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landscape, quasi-potential, A-type integral and beyond
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Motivated by the famous Waddington’s epigenetic landscape metaphor in developmental biology,
biophysicists and applied mathematicians made different proposals to construct the landscape for
multi-stable complex systems. We aim to summarize and elucidate the relationships among these
theories from a mathematical point of view. We systematically investigate and compare three
different but closely related realizations in the recent literature: the Wang’s potential landscape
theory from steady state distribution of stochastic differential equations (SDEs), the Freidlin-Wentzell
quasi-potential from the large deviation theory, and the construction through SDE decomposition
and A-type integral. We revisit that the quasi-potential is the zero noise limit of the potential
landscape, and the potential function in the third proposal coincides with the quasi-potential. We
compare the difference between local and global quasi-potential through the viewpoint of exchange
of limit order for time and noise amplitude. We argue that local quasi-potentials are responsible for
getting transition rates between neighboring stable states, while the global quasi-potential mainly
characterizes the residence time of the states as the system reaches stationarity. The difference
between these two is prominent when the transitivity property is broken. The most probable transition
path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is also discussed. As
a consequence of the established connections among different proposals, we arrive at the novel result
which guarantees the existence of SDE decomposition while denies its uniqueness in general cases.
It is, therefore, clarified that the A-type integral is more appropriate to be applied to the decomposed
SDEs rather than its primitive form as believed by previous researchers. Our results contribute
to a deeper understanding of landscape theories for biological systems. C 2016 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4943096]

I. INTRODUCTION: LANDSCAPE THEORIES
FOR MULTI-STABLE SYSTEMS

Published in 1957, the Waddington’s epigenetic landscape
metaphor1 provides a vivid pictorial description as well as an
insightful qualitative tool to understand the mechanism of
gene regulation in evolutionary and developmental biology.2–4

In recent years, we witness the growing interests and efforts to
quantitatively realize this metaphor in a rationalized way and
construct a scalar “energy landscape function” φ(x) defined in
the state space in complex physical, chemical, and biological
systems with multiple attractors.

The motivations and historical backgrounds of introduc-
ing the energy landscape function and energy landscape theory
into complex systems have been overviewed and discussed by
many previous researchers.4–7 To understand a highly complex
stochastic multi-stable system, there exists the necessity
to compare the relative stability of different attractors,6,8

to account for the transition rates between neighboring
stable states induced by noise,9,10 and to form an intuitive
picture that reveals the essential mechanism underlying the
complex system.11,12 In the gradient and equilibrium systems,
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the potential function fulfils these needs, respectively, by
supplying the relative height of different stable states, by
appearing in the famous Kramers’ transition rate formula13 and
by offering a potential field view to comprehend the “driving
force” underneath the complex systems. From this point of
view, the energy landscape function constructed for non-
gradient and non-equilibrium systems aims to play a similar
role and can be regarded as the generalizations or substitutions
of the potential function in such systems. In physics, the
energy landscape function also has close relationships with
the framework of non-equilibrium thermodynamics.14 In
chemistry, the energy landscape function provides useful
illustrations for the protein folding problems.15 In biology,
the landscape theory has been applied extensively not only
to explore the fundamental problems in evolution4 but also
to study the robustness, adaptivity, and efficiency of real
biological networks, with some recent progress in Refs. 16–18.

Since it might be difficult to achieve all the above
goals at one stroke, the existing landscape functions are
proposed from various perspectives to satisfy certain needs
and criteria. These efforts include utilizing the information
of steady state distribution to explore the relative stabilities
of different attractors,6,19 analyzing the transition path and
transition rate among stable points,20–22 and decomposing
the “driving force” of the particles in the system.19,23

Of course, there are overlapping and connections between
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these proposals and perspectives; hence, inspecting these
proposals from a unified point of view is urgent for future
developments.

In this paper, we will focus on three representative
and closely related works among the landscape theories: (i)
The Wang’s potential landscape theory from the steady state
distribution of stochastic differential equations (SDEs); (ii) the
Freidlin-Wentzell quasi-potential (FW quasi-potential) from
the large deviation theory (LDT); and (iii) Ao’s construction
through SDE decomposition and A-type integral (it will be
called SDE decomposition theory below for short). To clarify
the connection and difference among them is the main concern
of this paper.

The considered three theories were proposed from
different motivations and backgrounds. Enlightened by the
Boltzmann distribution law in equilibrium statistical me-
chanics, Wang et al.19 constructed the potential landscape from
the steady-state distribution of non-equilibrium biological
systems and adopted it in the analysis of many real
biological models including budding yeast cell cycle,11 stem
cell differentiation,22 and calcium oscillation.24 Arising in
the study of Freidlin and Wentzell on LDT for diffusion
processes,20 the quasi-potential was proposed and has been
applied by the authors in genetic switching models16,25

and cell cycle dynamics.12 Motivated by the fluctuation-
dissipation theorem, Ao and his co-workers performed
the SDE decomposition to obtain the underlying potential
function23,26 and proposed the so-called A-type integral
interpretation of the SDEs.27

Compared with the fruitful applications of energy
landscape theories in chemical and biological research, to
the authors’ knowledge, only limited work has been done
to elucidate their relationships and connections, which is
supposed to serve as the theoretical foundation to judiciously
choose and appropriately apply these proposals in studying
real systems. The coincidence of Wang’s potential landscape
function with FW quasi-potential as noise tends to zero has
been recognized in previous studies.5,6,21 In Ref. 6, an over-
view related to these theories was presented for systems
with state-independent noise, which showed the equivalence
between FW quasi-potential and Ao’s potential and their
difference with Wang’s potential landscape under the state-
independent noise assumption.

In this paper, we will continue the discussion of Ref. 6 in
a more general setup by considering the diffusion process of
the form

dXt = b(Xt)dt + σ(Xt)dWt, σ(x)σ(x)t = 2εD(x), (1)

where the subscript t means the time dependence instead of
time derivative, Xt is a stochastic process in Rn, Wt is the
standard Brownian motion, and ε represents the strength of
noise. Here we employ the notation dWt as in probability
theory since Ẇt is not an ordinary function mathematically.28

Unless otherwise stated, the stochastic integral is understood
in Ito sense. SDEs (1) are an abstraction of general chemical
reaction kinetic models in biological systems.29 The state-
dependent diffusion matrix D(x) enables us to investigate both
intrinsic and extrinsic noise.30 Since Waddington’s metaphor
describes the cell development as the motion of marbles among

valleys, it is also helpful to interpret b(x) as the “force” and
D(x) as the “diffusion coefficient” in (1).

The main contribution of this paper is twofold. First,
by revealing or revisiting the relationships among the three
landscape theories for biological systems modeled by SDEs
(1), some easily confounded concepts will be stressed and
clarified while some new understandings will be provided.
For instance, when re-deriving the relationship between
Wang’s potential landscape and FW quasi-potential, the
distinctions between local and global FW quasi-potential will
be accentuated and understood from the exchange of limit
orders for time and noise. We will also prove that the FW
quasi-potential exactly coincides with the potential function in
SDE decomposition theory under certain conditions. Second,
as a by-product of the established connections, we get new
insights on the existing landscape theories. Specifically we
will provide a mathematically rigorous existence result for
SDE decomposition theory and show that under the current
framework of the proposal,23 the decomposition is generally
not unique when the dimension of SDEs (1) is bigger than
or equal to 3. As a corollary, we clarify that the A-type
integral interpretation for SDEs (1) might be ill-defined and
thus only be applied to a known decomposed form. This novel
result clarifies the misunderstandings held by some previous
researchers.

The paper is organised as follows. We will study the
potential landscape theory, quasi-potential theory, and the
SDE decomposition theory in Sections II–IV, respectively.
In each section, we introduce the definition, investigate
the connection with other proposals, and especially make
discussion on transition paths. In Section V, an example
of constructing energy landscape for the diffusion on the
circle S[0,1] through different theories is provided as further
explanation. Finally we discuss the implications of our results
and some future topics in Section VI.

II. WANG’S POTENTIAL LANDSCAPE THEORY

The potential landscape function proposed by Wang
et al. is defined through the steady state distribution,
which is a generalization of Boltzmann’s distribution law in
equilibrium statistical mechanics. The constructed landscape
has also been analyzed from transition path and force
decomposition perspectives.19,22 In this framework, the force
can be decomposed into a potential term plus a flux term,
which is the origin of the notion of “potential landscape.”19

A. Starting point: Steady state distribution

The starting point of constructing Wang’s potential
landscape is the steady state distribution of SDEs (1). We
have the Fokker-Planck equation of SDEs (1),

∂tP(x, t) + ∇ · J(x, t) = 0, (2)

where P(x, t) is the probability density function (PDF) of the
process Xt at time t, and the probability flux

J(x, t) = b(x)P(x, t) − ε∇ · (D(x)P(x, t)).
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The steady state distribution Pss(x) and steady state
probability flux Jss(x) can be obtained by solving

∇ · Jss(x) = ∇ · [b(x)Pss(x) − ε∇ · (D(x)Pss(x))] = 0. (3)

Then the potential landscape function φPL(x) is defined as

φPL(x) = − ln Pss(x). (4)

The relationship Pss(x) = exp(−φPL(x)) is reminiscent of
the Boltzmann-Gibbs distribution in equilibrium statistical
mechanics.

The rationale of the potential landscape can be shown
explicitly if we consider a gradient system with

b(x) = −∇V (x), D(x) = I .

We have

Pss(x) = 1
Z

exp
(
− 1
ε

V (x)) , Jss(x) = 0,

thus

φPL(x) = 1
ε

V (x) + ln Z. (5)

In this case, the potential landscape φPL(x) is equivalent to the
original driving potential V (x) up to a rescaling and a shift.
But of course, this observation does not hold for general b(x)
or D(x) , I, in which case one gets a generalized potential.

In practice, there are mainly two approaches to
numerically compute Pss(x) and therefore φPL(x). The most
direct approach is to solve Fokker-Planck equation (2) by
applying deterministic numerical methods with appropriate
boundary condition. However, the computational cost of
such strategy increases exponentially and quickly becomes
unaffordable even when the dimension n ≥ 4. Hence in high
dimensional cases, Pss(x) is either obtained by exploring the
special feature of the considered dynamics, e.g., the mean field
approximation11 or obtained by direct Monte Carlo simulation
of SDEs (1) until steady state distribution. However, this
approach also encounters the difficulty of slow convergence
when the noise strength ε is very small, in which case the
metastability and ergodicity turn to be key issues.31 Moreover,
both the representation and storage of the high dimensional
potential landscape need to be studied at first. We confront
with the curse of dimensionality.

B. Force decomposition: Non-equilibrium steady
states (NESS)

Wang’s potential landscape theory can also be studied
from force decomposition perspective. From the rela-
tionship between flux and probability Jss(x) = b(x)Pss(x)
− ε∇ · (D(x)Pss(x)), we can represent the drift term b(x) in
the decomposition form

b(x) = ε

Pss(x)∇ · (D(x)Pss(x)) + Jss(x)
Pss(x)

= −εD(x)∇φPL(x) + ε∇ · D(x) + Jss(x)
Pss(x) . (6)

To gain more intuitions from (6), let us specifically take
D(x) = I and ε = 1. Then

b(x) = −∇φPL(x) + Jss(x)
Pss(x) .

We will discuss two cases for different values of Jss(x) and
their biological meaning.

The first case is Jss(x) = 0. Such condition is called the
detailed balance in probability theory, while in statistical
mechanics, systems with zero flux correspond to equilibrium
states. Under such circumstances, we have b(x) = −∇φPL(x).
Hence the detailed balance condition implies the equilibrium
states where the biological system is simply driven by the
gradient of potential landscape and the steady state distribution
is of the Boltzmann-Gibbs form Pss(x) = exp(−φPL(x)).

The second case is Jss(x) , 0, which is more common
in biological systems. Under such circumstances, when
the system reaches steady state, the probability flux does
not vanish, leading to the NESS. The force b(x) is now
decomposed into the gradient term−∇φPL(x) and an additional
non-gradient term Jss(x)/Pss(x), which is also called “curl
flux” term in previous literature because ∇ · Jss(x) = 0 (but
the term itself is not divergence-free). One typical example
of NESS in biological models is the oscillatory dynamics,
because the limit cycle cannot exist in gradient systems and
must be driven by the curl term. Many concepts in non-
equilibrium statistical mechanics such as entropy production
can be analyzed within NESS framework and one may consult
Ref. 32 for a systematic survey.

A simple illustrative example to show the construction of
the φPL(x) and the non-equilibrium nature of NESS will be
presented in Section V.

C. Transition path: Path integral and challenges

Following Feynman’s path integral approach to quantum
mechanics,33 we can also solve Fokker-Planck equation (2)
formally by integrating the individual paths ψ(t) according to
their weight34

P(x f ,T |xi,0) =

DψP(ψ |ψ(0) = xi,ψ(T) = x f )

=
1
Z


Dψ exp(−ST[ψ]), (7)

where x f denotes the final state, xi denotes the initial state,
and Z is the partition function in path space. The weight of
each path P(ψ |ψ(0) = xi,ψ(T) = x f ) is assigned according to
its action functional S[ψ]. For diffusion process, the action
functional can be expressed as the time integral of Onsager-
Machlup Lagrangian function35

ST[ψ] =
 T

0
LOM(ψ,ψ̇)ds, (8)

whose concrete form will be discussed later. If SDEs (1)
are ergodic and suppose the system starts from x0, then
Pss(x) = lim

T→∞
P(x,T |x0,0), yielding the formal relationship

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  162.105.68.31 On: Mon, 07 Mar

2016 23:39:37



094109-4 P. Zhou and T. Li J. Chem. Phys. 144, 094109 (2016)

TABLE I. Summary for the potential landscape φPL(x).

Realization of Waddington’s metaphor candidate I: Potential landscape

Definition φPL(x)=−lnPss(x) (steady state distribution)

Numerical strategy Deterministic numerical method (e.g., difference method) for Fokker-Planck equation (in low dimensional
system)
Monte Carlo simulation for stochastic differential equation (in high dimensional system, inefficient when
noise strength ε is small)

Force decomposition b(x)=−εD(x)∇φPL(x)+ε∇ ·D(x)+Jss(x)/Pss(x), where Jss(x)/Pss(x) reflects the NESS nature of
the system

Transition path perspective φPL(x)=− lim
T→∞

ln 1
Z


Dψexp(− T

0 LOM(ψ,ψ̇)ds), where the integral is over all the paths ψ satisfying

ψ(T )= x

between potential landscape and transition path

φPL(x) = − ln Pss(x)
= − lim

T→+∞
[ln


Dψ exp

(
−
 T

0
LOM(ψ,ψ̇)ds

)
− ln Z].

(9)

Several problems will be encountered in this formal
treatment of potential landscape theory from transition path
perspective.

First, if we want to compute the potential landscape
at point x from transition path perspective, one may have
to sum up the weights over all transition paths starting
from one given point x0 and reaching x as time goes to
infinity. Numerically constructing potential landscape from
such tactics turns out to be a challenging task. To avoid
such inconvenience, another version of landscape function
is constructed from the “effective action” of the “dominant
path.”34 To briefly state, the landscape function at point x
equals to the minimum action ST[ψ] in Eq. (8) of all the
paths ψ connecting x to the reference point x0 (usually the
attractor of the system). The minimum action path is dominant
especially when ε is small because it corresponds to the path
with maximum weight in Eq. (7). However, such proposed
landscape function might not be well-defined. For instance,
let us consider a specific gradient system with

b(x) = −∇V (x), D(x) = I, ε = 1, V (x) = 1
2

x2.

Take x0 = 0, then the action functional has the concrete form
by Eq. (10),

ST[ψ] =
 T

0
LOM(ψ,ψ̇)ds =

 T

0

1
4
(ψ̇ + ψ)2ds − 1

2
T,

ψ(0) = x, ψ(T) = 0.

Hence the minimum action path ψ̂ satisfies dψ̂/dt = −ψ̂, ψ̂(0)
= x, ψ̂(+∞) = 0, also indicating that ST(ψ̂) = −∞. In this case,
we have that the landscape function proposed in Ref. 34
is minus infinity at every point x , 0, which is not a
desirable result. We remark that this phenomenon results
from the divergence term 1

2∇ · b(x) in the OM function (cf.
Eq. (10)).

Moreover, the choice of concrete OM function form
LOM(ψ,ψ̇) for the general diffusion process is a rather subtle
and controversial issue. It is shown in Ref. 36 that if the

diffusion matrix D(x) is constant and n = 1, the most probable
path (i.e., the path with largest weight) corresponds to the
minimizer of action functional with Lagrangian

LOM(ψ,ψ̇) = 1
4ε

[ψ̇ − b(ψ)]tD−1(ψ)[ψ̇ − b(ψ)] + 1
2
∇ · b(ψ).

(10)

For the state-dependent diffusion matrix D(x), it is argued in
Ref. 37 that the term 1

2∇ · b(ψ) in (10) should be replaced
by


i, j,k

1
2 Di j∂x j(D−1

ik
bk). While in Ref. 38, it is claimed that

an additional term involving second order derivative of σ(x)
(only the one dimensional case is considered in Ref. 38)
should be added. We remark that the general mathematical
expression for OM function in high dimensional cases has
been studied in Refs. 39 and 40, which include the result in
Ref. 38 as a special case.

The above difficulties can be all resolved in small
noise limit. If ε is sufficiently small, then only the term
1

4ε [ψ̇ − b(ψ)]tD−1(ψ)[ψ̇ − b(ψ)] will count in OM function
(10), which corresponds to the Friedlin-Wentzell (FW)
function (12). Moreover, the weight of the most probable
path will dominate in (9) according to Laplace’s integral
asymptotics (see Appendix A). This observation leads to
the introduction of quasi-potential below, whose theory
has been well established within the rigorous mathematical
framework of the LDT of Freidlin and Wentzell for diffusion
processes.20

A summary for the discussions above on the potential
landscape theory is provided in Table I.

III. FREIDLIN-WENTZELL QUASI-POTENTIAL THEORY

The quasi-potential theory first proposed by Freidlin
and Wentzell aims to quantify the landscape for multi-stable
system whose noise amplitude ε is small enough, which is
a reasonable assumption when the number of molecules in
the considered system is large. Although the theory was well-
established based on the LDT,20 we will continue adopting
the path integral formulation here to present the essential
ingredients of the theory instead of rigorous treatments. The
relationship between Freidlin-Wentzell quasi-potential and
Wang’s potential landscape has been explored in previous
literature under different circumstances,5,6,12 while we will
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address the distinctions and connections between the local
FW quasi-potential, which is computed from the transition
path connecting the stable points pairs, and the global
FW quasi-potential, which is relevant to the steady state
distribution of the system and therefore Wang’s potential
landscape. We will also discuss the transitivity issue intro-
duced in Ref. 6.

A. Starting point: Local quasi-potential
and transition path

Let Xε
t denote the trajectory of SDE (1). The Freidlin-

Wentzell theory roughly tells that for a given regular
connecting path ψ(t) and ε, δ small enough, we have

P( sup
0≤t≤T

|Xε
t − ψ(t)| ≤ δ) ≈ exp(−ε−1ST[ψ]). (11)

The action functional ST[ψ] is also called the rate functional
in LDT with the expression

ST[ψ] =
 T

0
LFW(ψ,ψ̇)dt,

where

LFW(ψ,ψ̇) = 1
4
[ψ̇(s) − b(ψ(s))]tD−1(ψ(s))[ψ̇(s) − b(ψ(s))]

(12)

is the dominate O(ε−1) term in the OM functional. We also
call ST[ψ] the FW functional in the later text. Approximation
(11) is indeed derived by applying Laplace asymptotics to the
path integral formulation. Borrowing the idea from classical
mechanics, we call LFW(ψ,ψ̇) the Lagrangian of action ST ,
and correspondingly define the Hamiltonian of the system by
taking the Legendre dual of the Lagrangian41

H(ψ,p) = b(ψ)tp + ptD(ψ)p. (13)

Assume x0 is a stable fixed point of the deterministic
dynamical system dx/dt = b(x), representing a meta-stable
biological state. Then the local quasi-potential at state x with
respect to x0 is defined as

φQP
loc(x; x0) = inf

T>0
inf

ψ(0)=x0,ψ(T )=x

 T

0
LFW(ψ,ψ̇)dt . (14)

The heuristic explanation of this definition is that the energy
difference between state x and x0 can be evaluated by the
least action cost of moving the system from x0 to x, because
only the minimum action path dominates in Eq. (9) in the
limit ε → 0. The larger φQP

loc(x; x0) is, the harder it is for the
system to transit from x0 to x. In fact, the transition rate from
x0 to x is proportional to exp(−φQP

loc(x; x0)/ε) for sufficiently
small ε.20

To understand the intuition behind the quasi-potential, let
us consider a gradient dynamics with a single-well potential
V (x), i.e.,

b(x) = −∇V (x), D(x) = I .

We assume that V (x) ≥ 0 and V (x0) = 0 is the unique
minimum of V (x). It is shown in the supplementary material42

that the path with minimum action ψ̂ satisfies ˙̂ψ = ∇V (ψ̂) and
ψ̂(T) = x (this T equals ∞ indeed), and its action is V (x).

By definition, we have φQP
loc(x; x0) = V (x) in this single-well

gradient case. The quasi-potential generalizes the potential
concept in general situation.

LDT result (11) also implies that the minimizer of
variational problem (14) gives the minimum action or most
probable path connecting two metastable states in zero noise
limit. To compute the local quasi-potential and minimum
action path numerically, one possible strategy is to derive
and solve the Euler-Lagrange equation of variational problem
(14). However, one will encounter a singular boundary value
problem because the system does not reach x in finite time.
This difficulty can be overcome by applying the geometric
minimum action method (gMAM) to solve variational problem
(14) directly through Maupertuis principle in the space of
curves.12,16,43

B. Distinctions between the local and global
quasi-potential

The local FW quasi-potential is defined with respect
to the given reference stable state x0. It is already known
that the function φQP

loc(x; x0) only reflects the relative barrier
heights and difficulty of transitions within single attractor or
between neighboring pairs of stable points.6,20 Under such
circumstances, the concept of global FW quasi-potential
φQP

glob(x) in Freidlin-Wentzell theory, which is defined point-
wisely in the whole space and irrelevant to the specific
reference state x0, will be essential for the study of multi-
stable systems to quantify and compare the relative stability
of different stable points. Compared with the local version
which is computed from transition path, the global FW quasi-
potential has close relation with the steady state distribution
of the system.

The intuition and working procedure to construct the
quasi-potential function for multi-stable systems from the
perspective of steady distribution is presented in the book20 in
great detail, although the term “global quasi-potential” has not
been explicitly articulated there. The authors of Ref. 5 name
this version of quasi-potential as the “global landscape” and
view its disagreement with the “local landscape” as the origin
of non-equilibrium steady states. In our derivation below,
we will call this “global landscape” as the FW global quasi-
potential φQP

glob(x). Our analysis will contribute to show that the
relation between the local and global version of quasi-potential
can be understood from the exchange of limit order for noise
strength ε and time t, and both are solutions of a specific steady
Hamilton-Jacobi equation to be shown in Section III E. This
exploration will also naturally lead to the well-known connec-
tion between Wang’s potential landscape and FW quasi-
potential.

From steady state distribution point of view, the desired
limit under small noise assumption is

lim
ε→0
−ε ln Pss(x) = − lim

ε→0
lim
t→+∞

ε ln Pε(x, t |x0,0), (15)

where Pε(x, t |x0,0) denotes the transition PDF from one stable
fixed point x0 at t = 0 to state x at time t. On the other hand,
incorporating path integral formulation (7) and Laplace’s
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method in path space, we get

− lim
ε→0

ε ln Pε(x, t |x0,0)

= − lim
ε→0

ε


ln

Dψ exp(−ε−1St[ψ]) − ln Z



= inf
ψ(0)=x0,ψ(t)=x

St[ψ], (16)

where St[ψ] corresponds to the FW functional since the higher
order terms disappear in the zero noise limit. Correspondingly
we obtain

− lim
t→+∞

lim
ε→0

ε ln Pε(x, t |x0,0) = lim
t→+∞

inf
ψ(0)=x0,ψ(t)=x

St[ψ]

= φQP
loc(x; x0). (17)

Although the above equations are formally established
through path integral approach, whose rigorous treatment
needs to be further explored, we can gain some heuristic
findings from the results. We observe that the difference
between the left hand side of Eq. (17) and the right hand side
of Eq. (15) is just the exchange of limit order for t and ε.
In FW theory, the limit of Eq. (15) corresponds to the global
quasi-potential φQP

glob(x) mentioned above, i.e.,

lim
ε→0
−ε ln Pss(x) = − lim

ε→0
lim
t→+∞

ε ln Pε(x, t |x0,0) = φQP
glob(x).

(18)

The distinction between the limits in (17) and (18) can
be understood from the separation of time scales.5 For a
dynamical system with multiple attractors perturbed by small
noise, the system will fluctuate around one specific attractor in
a short time scale τS, while transit among different attractors in
a longer time scale τL. According to LDT or Kramers’ theory,
the time scale separation is of order τL/τS = exp(∆V/ε),
where ∆V represents the characteristic barrier height between
different attractors. In the limit order in (17), the time t is
fixed first, and ε can be chosen sufficiently small such that
t ∼ O(τS). Hence the limit φQP

loc(x; x0) only reflects the local
information about x0 because the system mainly fluctuates
around the stable point and could not see the outside region
in this regime. In comparison, when the limit order in (15)
is considered, the small noise ε is fixed first, and we can
wait sufficiently long time t ∼ O(τL). Therefore the limit
corresponding to φQP

glob(x) can tell about the global behavior
of the system because transitions among different states are
common under such circumstance.

When we study the long time behavior in biological
systems (e.g., cell differentiation), it is more appropriate to
view the noise amplitude as fixed a priori while the time as
dependent on the observation. In this sense, the limit order in
Eq. (15) is more relevant and thus the global quasi-potential
is a more advisable candidate to quantify the Waddington’s
metaphor rather than the local version.

C. Constructing global quasi-potential
from local ones

Unexpectedly, the global quasi-potential can be con-
structed from local ones with an interesting pruning-and-

sticking procedure.20 Let us illustrate this point with a simple
example.

Consider a one dimensional Brownian dynamics with
double-well potential V (x),

dXt = −∇V (Xt)dt +
√

2εdWt, (19)

where we assume V (x) has two local minimum points x1,
x2 with V (x1) < V (x2), and one local maximum point x3 in
between. A schematics of V (x) is depicted in Fig. 1(a). In the
deterministic version, we have two stable states x1, x2 and one
unstable state x3.

The local quasi-potential with respect to x1 and x2 can
be obtained by solving the variational problem directly, with
details presented in the supplementary material.42 We have

φQP
loc(x; x1) =




V (x) − V (x1), x < x3,

V (x3) − V (x1), x3 ≤ x ≤ x2,

V (x) + V (x3) − V (x1) − V (x2), x > x2,

and similarly

φQP
loc(x; x2) =




V (x) + V (x3) − V (x1) − V (x2), x < x1,

V (x3) − V (x2), x1 ≤ x ≤ x3,

V (x) − V (x2), x > x3.

The general methodology and theoretical results for
sticking local quasi-potentials into a global one appear in the
book.20 However in this simple one dimensional example with
only two stable points, the strategy is quite straightforward:

FIG. 1. The original potential field and construction of local and global
quasi-potential for a bi-stable gradient system. Panel (a) shows the original
potential field V (x). Panels (b) and (c) show the constructed local quasi-
potential starting from metastable states x1 and x2, respectively. In panel (d),
the green dashed line is the original potential V (x) and the gray solid line
is the global quasi-potential φQP

glob(x). (a) The schematics of double-well po-
tential V (x). (b) Local quasi-potential constructed from x1. (c) Local quasi-
potential constructed from x2. (d) The constructed global quasi-potential is a
shift of V (x) in the gradient case.
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• Step 1. Cut out the parts of the local potential outside
of the attraction basin of the starting stable point x1
or x2.

• Step 2. Paste the processed local potentials together
through the unstable point x3.

• Step 3. Shift the obtained potential such that the
minimum of the global quasi-potential is 0.

Step 3 is not necessary, in general, since only the difference
of potential matters for a dynamical system. Expressing the
above procedure in a mathematical way, we have

φQP
glob(x) = min


φQP

loc(x; x1) + V2,1, φ
QP
loc(x; x2) + V1,2



− min{V1,2,V2,1}, (20)

where V1,2 and V2,1 denote the barrier height from stable point
x1 to x2 and from x2 to x1, respectively. The construction
procedure of the global quasi-potential is schematically shown
in Fig. 1.

D. Further remarks and connection
with Wang’s proposal

Below we will provide further remarks on the function
and limit of local and global quasi-potential via a concrete
example. Specially we will focus on the connections among
transition rates, quasi-potentials, and transitivity issue.

Let us consider a gradient system defined on the circle
whose perimeter is L = 6,

dXt = −∇V (Xt)dt +
√

2εdW̃t, Xt ∈ S[0,L], (21)

where W̃t is the Brownian motion on the circle and −∇V (x)
is the periodical driving force with period L = 6. The shape
of the potential function V (x) in one period is sketched in
Fig. 2(a). Note that x = 0 and x = 6 should be considered
as the same point in the manifold, and x1 = 1, x2 = 3, x3 = 5
are the three stable fixed points of the system. We also
assume that V (0.5) = 3,V (4.5) = 2. Such type of dynamics on
manifolds can be easily realized by embedding an essentially
low-dimensional dynamics in a high dimensional space with

FIG. 2. The original potential field and global quasi-
potential landscape for the gradient system on the circle.
Panel (a) shows the original potential field V (x) in one
period with arrows denoting the direction of most prob-
able transition path among attractors. Panel (b) shows
the constructed global quasi-potential (solid black line)
and original potential field (dashed red line). From the
steady state distribution perspective, x2 and x3 are more
stable than x1. In the long run, the system will stay at
x2 and x3 with equal probability while seldom visit state
x1 if the noise is sufficient small. (a) The schematics of
periodicalV (x) in one period. (b) The constructed global
quasi-potential is pieced together with V (x).
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high barrier in ambient environment. Similar systems have
been observed during the study of cell cycle models.12

To simplify the notations, we denote local quasi-potential
of x j with respect to xi, φ

QP
loc(x j; xi) as Vi, j, then by minimizing

the actions we obtain

V1,2 = 1,V2,3 = 2,V3,1 = 2,
V2,1 = 2,V3,2 = 3,V1,3 = 3.

With the existence of a large barrier in 0 ≤ x ≤ 1, the most
probable transition path from x1 to x3 must cross x2.

At first we claim that the transitivity property does not
hold for this system. In order to compare the relative stability
of multiple attractors, the transitivity is defined in Ref. 6 that
if Pa→b > Pb→a, Pb→ c > Pc→b, then Pa→ c > Pc→a for any
three points a, b, and c, where Pa→b is the transition rate from
a to b, and the others are similarly defined. In this example,
from V1,2 < V2,1 and V2,3 < V3,2 we have Px1→ x2 > Px1→ x2 and
Px2→ x3 > Px3→ x2, implying that x2 is more stable than x1 and
x3 is more stable than x2, since the “less stable” state is
more likely to transit into the “more stable” state. Then it
seems natural to conclude that x3 is more stable than x1 if
the transitivity property holds for the comparison of stability.
However, this contradicts with the fact that V3,1 < V1,3 which
implies it is easier to transit from x3 to x1 other than x1 to
x3. This tells us that the transitivity does not hold for local
quasi-potentials in general.

According to Freidlin and Wentzell, the key quantity
W (x) relevant to the asymptotic invariant measure of the
emergent Markov Chain is obtained by

W (x1) = min{V3,2 + V2,1,V2,3 + V3,1,V2,1 + V3,1} = 4,
W (x2) = min{V3,1 + V1,2,V2,3 + V3,2,V1,2 + V3,2} = 3,
W (x3) = min{V2,1 + V1,3,V2,3 + V3,1,V2,1 + V3,1} = 3.

The global quasi-potential can then be calculated as

φQP
glob(x) = min{W (x1) + φQP

loc(x; x1),
W (x2) + φQP

loc(x; x2),W (x3) + φQP
loc(x; x3)}

− min{W (x1),W (x2),W (x3)}

=




1 + φQP
loc(x; x1), 0.5 ≤ x < 2

φQP
loc(x; x2), 2 ≤ x < 4.5
φQP

loc(x; x3), 0 ≤ x < 0.5 or 4.5 ≤ x < 6

=




2, 0 ≤ x < 0.5
V (x) − 1, 0.5 ≤ x < 4
2, 4 ≤ x < 4.5
V (x), 4.5 ≤ x < 6

.

One may also consult Refs. 5 and 20 for more details on
constructing the global quasi-potential. The global quasi-
potential for system (21) is depicted in Fig. 2(b).

We notice that compared with the potential function
V (x), the global quasi-potential function itself can be stuck
together at x = 0 and x = 6 since φQP

glob(0) = φQP
glob(6) = 2. For

this gradient system defined on the circle, the global quasi-
potential landscape φQP

glob(x) no longer coincides with the
potential field V (x).

From the steady state distribution perspective, the inva-
riant probability Pss(x) will be approximately proportional

to exp(−φQP
glob(x)/ε) for small ε, indicating that in the long

run, the system with small random perturbation will stay at
x2 and x3 with equal probability while rarely appear in state
x1. In this sense, the global quasi-potential reveals that x2
and x3 possess the same stability and they are more stable
than attractor x1. However, one needs to notice that the global
quasi-potential does not correctly quantify the transition rate
between attractors. From the global quasi-potential landscape,
the “energy barrier” from x2 to x3 and from x3 to x2 is the
same, while from local quasi-potential landscape, we know
the transition from x2 to x3 is more frequent than from x3
to x2.

This example informs us that the two scalar functions, the
local quasi-potential and the global quasi-potential, actually
exhibit different information about the multi-stable system. If
one pays more attention to the difficulty of local transitions (or
transition rates) between attractors, then constructing a local
quasi-potential landscape by minimizing action function is
more appropriate. On the other hand, if the long time behavior
of the system is of greater interest, then it is more advisable
to construct a global quasi-potential landscape obtained by
piecing the local quasi-potential together, and one needs to be
careful with the conclusions about the transition rate drawn
from this landscape.

Moreover, it should be addressed here that as revealed
by steady state distribution analysis, it is the global quasi-
potential, rather than the local one, that corresponds to the
limit of Wang’s potential landscape function when ε → 0.
In order to establish connections with other proposals,
we will simply call the global quasi-potential φQP

glob(x) as
quasi-potential φQP(x) in the later text. From the definition
in Eq. (18), we reach the relationship between Wang’s
potential landscape and quasi-potential as explored in
Refs. 5, 6, and 12,

lim
ε→0

εφPL(x) = φQP(x). (22)

This fact can be also observed from (5) as a special case.

E. Force decomposition: HJE and orthogonality

As in Section II B, we will investigate the decomposition
of the force b(x) in terms of the global quasi-potential. We
will obtain an ε-independent decomposition of b(x), which
can be viewed as the limit of Eq. (6). This decomposition is
particularly useful for describing the optimal transition path
between meta-stable states.

Substituting the well-known WKB ansatz44

Pss(x) = exp
(
−φ(x)

ε
+ φ0(x) + εφ1(x) + · · ·

)
into steady Fokker-Planck equation (3) and collecting leading
order terms, we arrive at a steady Hamilton-Jacobi equation
for φ(x) as

H(x,∇φ) = 0, (23)

where H(x,p) is exactly the Hamiltonian defined in (13).
Relation (22) tells us the fact φ(x) = φQP(x); thus φQP(x)
satisfies the same Hamilton-Jacobi equation (23). This point
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TABLE II. Summary for the quasi-potential φQP(x).

Realization of Waddington’s metaphor candidate II: Quasi-potential

Definition φQP
loc(x;x0)= inf

T>0
inf

ψ(0)=x0,ψ(T )=x
 T

0 LFW(ψ,ψ̇)dt (transition path)

φQP
glob(x)=− lim

ε→0
ε lnPss(x) (steady state distribution)

Numerical strategy Geometric minimum action method (gMAM) or solve Hamilton-Jacobi equation
Stick the local quasi-potentials together into the global quasi-potential

Force decomposition b(x)=−D(x)∇φQP(x)+ℓ(x) and the orthogonality between gradient and non-gradient term ⟨ℓ(x),∇φQP(x)⟩= 0, where ℓ(x)
reflects the NESS nature of the system

Connection with potential
landscape

lim
ε→0

εφPL(x)=φQP(x). The quasi-potential is a good approximation to the potential landscape when noise is small, where the

numerical simulation for φPL(x) is inefficient
lim
ε→0

Jss(x)/Pss(x)= ℓ(x). The force decomposition based on quasi-potential is the limit version of force decomposition based

on potential landscape

can be also obtained from the Hamilton-Jacobi theory for
variational problem (14) in classical mechanics.41

Now we can have the decomposition

b(x) = −D(x)∇φQP(x) + ℓ(x), (24)

and the orthogonality condition

ℓ(x) · ∇φQP(x) = 0 (25)

holds by (23). We note here that decomposition (24) is the
zero noise limit of (6) because

εφPL(x) → φQP(x), ε∇ · D(x) → 0

and Jss(x)/Pss(x) → ℓ(x) by the decomposition equality of
b(x). When the system is at equilibrium, i.e., Jss(x) = 0, we
have ℓ(x) = 0 and thus b(x) = −D(x)∇φQP(x). In general ℓ(x)
is not zero and the non-equilibrium effect exists. We comment
that the normal decomposition proposed in Ref. 6 is a special
case of Eq. (24) by taking D(x) = I.

We take the oscillatory biological dynamics to illustrate
the use of force decomposition in the framework of quasi-
potential theory. Following the arguments in Ref. 5, φQP(x)
is constant along a limit cycle Γ. Hence from force
decomposition (24), we have b(x) = ℓ(x) on Γ, suggesting
that the oscillatory biological system is completely driven by
the non-gradient force ℓ(x) on the limit cycle. However, the
potential landscape φPL(x) is generally not constant along the
limit cycle due to the finite size effect. This phenomenon is
explicitly exhibited during the landscape study for budding
yeast cell cycle.12

Decomposition (24) is also useful to characterize the
optimal transition path between meta-stable states in the small
noise case. Consider two neighboring meta-stable states x0
and x1 separated by the basin boundary Γ with unique saddle
x∗. We aim to find the optimal transition path ψ(t) from x0
to x1. It can be shown that the optimal transition path is
composed of two segments (see the supplementary material42

for details),

Uphill path:



ψ̇ = D(ψ)∇φQP(ψ) + ℓ(ψ),
ψ(−∞) = x0, ψ(∞) = x∗,

Downhill path:



ψ̇ = −D(ψ)∇φQP(ψ) + ℓ(ψ) = b(ψ),
ψ(−∞) = x∗, ψ(∞) = x1,

where we have two bi-infinite boundary value problems
because x1, x2, and x∗ are all stationary points of the
corresponding dynamics.

The basic concepts and properties related to quasi-
potential theory are summarized in Table II.

IV. SDE DECOMPOSITION AND A-TYPE INTEGRAL

Motivated by the fluctuation-dissipation theorem,26 Ao
and his co-workers performed the SDE decomposition
to obtain the underlying potential function φAO(x)23 and
proposed the so-called A-type integral interpretation of the
SDEs.27 Though formally it is quite relevant to the concepts
considered previously, there are seldom mathematical studies
on these results. In this section, we will show that the
potential function φAO(x) in the decomposed SDE is
nothing but the quasi-potential φQP(x) under reasonable
conditions. Furthermore, some ambiguities in the SDE
decomposition theory such as the existence and uniqueness
of the decomposition will also be clarified via the connection
with the quasi-potential theory.

A. SDE decomposition and the potential

In Ref. 23, it is claimed that SDEs (1) can be transformed
into an equivalent decomposed form

[S(Xt) + A(Xt)]dXt = −∇φAO(Xt)dt + σ̃(Xt)dWt,

σ̃(x)σ̃(x)t = 2εS(x), (26)

where S(x) is a positive semi-definite matrix, A(x) is an
anti-symmetric matrix, and φAO(x) is the desired potential
function.

In terms of physical interpretation, the stochastic process
of decomposition form (26) can be related to the following
physical process with frictional and Lorentz forces:




dXt = Vtdt
mdVt = −[S(Xt) + A(Xt)]Vtdt − ∇φAO(Xt)dt

+ σ̃(Xt)dWt, σ̃(x)σ̃(x)t = 2εS(x)
(27)

as the mass of the particle m tends to zero. In high dimensional
case (n > 3), −S(x)Vt is the generalization of frictional
force, −A(x)Vt is the generalization of Lorentz force, and
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σ̃(x)σ̃(x)t = 2εS(x) is the generalization of Einstein relation
in Langevin dynamics.27

To mathematically execute the transformation from
(1) to (26) in practice, some conditions are imposed
on S(x) and A(x). By solving these conditions either
analytically or numerically, the SDE decomposition as
well as potential function φAO(x) is thought to be
available.23 In this construction, Eqs. (1) and (26) are
related by the relationship [S(x) + A(x)]b(x) = −∇φAO(x)
and [S(x) + A(x)]σ(x) = σ̃(x). Inserting these expressions
into ∇ × [−∇φAO(x)] = 0 and σ̃(x)σ̃(x)t = 2εS(x) will yield
the following constraints on S(x) and A(x):

∇ × [(S(x) + A(x))b(x)] = 0, (28a)
[S(x) + A(x)]D(x)[S(x) − A(x)] = S(x), (28b)

in which ∇ × f is defined as the n × n anti-symmetric matrix
(∇ × f )i j = ∂i f j − ∂j f i for f ∈ Rn. Hence Eqs. (28a) and
(28b) form a nonlinear partial differential equation (PDE)
system with (n2 − n)/2 and (n2 + n)/2 equations, respectively.

It is claimed in Ref. 23 that for given b(x) and D(x), the
above n2 conditions can determine n2 unknown functions in
S(x) which is symmetric with (n2 + n)/2 unknowns, and A(x)
which is anti-symmetric with (n2 − n)/2 unknowns. Having
solved S(x) and A(x), the potential function φAO(x) in (26) is
then given by

∇φAO(x) = −[S(x) + A(x)]b(x) (29)

as the consequence. However, this assertion needs further
mathematical justification since solving nonlinear PDE
systems (28a) and (28b) is not trivial.

B. Steady state distribution: A-type
integral interpretation

One of the key parts of the proposal23 is that the stochastic
integral in decomposed SDE (26) should be interpreted as
the so-called A-type integral beyond Ito or Stratonovich
framework,27 which is defined as follows.

Assume that [S(x) + A(x)] is invertible in Eq. (26)
and denote G(x) = [S(x) + A(x)]−1. From (28b), we have
G(x) + Gt(x) = 2D(x) or G(x) = D(x) +Q(x), where Q(x) is
an anti-symmetric matrix. The A-type Fokker-Planck equation
for decomposed process (26) can be derived from zero-mass
limit of extended system (27) as shown in Ref. 45,

∂t ρ = ∇ · G(ε∇ + ∇φAO)ρ = −∇ · (bρ) + ε∇ · (D +Q)∇ρ.
(30)

In one dimensional case (n = 1), this Fokker-Planck equation
also corresponds to the right-most endpoint stochastic integral
interpretation of original process Eq. (1), but there is no
explicit stochastic integral interpretation of it in higher
dimensions. Moreover, different from the intuitive claims
in Ref. 27 that the A-type integral interpretation can be
equivalently applied to original process (1) in general, the
results in Section IV D below will suggest that the A-type
Fokker-Planck equation for (1) might not be well-determined
if the dimension n ≥ 3.

One feature about the Fokker-Planck equation of A-type
integral is that its steady state distribution is of Boltzmann

form,

Pss(x) = 1
Zε

exp
(
− φ

AO(x)
ε

)
with the potential function φAO(x) appearing in the
decomposition. Hence, in this case, we obtain

φAO(x) = −ε ln PA-type
ss (x) − ε ln Zε. (31)

The first looking on (31) is reminiscent of potential landscape
φPL(x). But a careful comparison tells us that the steady state
distribution PA-type

ss (x) is totally different from the Pss(x) in
(4) because of different interpretations of SDEs. This often
brings confusions in the literature. Furthermore, we will show
that φAO(x) is nothing but the quasi-potential φQP(x).

C. Connection with quasi-potential

Recall that if we denote G(x) = [S(x) + A(x)]−1, then
relation (28b) yields G(x) = D(x) +Q(x) where Q(x) is an
anti-symmetric matrix. Now we can decompose the force b(x)
with the form

b(x) = −G(x)∇φAO(x) = −[D(x) +Q(x)]∇φAO(x)
= −D(x)∇φAO(x) + ℓ(x),

where ℓ(x) = −Q(x)∇φAO(x). Since Q(x) is anti-symmetric,
we have

ℓ(x) · ∇φAO(x) = −(∇φAO)tQ∇φAO = 0.

Therefore just as the quasi-potential φQP(x), the potential
function φAO(x) also satisfies the Hamilton-Jacobi equation

[b(x) + D(x)∇φAO(x)] · ∇φAO(x) = 0. (32)

The fact that φAO(x) and φQP(x) share same partial
differential equation (32) tells us that they are indeed the same
function, at least when b(x) has only one stationary stable
state and no other attractors since there are multiple solutions
of the HJE in general. Meanwhile, we do not know how
to regularize to select the reasonable solution of (32) based
on the original definition of φAO(x). But we will accept the
choice that φAO(x) is the noise vanishing limit of (32) as the
quasi-potential φQP(x) in this paper.

Result (32) also implies that the construction of φAO(x)
can be achieved by the same strategy as discussed for the
quasi-potential φQP(x), while the naive method by utilizing
Definition (29) directly is not a feasible approach because the
solution of S(x) and A(x) may be an even harder problem.
On the contrary, we will instead study the decomposition
and determine the corresponding SQP(x) and AQP(x) through
the obtained quasi-potential φQP(x), i.e., φAO(x). With this
perspective, we define

[SQP(Xt) + AQP(Xt)]dXt = −∇φQP(Xt)dt + σ̃(Xt)dWt,

σ̃(x)σ̃(x)t = 2εSQP(x), (33)

which we called the reconstruction of SDE decomposition
starting from quasi-potential. Through this reconstruction,
the quasi-potential φQP(x) can be reinterpreted as φAO(x),
which also indicates that exp(−φQP(x)/ε) can serve as the
steady-state distribution under the A-type stochastic integral
interpretation of Eq. (33).
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TABLE III. Summary for the potential function φAO(x) constructed in SDE decomposition theory.

Realization of Waddington’s metaphor candidate III: SDE decomposition

Definition Decompose the original SDE into [S(Xt)+ A(Xt)]dXt =−∇φAO(Xt)+σ̃(Xt)dWt , with the
restriction σ̃(x)σ̃(x)t = 2εS(x)
The potential function is defined by ∇φAO(x)=−[S(x)+ A(x)]b(x) (force decomposition)

Numerical strategy Solve n2 non-linear PDEs (not practical in general)

Steady state distribution Interpreted under A-type integral framework, ∇φAO(x)=−ε∇lnPA-type
ss (x)

Force decomposition b(x)=−D(x)∇φAO(x)+ℓ(x) plus the orthogonality between gradient and non-gradient term
⟨ℓ(x),∇φAO(x)⟩= 0, where ℓ(x)=Q(x)φAO(x) and Q(x) is an anti-symmetric matrix

Connection with quasi-potential φAO(x) coincides with φQP(x) in broad situations. Although the two functions are interpreted
under different frameworks, as the landscape function they are the same

Connection with potential landscape lim
ε→0

ε∇φPL(x)=∇φAO(x)

Existence and uniqueness of
decomposition

The existence of Ao’s SDE decomposition for general diffusion process can be guaranteed
under the reasonable conditions stated in Theorem 1 while in high dimensional case (n ≥ 3)
the decomposition (S, A,Q) is not unique in general

Our theoretical results on the reconstruction deal with
arbitrary solution φ(x) of Hamilton-Jacobi equation, which
is not limited to the quasi-potential φQP(x). The existence of
reconstruction (33) starting from φ(x) is guaranteed by the
following theorem:

Theorem 1. Suppose D(x) is not singular and φ(x)
is the solution of Hamilton-Jacobi equation (32). If b(x)
and ∇φ(x) have the same zeros, then there exist a positive
definite matrix S(x) and an anti-symmetric matrix A(x) such
that [S(x) + A(x)]b(x) = −∇φ(x) and [S(x) + A(x)]D(x)[S(x)
− A(x)] = S(x).

We also discovered that, in general, the constructed S(x)
and A(x) are not unique in high dimensions (n ≥ 3). Moreover,
this under-determination of S and A can be also quantitatively
characterized:

Theorem 2. Suppose D(x) is not singular and φ(x) is
the solution of Hamilton-Jacobi equation (32). If φ(x) is
also nonsingular (i.e., ∇φ(x) , 0) for fixed x ∈ Rn, then
S(x) and A(x) in Theorem 1 have the degrees of freedom
(n − 1)(n − 2)/2.

The detailed proof is presented in Appendix B. Here let
us remark on the two conditions imposed in Theorem 1: the
non-singularity of diffusion matrix D(x) and the common-zero
assumption of b(x) and∇φ(x). It can be found in the proof that
the non-singularity of D(x) is just a technical condition which
is not always necessary in practice. For the common-zero
assumption, a related example will be provided in Section V
to show that the violation of such assumption may lead to the
ambiguity of A-type integral Fokker-Planck equation.

D. Existence and uniqueness issue
of SDE decomposition

Our theoretical results on the SDE decomposition lead
to the discussion about rigorous mathematical aspects of the
proposal.23

One fundamental theoretical issue is the existence and
uniqueness of the SDE decomposition. Starting from SDE

(1), the quasi-potential function φQP(x) can be constructed.
As long as φQP(x) satisfies the common-zero assumption
(which can be viewed as an inherent property of the SDE),
the existence of the decomposition can be established as the
corollary of Theorem 1. However, Theorem 2 suggests that
when n ≥ 3, the original SDE might be decomposed into a
family of different SDEs in form (26) satisfying the restrictions
in (28) (these SDEs share the same potential function φQP(x)),
indicating that the imposed conditions in the theory do not
uniquely determine the decomposition.

These results clarify that it is more appropriate to apply the
A-type stochastic integral interpretation to decomposed SDEs
(26) rather than original SDE (1), since there might be a family
of different G(x) corresponding to the same original SDEs,
which renders the Fokker-Planck equation undetermined (cf.
the examples in the supplementary material42).

Therefore, we conclude that the potential function φAO(x)
and the decomposition matrix S(x), A(x), and G(x) should
be analyzed separately in the SDE decomposition theory. In
the A-type integral framework, φAO(x) (which is shown to
be consistent with φQP in many situations) determines the
steady state distribution, while S(x), A(x), and G(x) (which
are not uniquely determined in general) reveal the relaxation
behavior of probability evolution in Fokker-Planck equation. It
is interesting to note that for a given SDE (1), there may exist
various relaxation processes leading to the same invariant
distribution under A-type integral interpretation, which
suggests that the potential function φ(x) serves as a more
characteristic quantity for SDE (1) rather than S(x) and A(x).

We summarize our explorations and findings on the SDE
decomposition theory in Table III.

V. COMPARATIVE STUDY THROUGH A TOY EXAMPLE

In this section, a simple yet illuminating example will be
provided to help us gain better understanding of the landscape
construction proposals discussed in Secs. I–IV. We consider
the following diffusion process defined on the circle S[0,1]:

dXt = dt +
√

2εdW̃t, Xt ∈ S[0,1], (34)
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where W̃t is the Brownian motion on the circle. Physically,
it describes a particle doing uniform circular motion under
random perturbations.

In potential landscape theory, let p(x, t) denote the
probability density of particle appearing at point x ∈ [0,1]
on the circle at time t. The Fokker-Planck equation is

∂tp + ∂x(p − ε∂xp) = 0, p(x, t) = p(x + 1, t).
We can obtain the steady state distribution Pss(x) = 1,
x ∈ [0,1] and steady state flux Jss(x) = 1. Therefore the
potential landscape satisfies φQP(x) = ln Pss(x) = 0 on the
circle. From force decomposition perspective, the particle is
completely driven by the curl term Jss/Pss = 1, reflecting
the non-equilibrium nature of the system. In fact, the uni-
direction feature of this system has close relation with the
concept of entropy production in non-equilibrium statistics.46

The rotation number of this system is 1, and the entropy
production rate is ε−1.

In the framework of quasi-potential, the landscape can be
either computed from Hamilton-Jacobi equation or minimum
action approach. The Hamilton-Jacobi equation is

(1 + φ′(x))φ′(x) = 0

with boundary condition φ(x) = φ(x + 1), yielding the
solution φQP(x) = Constant. From the minimum action
approach, the least action path ψ(t) connecting any points
x1 and x2 on the circle satisfies the deterministic counterpart
ψ̇(t) = 1 and the action on the path is zero, also indicating
that the quasi-potential on the circle should be constant.
Interestingly, if we choose the transition path in the opposite
direction, then action will increase along the path, which
also reflects the system’s non-equilibrium property (the time
irreversibility). The driving force on the particle is solely the
non-gradient term ℓ(x) along the circle. This phenomenon is
depicted in Fig. 3.

Because the quasi-potential φ′(x) = 0 on the circle while
b(x) = 1, we cannot apply our results on the connection

FIG. 3. Constructing the quasi-potential for the diffusion process on the
circle modeled by Eq. (34). If the path is in the opposite direction of the
force term, the action will increase along it. The least action path satisfies the
deterministic counterpart of the stochastic process where the action as well as
the quasi-potential remains to be zero. This reflects the time irreversibility of
the system.

TABLE IV. Different realizations of Waddington’s metaphor for the simple
diffusion process on the circle.

Proposals
Landscape
function Special features

Potential
landscape

φPL(x)= 0 The system (rotation number 1, entropy
production rate ε−1) is completely
driven by non-gradient force

Quasi-potential φQP(x)= 0 The action remains constant along the
clockwise path while increases along
the anti-clockwise path

SDE
decomposition

φAO(x)= ? The both sides of the decomposed SDE
are 0 and the corresponding A-type
integral Fokker-Planck equation is
ill-defined

between the quasi-potential and φAO directly as stated in
Theorem 1. We will construct the SDE decomposition directly
from definition. Assume the SDE decomposition has the form

[s(Xt) + a(Xt)]dXt = −φ′(Xt) + σ̃(Xt)dW̃t,

Xt ∈ S[0,1], σ̃2(x) = 2εs(x).
Since n = 1, we have a(x) = 0 and φ′(x) = s(x) in (28).
Moreover, condition (28) yields s2(x) = s(x), implying that
s(x) = 0 or s(x) = 1 by the smoothness of s(x). On the other
hand, the boundary condition φ(x + 1) = φ(x) requires that
φ′(x) = s(x) = 0. With these facts, we know that decomposed
equation (26) is not well defined because both sides are zero.
A-type integral Fokker-Planck equation (30) does not apply
in this case.

The comparison of different proposals to realize
Waddington’s metaphor for the system modeled by Eq. (34)
is presented in Table IV.

Although the considered example is just a toy model, it has
already been discovered in the study of a cell cycle model12 that
similar phenomenon can happen in biological networks where
the gradient of quasi-potential vanishes on a manifold. This
example informs us that in some non-equilibrium systems, the
landscape itself cannot describe the whole picture, thus must
be combined with other tools to obtain a more comprehensive
understanding of the system.

VI. DISCUSSIONS AND CONCLUSION

In this paper, we have adopted different perspectives
(steady state distribution, transition path, and force decom-
position) to investigate three existing landscape theories. To
summarize our findings, we conclude that the quasi-potential
φQP(x) is the limit of potential landscape φPL(x) as the
noise strength goes to zero, and the potential φAO(x) in
SDE decomposition theory coincides with φQP(x) in many
situations. We also discover that condition (28) does not
uniquely determine the decomposition. To avoid ambiguity,
it will be more reasonable to define the A-type integral to
decomposed form (26) rather than its primitive form. Next we
provide some discussions based on our results in this paper.

From a numerical point of view, the Monte Carlo
simulation is more efficient than the deterministic methods
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in high dimensions to obtain potential landscape φPL(x),
while when the noise amplitude is small, even Monte
Carlo simulation becomes costly due to the metastability
issue.31 In such circumstance, it is advisable to approximate
potential landscape φPL by quasi-potential φQP, which can be
computed by gMAM or other numerical methods. The path
integral formulation adopted by us might imply other MCMC
algorithms to compute the potential landscape, especially
when the noise amplitude ε is in the intermediate regime,
where it is too large to adopt quasi-potential approximation
while too small to effectively conduct Monte Carlo simulation.
In such cases, the idea of importance sampling might help to
get the estimation of φPL(x) effectively.

Our results on the existence and uniqueness of
decomposition (26) provide a negative answer to the open
problem raised in Ref. 47: whether conditions (28) are
sufficient to determine the decomposition uniquely? In cases
when n ≥ 3, we find that there is a class of processes of form
(26) which correspond to same SDE (1) and their A-type
Fokker-Planck equations are different. The non-uniqueness
of SDE decomposition also appears in the construction of
Lyapunov functions for dynamical systems.48 However, the
non-uniqueness there arises from the arbitrariness of choosing
diffusion matrix D(x), while our results suggest that even
if D(x) is fixed, the decomposition is also not unique. Our
results on the non-uniqueness of SDE decomposition raise
a meaningful question both experimentally and theoretically:
given the system described by (1), how would nature choose
one particular process with decomposition form (26) from all
the candidates? Could there exist any other restrictions on
S and A besides condition (28) which helps determine the
decomposed process uniquely?

After studying the construction of landscapes for diffusive
dynamics, it is natural to consider how to generalize these
concepts to discrete jump processes. For the potential
landscape theory, one needs to compute on the discrete lattices,
and the cost may be significant when the number of molecules
is large. The quasi-potential theory relies on the unified LDT
framework and can be easily applied to the models with large
system size,16 but there will be difficulty to handle the hybrid
system with low copy number of species. It looks that the
SDE decomposition theory is difficult to be generalized to
the discrete cases and thus the discussion in the current paper
does not apply.
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APPENDIX A: LAPLACE’S METHOD
AND LAPLACE PRINCIPLE

Laplace’s method is used for approximating integrals of
exponential type, stating that

 b

a

eg (x)/εdx ∼


2πε

|g′′(x0)| e
g (x0)/ε, as ε → 0+, (A1)

where x0 is assumed to be the unique maximum of g(x).
In large deviation theory, the logarithmic form of Eq. (A1)

is commonly used, known as the Laplace principle. Suppose
A is a regular subset (Borel set in mathematics) and ϕ is a
measurable function, then

lim
ε→0

ε ln

A

e−ϕ(x)/εdx = − inf
x∈A

ϕ(x).
In the main text, we also formally adopt the Laplace principle
in the infinite dimensional path space.

APPENDIX B: PROOF OF THE THEOREMS ON SDE
DECOMPOSITION THEORY

We will prove Theorem 1 of the main article by
reconstructing the desired S and A in the theorem, and the
results in Theorem 2 of the main article will be revealed
during the reconstruction process.

The main idea of the reconstruction procedure consists of
three steps:

• Step 1. Finding a solution φ(x) of Hamilton-Jacobi
equation (32) with appropriate boundary conditions.

• Step 2. Constructing a matrix function G(x) such that
G(x)∇φ(x) = −b(x) and G(x) + GT(x) = 2D(x). We
can show that the desired G(x) can be constructed
by solving certain linear systems, whose solvability
is guaranteed by the conditions in the theorem. The
degrees of freedom of G(x) can be also obtained.

• Step 3. Setting S(x) = [G−1(x) + G−T(x)]/2 and
A(x) = [G−1(x) − G−T(x)]/2, thus obtaining the de-
composed form in Eq. (26). The invertibility of G(x)
is implied by the non-singularity of D(x).

If the described procedure works, then Theorem 1 will
be verified. In theoretical aspects, one needs to ensure the
following:

• The existence of solutions for the linear system arises
in step 2, which guarantees the existence of G(x).

• The invertibility of the constructed G(x), which
guarantees the existence of S(x) and A(x) in step 3.

• The verification of condition (28) in the main article
for S(x) and A(x) obtained in step 3, which guarantees
the constructed S, A and φ(x) are the desired quantities
in Eq. (26).

We will show that under the assumptions stated in Theorem 1,
all the requirements above can be satisfied. Theorems 1 and 2
can then be proved as the result.

1. The existence of G(x )
From G(x) + GT(x) = 2D(x), we can write G(x)

= D(x) +Q(x), where Q(x) is an anti-symmetric matrix.
Hence the existence of Q(x) such that

Q(x)∇φ(x) = −b(x) − D(x)∇φ(x) (B1)
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will imply the existence of G(x) in step 2 of the re-
construction procedure. We use the vector q(x) = (q1(x),
q2(x), . . . ,qn(n−1)/2(x))T to represent Q(x) by

Q(x)

=

*.............
,

0 q1 q2 · · · qn−2 qn−1

−q1 0 qn · · · q2n−4 q2n−3

−q2 −qn 0 · · · q3n−7 q3n−6

...
...

...
. . .

...
...

−qn−2 −q2n−4 −q3n−7 · · · 0 qn(n−1)/2
−qn−1 −q2n−3 −q3n−6 · · · −qn(n−1)/2 0

+/////////////
-

.

We can transform Eq. (B1) into the following linear system
for vector q(x):

Ψ(x)q(x) = −b(x) − D(x)∇φ(x). (B2)

The coefficient matrix Ψ(x) has the form

Ψ(x) = (Ψ1(x),Ψ2(x), . . . ,Ψn−1(x)),
where the ith block Ψi(x) is an n × (n − i) matrix with the
structure

Ψi(x) = *
,

O
Ψ̃i(x)

+
-
,

in which O represents the (i − 1) × (n − i) zero matrix and the
structure of Ψ̃i(x) is

Ψ̃i(x) =

*................
,

φxi+1 φxi+2 φxi+3 · · · φxn−1 φxn

−φxi 0 0 · · · 0 0

0 −φxi 0 · · · 0 0

0 0 −φxi · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −φxi 0

0 0 0 · · · 0 −φxi

+////////////////
-

∈ R(n−i+1)×(n−i),

where φxi denotes ∂xiφ(x). The concrete expression of Ψ for
dimension n = 4 takes the following form:

Ψ =

*.....
,

φx2 φx3 φx4 0 0 0
−φx1 0 0 φx3 φx4 0

0 −φx1 0 −φx2 0 φx4

0 0 −φx1 0 −φx2 −φx3

+/////
-

. (B3)

Based on the above manipulations, the existence of G(x)
is converted to the solvability of linear system (B2). This can
be ensured by studying the following two cases.

• Case 1: ∇φ(x) , 0.
Notice that all column vectors of matrix Ψ are

orthogonal to ∇φ and from Hamilton-Jacobi equation
we know the right hand side −b(x) − D∇φ(x) is also
orthogonal to∇φ. Thus the column space of augmented
matrix A = (Ψ,−b − D∇φ) is orthogonal to the non-
zero vector ∇φ. This indicates that the column space
cannot be the whole space Rn (otherwise ∇φ = 0), so
we have rank(A) ≤ n − 1. On the other hand, from
∇φ , 0 we may assume φxi0

, 0. Then there exists
an (n − 1) × (n − 1) nonsingular diagonal sub-matrix
of Ψ with diagonal elements ±φxi0

. Hence n − 1
≤ rank(Ψ) ≤ rank(A) ≤ n − 1, which yields rank(A)
= rank(Ψ) = n − 1 and therefore guarantees the exis-
tence of solution q(x).

• Case 2: ∇φ(x) = 0.
From the assumption that b and ∇φ have the same

zeros, we must have b(x) = 0. Then in Eq. (B2), the Ψ
on the left hand side is a zero matrix and the right hand
side is a zero vector; therefore, any q(x) ∈ Rn solves
the linear system.

Hence we conclude that under the assumptions stated in
Theorem 1, the solution q(x) of linear system (B2) always
exists. This ensures the existence of Q(x) and G(x) in step 2
of the reconstruction procedure.

2. The invertibility of G(x )
To show that the matrix G(x) constructed is invertible

for any given x, we need to utilize the relation G(x)
= D(x) +Q(x) and the fact that D(x) is positive definite.
Assume that y ∈ Rn is the solution of linear system
G(x)y = 0. We then have

0 = y tG(x)y = y t[D(x) +Q(x)]y = y tD(x)y.
From the positive definiteness of D(x), we conclude that
y = 0. This ensures the invertibility of G(x).

3. Verification of conditions for S(x ) and A(x )
With the constructed G(x), we define

S(x) = 1
2
[G−1(x) + G−T(x)] and

A(x) = 1
2
[G−1(x) − G−T(x)].

Direct calculation shows that

[S(x) + A(x)]b(x) = G−1(x)b(x) = −∇φ(x),
[S(x) + A(x)]D(x)[S(x) − A(x)] = G−1(x)1

2
[G(x) + GT(x)]G−T(x)

=
1
2
[G−T(x) + G−1(x)] = S(x),
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which concludes the proof of Theorem 1. The results also
indicate that the constructed S(x) and A(x) from the procedure
satisfies condition (28) in the main article and thus S, A, φ are
the desired quantities in transformed stochastic process (26)
in the main article.

Moreover, the argument in case 1 of Appendix B 1
also implies that the degrees of freedom for solutions of
linear system (B2) are n(n − 1)/2 − (n − 1) = (n − 1)(n − 2)/2
provided that ∇φ(x) , 0. Since G(x) has the structure

G(x) = G∗(x) +
(n−1)(n−2)/2

k=1

λk(x)Qk(x),

where G∗(x) is a special solution and Qk(x) a set of linearly
independent fundamental solutions, then G−1(x) and the
constructed S(x) and A(x) also possess the degrees of freedom
(n − 1)(n − 2)/2, which leads to the conclusion of Theorem 2.

4. Some remarks

Finally, let us remark on the two conditions imposed
in Theorem 1: the non-singularity of diffusion matrix D(x)
and the common-zero assumption of b(x) and ∇φ(x). It can
be found in the proof that the non-singularity of D(x) is
just a technical condition to ensure the invertibility of the
constructed G(x) in the second step. In practice, as long as
the solved G(x) is invertible, this assumption on D(x) can be
removed. For the common-zero assumption, in the first place
one can show that if b(x0) = 0, then ∇φ(x0) = 0 provided
that det D(x0) , 0. The violation of common-zero assumption
mostly happens in the case b(x0) , 0 and ∇φ(x0) = 0. From
[S(x0) + A(x0)]b(x0) = −∇φ(x0), we know S(x0) + A(x0) is
degenerate, implying that the A-type integral Fokker-Planck
equation is not well-defined at x0 as presented in Section V of
the main article.
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