
≤
(

E|ρs|2
)

1

2

L
∏

l=1

(

E|gl|4mlL|
)

1

4L
(

E|hl|4nlL
)

1

4L . (B.2)

Here gl and hl are both complex Gaussian random variables with mean 0. Denote

gl(t) = al(t) + ibl(t), where al = Re(gl), bl = Im(gl) are the corresponding real and

imaginary parts of gl. We have

E(al(t)bl(t)) = 0, Ea2l = Eb2l

from the fact Eg2l = 0. Furthermore, we have

Ea2l (t) = Eb2l (t) =
γ2l
Rl

(1− e−2Rlt) =: σ2
l (t),

from E|gl|2 = E(a2l + b2l ), where Rl = Re(Ωl) > 0. Direct calculation gives

E|gl|n = E(|gl|2)
n
2 = E(a2l + b2l )

n
2 =

√

π

2
σn
l (t)E|X|n+1, n ∈ N, (B.3)

where X ∼ N(0, 1) the standard normal distribution. Eq. (B.3) shows that for the

indices |I| = N

L
∏

l=1

(

E|gl|4mlL|
)

1

4L
(

E|hl|4nlL
)

1

4L

≤
(

L
∏

l=1

σml+nl

l

)

L
∏

l=1

(

(4mlL)!!(4nlL)!!
)

1

4L

≤
(

max
l=1,··· ,L

σl

)N
2

N
2

L
∏

l=1

(

(2mlL)!(2nlL)!
) 1

4L
, (B.4)

. https://doi.org/10.4208/nmtma.2017.s06
Downloaded from https://www.cambridge.org/core. New York University, on 11 Oct 2017 at 13:57:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.4208/nmtma.2017.s06
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


328 Y. F. Cai, T. J. Li, J. S. Shao and Z. M. Wang

where σl := γl/
√
Rl. Utilizing the Stirling’s formula we get

L
∏

l=1

(

(2mlL)!(2nlL)!
) 1

4L

∼
(

exp
(

L
∑

l=1

2mlL ln(2mlL) + 2nlL ln(2nlL)− 2mlL− 2nlL
))

1

4L

≤ exp
(N

2
ln(2NL)− N

2

)

. (B.5)

To estimate E|ρs|2, we first rewrite (2.1) in a vectorial form as in (6.3):

dx =
(

−iΓ[Hs,·]x− iḡ(t)Γ[fs,·]x
)

dt

− i

2
Γ[fs,·]x(dW1 + idW4) +

1

2
Γ{fs,·}x(dW2 − idW3), (B.6)

where x = (ρ
(11)
s , ρ

(12)
s , ρ

(21)
s , ρ

(22)
s ), Γ{fs,·} is defined as

Γ{fs,·} =









1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1









.

We have the following identity by Ito’s formula

d|x|2 =dx · x∗ + x · dx∗ + dx · dx∗

=2Re
(

−ix∗Γ[Hs,·]x− iḡ(t)x∗Γ[fs,·]x
)

dt

− i

2
x∗Γ[fs,·]x(dW1 + idW4) +

1

2
x∗Γ{fs,·}x(dW2 − idW3)

+
i

2
xΓ[fs,·]x

∗(dW1 − idW4) +
1

2
xΓ{fs,·}x

∗(dW2 + idW3)

+
1

2
x∗Γ2

[fs,·]xdt+
1

2
x∗Γ2

{fs,·}xdt. (B.7)

Simple calculations yield the estimates

|x∗Γ[Hs,·]x| ≤ 2|x|2, |x∗Γ[fs,·]x| ≤ |x|2, |x∗Γ{fs,·}x| ≤ |x|2,
|x∗Γ2

[fs,·]x| ≤ |x|2, |x∗Γ2
{fs,·}x| ≤ |x|2.

Substitute them into (B.7), employ the Ito isometry and Gronwall’s inequality, we get

the estimate

E|x(t)|2 ≤ E

(

exp

(∫ t

0
A(s)ds

))

E|x(0)|2, (B.8)

where A(t) := 5 + 2|ḡ(t)|, and we have already taken the natural assumption that the

Wiener processes are independent of initial condition x(0).
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To estimate of the exponential moment in (B.8), we first note that it is enough to

consider |gl(s)| instead of A(s). We can get the following estimate

E

(

exp

(
∫ t

0
|gl(s)|ds

))

= E

∞
∑

n=0

1

n!

(
∫ t

0
|gl(s)|ds

)n

≤E

∞
∑

n=0

tn−1

n!

∫ t

0
|gl(s)|nds .

∞
∑

n=0

(σlt)
n

n!
E|X|n+1

=E

(

|X| exp(σlt|X|)
)

≤
√

2

π
+ exp

(σ2
l t

2

2

)

· 2σlt,

where we utilized (B.3), σl := γl/
√
Rl and X ∼ N(0, 1).

Combing the above estimate with (B.2)-(B.5) and (B.8) gives the desired estimate

about ‖ρI‖∞ for |I| = N .

Acknowledgments The authors thank Liao Chongning and Prof. Assyr Abdulle for

helpful discussions. T. Li is supported by the National Natural Science Foundation of

China under grants Nos. 11421101, 91530322.

References

[1] R.W. BILGER, Conditional moment closure for turbulent reacting flow, Phys. Fluids A, 5

(1993), pp. 436–444.

[2] D. BOFFI, Finite element approximation of eigenvalue problems, Acta Numer., 19 (2010),
pp. 1–120.

[3] Y. BOURGAULT, D. BROIZAT AND P.-E. JABIN, Convergence rate for the method of moments

with linear closure relations, arXiv:1206.4831v1.

[4] Z. CAI, Y. FAN AND R. LI, Globally hyperbolic regularization of grad’s moment system in

one dimensional space, Commun. Math. Sci., 11 (2012), pp. 547–571.
[5] Z. CAI, Y. FAN AND R. LI, Globally hyperbolic regularization of grad’s moment system,

Commun. Pure Appl. Math., 67 (2014), pp. 464–518.

[6] A. J. CHORIN, O. H. HALD, AND R. KUPFERMAN, Optimal prediction and the Mori-Zwanzig
representation of irreversible processes , Proc. Natl. Acad. Sci., 97 (2000), pp. 2968–2973.

[7] W. E, K. KHANIN, A. MAZEL AND Y. SINAI, Invariant measures for burgers equation with

stochastic forcing, Ann. Math., 151 (2000), pp. 877–960.

[8] D. FRANKEL AND B. SMIT, Understanding Molecular Simulation, 2nd edition, Academic

Press, San Diego, 2001.
[9] U. FRISCH, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press,

Cambridge, 1996.

[10] R. GHANEM AND P. SPANOS, Stochastic Finite Element: A Spectral Approach, Springer-
Verlag, New York, 1991.

[11] D. T. GILLESPIE, Stochastic simulation of chemical kinetics, Annu. Rev. Phys. Chem., 58
(2007), pp. 35–55.

[12] C. S. GILLESPIE, Moment-closure approximations for mass-action models, IET Sys. Bio., 3

(2009), pp. 52–58.

. https://doi.org/10.4208/nmtma.2017.s06
Downloaded from https://www.cambridge.org/core. New York University, on 11 Oct 2017 at 13:57:58, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms

https://doi.org/10.4208/nmtma.2017.s06
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


330 Y. F. Cai, T. J. Li, J. S. Shao and Z. M. Wang

[13] T. Y. HOU, W. LUO, B. ROZOVSKII AND H. ZHOU, Wiener chaos expansions and numerical
solutions of randomly forced equations of fluid mechanics, J. Comp. Phys., 216 (2006), pp.

687–706.

[14] C. LEE, K. KIM AND P. KIM, A moment closure method for stochastic reaction networks, J.
Chem. Phys., 130 (2009), 134107.

[15] A. J. LEGGETT ET AL., Dynamics of the dissipative two-state system, Rev. Mod. Phys., 59
(1987), pp. 1–85.

[16] H. H. MCADAMS AND A. ARKIN, Stochastic mechanisms in gene expression, Proc. Natl.

Acad. Sci., 94 (1997), pp. 814–819.
[17] H. MORI, Transport, Collective Motion, and Brownian Motion, Prog. Theor. Phys., 33

(1965), pp. 423–455.

[18] S. A. ORSZAG AND L. R. BISSONNETTE, Dynamical properties of truncated wiener hermite
expansions, Phys. Fluids, 10 (1967), pp. 2603–2613.

[19] T. SCHMIEDL AND U. SEIFERT, Stochastic thermodynamics of chemical reaction networks,
J. Chem. Phys., 126 (2007), 044101.

[20] J. SHAO, Decoupling quantum dissipation interaction via stochastic fields, J. Chem. Phys.,

120(11) (2004), pp. 5053–5056.
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