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The stochastic integral ensuring the Newton-Leibnitz chain rule is essential in stochastic energetics.
Marcus canonical integral has this property and can be understood as the Wong-Zakai type smooth-
ing limit when the driving process is non-Gaussian. However, this important concept seems not
well-known for physicists. In this paper, we discuss Marcus integral for non-Gaussian processes
and its computation in the context of stochastic energetics. We give a comprehensive introduction
to Marcus integral and compare three equivalent definitions in the literature. We introduce the exact
pathwise simulation algorithm and give the error analysis. We show how to compute the thermody-
namic quantities based on the pathwise simulation algorithm. We highlight the information hidden in
the Marcus mapping, which plays the key role in determining thermodynamic quantities. We further
propose the tau-leaping algorithm, which advance the process with deterministic time steps when
tau-leaping condition is satisfied. The numerical experiments and its efficiency analysis show that it
is very promising. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794780]

I. INTRODUCTION

In various branches in natural and social sciences, the
stochastic processes driven by non-Gaussian noise are very
common and can be modeled with the stochastic differential
equations (SDEs) driven by different types of non-Gaussian
noise. This includes many examples such as the analysis of
the shot noise in electrical circuits,1 stochastic energetics in
statistical mechanics,2 the stock price modeling in option
pricing,3 and even the study of quantum groups in quantum
mechanics.4 In mathematics community, the theory of Lévy
processes and its related SDEs have been extensively studied
in the literatures and monographs.5, 6

Recently, there are growing interests in understanding the
small thermodynamic systems.7 In the study of such systems,
the thermodynamic quantities such as energy, work, and heat
become stochastic due to the environmental fluctuations, and
the thermodynamic energy balance can be established in a
pathwise way. A theoretical framework called stochastic en-
ergetics is now in shape and has wide applications in theories
and experiments (see Refs. 8–13 and the references therein).

For the SDEs driven by Gaussian white noise, the
Stratonovich integral has been shown as an appropriate def-
inition to be consistent with the stochastic energetics8, 9 since
it satisfies the traditional Newton-Leibnitz chain rule. Indeed
this approach has been adopted by many researchers.10–13 The
Stratonovich integral is somehow more preferred by physi-
cists than Ito integral since it admits an interpretation as the
limit of the solution of SDEs driven by Gaussian colored
noise. This is the well-known Wong-Zakai’s theorem.14, 15 For
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the SDEs driven by non-Gaussian noises which often appear
in small thermodynamic systems,9, 16–20 the Stratonovich type
integral in the sense of Wong-Zakai’s smoothing limit has also
been defined.21 It is usually named as Marcus canonical in-
tegral for the pioneering work of Marcus in this topic22, 23

(for simplicity we will abbreviate it as Marcus integral in
the rest of this paper). This type of integral is different from
the straightforwardly generalized midpoint integral like the
Stratonovich type integral for SDEs driven by Gaussian white
noise, and of course is different from the leftmost endpoint in-
tegral as Ito’s definition. It satisfies the Newton-Leibnitz chain
rule, which is usually needed in stochastic energetics.8 Some
further properties of this integral may be referred to Ref. 5.
Interestingly, it seems that this integral is not well-known in
physics community and was recently rediscovered in Ref. 2
as * integral for understanding the stochastic energetics.

The purpose of this paper is to give a comprehensive
review of Marcus integral and discuss its numerical meth-
ods, which will be necessary to further advance the study of
stochastic energetics for non-Gaussian processes. We will dis-
cuss the pathwise simulation of the trajectory, its convergence
estimate, the computation of thermodynamic quantities, and
the forward Euler time stepping for acceleration, which we
also call tau-leaping scheme due to similar ideas in simulat-
ing chemically reacting systems.24, 25 We will restrict us to
SDEs driven by compound Poisson noise in the current paper,
which is the common setup in practice.

The paper has two main parts. The first part is the theo-
retical part, which mainly states the equivalence between dif-
ferent definitions of the solutions. In Sec. II, we give a review
of the development of Marcus integral. We will show how
to derive it both physically and mathematically. In particu-
lar, we show the equivalence between the Di Paola-Falsone
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formulation and * integral in Sec. II A, Di Paola-Falsone for-
mulation and Marcus integral in Sec. II B, and the * integral
and Marcus integral in Sec. II C. The second part is the com-
putational part, which introduces the pathwise simulation al-
gorithm, its analysis and the tau-leaping algorithm. In Sec. III,
we offer the pathwise simulation algorithm to the SDEs de-
fined through Marcus integral, which is also proposed in
Ref. 26. We give the convergence analysis to the algorithm
and present some numerical examples for the verification of
our analysis. In Sec. IV, we show how to compute thermo-
dynamic quantities and numerically confirm the first law of
thermodynamics in the framework of stochastic energetics.
In Sec. V, we propose the forward Euler time stepping, i.e.,
tau-leaping scheme, to speed up the simulation without losing
much accuracy. We give the condition when to use this algo-
rithm and its efficiency analysis. In Sec. VI, some numerical
examples are exhibited to show the efficiency and accuracy of
the proposed tau-leaping algorithm. Finally we make conclu-
sion in Sec. VII.

II. MARCUS INTEGRAL

In stochastic energetics with non-Gaussian noise pertur-
bation, one usually faces the SDEs like

dX(t)

dt
= f (X(t), t) + g(X(t), t)ξ (t), (1)

where ξ (t) is a Poisson white noise with realizations

ξ (t) = dL(t)

dt
=

N(t)∑
k=1

Rkδ(t − τk).

Here τ k is the jump time with rate λ, Rk is the jump size with
distribution μ, and N(t) is the number of jumps until time t.
L(t) is the underlying compound Poisson process and has the
corresponding realization

L(t) =
N(t)∑
k=1

RkH (t − τk), (2)

where H(t) is the Heaviside function with unit jump at time
zero. Equation (1) is also denoted as

dX(t) = f (X(t), t)dt + g(X(t), t)dL(t) (3)

in mathematics community. Both notations will be taken with-
out distinction in this paper. We will only consider the scalar
SDE case in this section for simplicity of clarification. But
all of the results can be generalized to the vectorial case with
straightforward modifications.

The issue comes from the definition of stochastic inte-
gral

∫ t

0 g(X(s), s)ξ (s)ds or equivalently
∫ t

0 g(X(s), s)dL(s) in
explaining SDE (1). If ξ (t) = Ẇ (t) is the temporal Gaussian
white noise with Eξ (t) = 0 and Eξ (t)ξ (s) = δ(t − s) where
E means the probabilistic expectation and W (t) is the stan-
dard Brownian motion, we have the famous Ito integral and
Stratonovich integral defined as

(i) Ito integral∫ t

0
g(X(s), s) · dW (s) = lim

�t→0

n∑
i=1

g(X(ti), ti)�Wi,

(4)

(ii) Stratonovich integral∫ t

0
g(X(s), s) ◦ dW (s)

= lim
�t→0

n∑
i=1

1

2

[
g(X(ti), ti) + g(X(ti+1), ti+1)

]
�Wi,

(5)

where {ti} is a subdivision of time interval [0, t] and �Wi

= W (ti+1) − W (ti). The notation · and ◦ denote the Ito’s def-
inition and Stratonovich’s definition, respectively. It is well-
known that the Stratonovich integral satisfies the Newton-
Leibnitz’s chain rule, while the Ito integral satisfies the
famous Ito’s rule.27 In quantitative studies in finance, Ito cal-
culus is preferred due to the property that the expected income
given the current state is kept invariant under the fluctuations,
which is the result of choosing the leftmost endpoint in the
definition (4). However, Stratonovich calculus is often prefer-
eed in physics because it admits an interpretation as the limit
of the solution of SDEs with Gaussian colored noise, which
is suggested by Wong-Zakai’s theorem.14 Since most physical
noise are colored noise, the adoption of Stratonovich integral
will be more consistent with reality.

In case of Poisson white noise, since the trajectories of X
and L are defined to be right-continuous with left-hand limit
mathematically due to discontinuity, one should define the Ito
integral as in (4)∫ t

0
g(X(s−), s)dL(s) = lim

�t→0

n∑
i=1

g(X(ti−), ti)�Li, (6)

where X(s−) is the left-hand limit at s, �Li = L(ti+1)−L(ti)
(we will omit the symbol · in Ito integrals for ease of notation
in later texts). The Ito’s rule for h(X(t)) with this definition is
proved to be5

h(X(t)) − h(X(0))

=
∫ t

0
h′(X(s−))dX(s)

+
∑

0≤s≤t

[h(X(s)) − h(X(s−)) − �X(s)h′(X(s−))], (7)

where �X(s) = X(s)−X(s−) is the jump of X at s. The first
term can be further reduced to∫ t

0
h′(X(s−))dX(s) =

∫ t

0
h′(X(s))f (X(s), s)ds

+
∫ t

0
h′(X(s−))g(X(s−), s)dL(s).

The second term on the right-hand side (rhs) of (7) shows
the difference between the Ito’s rule and the Newton-Leibnitz
chain rule. The necessity to include this additional term can
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be heuristically validated from the following simple example.
Suppose f = 0, g = 1 in (1). We have X(t) = L(t) indeed. Con-
sider a specific realization L(t) = H(t−1/2) and let us verify
the Ito’s rule (7) when taking t = 1. The left hand side gives
h(1)−h(0). The first term on the rhs gives∫ t

0
h′(X(s−))dX(s) = h′(0)

by the definition of Ito integral (6) since the only contribution
term in the summation arises in the interval [ti, ti+1) contain-
ing 1/2. The second term on the rhs gives h(1) −h(0)−h′(0).
It is this additional term that compensates the difference be-
tween

∫ t

0 dh(X(s)) and
∫ t

0 h′(X(s−))dX(s).
Turning to the Stratonovich integral for Poisson noise,

we will find that the straightforward extension of (5) does not
satisfy Newton-Leibnitz chain rule. This can be heuristically
checked from the same example considered above. We have∫ t

0
h′(X(s)) ◦ dX(s) = 1

2
[h′(0) + h′(1)]

from the definition (5). The other choices like the midpoint
h(X(ti+ 1

2
)) or h((X(ti)+X(ti+1))/2) in the summand do not give

meaningful solution, either.
A satisfying resolution on the definition of Stratonovich

integral to achieve chain rule can be realized through Wong-
Zakai type smoothing limit technique. It has been pursued
by several authors.21–23, 28, 29 Due to Marcus’ pioneering work
on this topic, it is usually named as Marcus integral in the
literature,5 which will be denoted as∫ t

0
g(X(s), s) � dL(s)

in this paper. Below we state three main approaches proposed
in the literature, which are formally equivalent but totally dif-
ferent in numerical performance. For simplicity, in Secs. II A,
II B, and II C, we will take f = 0, g(X(t), t) = g(X(t)) and
a specific single-jump realization of the Poisson noise L(t)
= R0H(t−t0) in Eq. (3). That is, we consider the following
equation

dX(t) = g(X(t)) � dL(t), (8)

in Secs. II A, II B, and II C. The Marcus integral for more
general SDE will be presented in Sec. II D.

A. Taylor series formulation by Di Paola and Falsone

The Taylor series formulation for Marcus integral is pro-
posed by Di Paola and Falsone.28, 29 Let us briefly state the
idea of this formulation in this subsection. For any analyti-
cal function φ(x) near X, we can represent the increment of φ

through Taylor expansion as

�φ =
∞∑

j=1

djφ

j !
, (9)

where djφ is defined recursively as

djφ = ∂(dj−1φ)

∂x
dX, d1φ = ∂φ

∂x
dX. (10)

More concretely,

d2φ = ∂(d1φ)

∂x
dX = ∂2φ

∂x2
(dX)2 + ∂φ

∂x
d2X,

d3φ = ∂(d2φ)

∂x
dX = ∂3φ

∂x3
(dX)3 + 3

∂2φ

∂x2
dXd2X + ∂φ

∂x
d3X.

Note that dX is the increment of the argument of φ. It may be
the ultimate source of the increment, in which case djX = 0
for j > 1 and we obtain the usual Taylor expansion. It is also
possible that x may further depend on other variables, say t,
then d1X = X′(t)dt, d2X = X′′(t)(dt)2+X′(t)d2t, etc. In both
cases the formula (9) gives a unified representation.

For SDE (8), the Di Paola-Falsone’s formulation is de-
fined as

dX(t) =
∞∑

j=1

gj (X(t−))

j !
(dL(t))j . (11)

The underlying idea is to apply (9) with φ(x) = x. Then,

�X(t0) = X(t0) − X(t0−) =
∞∑

j=1

djX

j !
, (12)

where djX = gj (X(t0−))Rj

0 and

g1(x) = g(x), gj (x) = ∂gj−1(x)

∂x
g1(x) (13)

by definitions (8) and (10). The final result reads

�X(t0) =
∞∑

j=1

gj (X(t0−))

j !
(dL(t0))j , (14)

which exactly is Eq. (11).
The validity of (14) also can be understood from the

smoothing argument. Consider a smoothed version of L(t) as
Lδ(t) (Fig. 1) and we let δ → 0. Define dXδ(t) = g(Xδ(t))dLδ(t).
We have

�X(t0) ≈ Xδ

(
t0 + δ

2

)
− Xδ

(
t0 − δ

2

)
=

∞∑
j=1

djXδ

j !

=
∞∑

j=1

gj (Xδ(t0 − δ/2))

j !
(dLδ(t0))j

→
∞∑

j=1

gj (X(t0−))

j !
(dL(t0))j

0
/2

R0
L(t)

δL   (t)

tt
0 0

+δ/2−δt

FIG. 1. The smoothed function Lδ(t) of the single-jump realization L(t).
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as δ goes to 0. Note that in this limit dt = δ → 0 and L′
δ(t)

→ ∞, but the product dLδ(t) = L′
δ(t)dt remains finite and

tends to the jump size R0.
We remark that the Di Paola-Falsone’s Taylor series for-

mulation is equivalent to the * integral formula recently pro-
posed in Ref. 2. For * integral, it is given that for any function
h(x), dY(t) = h(X(t)) � dL(t) and X(t) satisfies (8), then the
jump of Y(t)

�Y =
∞∑

j=1

(dL(t0))j

j !

((
g(x)

∂

∂x

)j−1

h(x)

) ∣∣∣∣∣
x=X(t0−)

. (15)

In case that h(x) = g(x), the rhs of Eq. (15) equals the
rhs of Eq. (14) and thus �Y = �X, if we notice that gj(x)
= (g(x)∂/∂x)j−1g(x) from the recursive relation (13). This ver-
ifies the equivalence of Di Paola-Falsone’s formulation and *
integral proposed in Ref. 2.

Interestingly, we can observe that the first order trunca-
tion of (14)

�X = g(X(t0−))dL(t0)

exactly corresponds to the Ito’s definition of stochastic inte-
gral, i.e., the choice of the left-most endpoint. While the in-
corporation of the second order term does not correspond to
any straightforward definition of stochastic integrals, neither
equally weighted average for the endpoint function values like
(g(X(t0−))+g(X(t0)))dL(t0)/2 nor other types of combination
like

(θg(X(t0−)) + (1 − θ )g(X(t0))) dL(t0),

where θ ∈ [0, 1].

B. Ordinary differential equation (ODE) formulation
through Marcus mapping

One amazing thing about the series formulation (14)
or (15) is that it admits an equivalent but more elegant
ODE formulation. Some pioneering work has been done by
Marcus22, 23 and the extension to general semi-martingales is
discussed in Ref. 21.

To see this we first apply the chain rule

dh(X(t)) = h′(X(t))g(X(t)) � dL(t).

The series (15) has the following formal representation at
jump time t0

�h =
∞∑

j=1

(dL(t0))j

j !

((
g(x)

∂

∂x

)j

h(x)

) ∣∣∣∣∣
x=X(t0−)

= (edL(t0)·g(x) ∂
∂x − 1)h(x)

∣∣∣∣∣
x=X(t0−)

.

Note that the exponential operator edL(t0)·g(x) ∂
∂x h(x) at x =

X(t0−) is exactly the solution mapping of the following ODEs

dx

ds
= g(x)dL(t0), s ∈ [0, 1], (16)

dy

ds
= g(x)h′(x)dL(t0), s ∈ [0, 1], (17)

x(0) = X(t0−),

y(0) = h(X(t0−)),

and X(t0) = x(1), h(X(t0)) = y(1). The equation for x(s) is
called Marcus mapping in the literature. Define the flow map
associated with x as


g( · ; dL(t0)) : x(0) 
→ x(1) ∈ R.

The Marcus integral for SDE (8) with the realization (2) is
defined as

X(t) = X(0) +
N(t)∑
k=1

[
g(X(τk−), Rk) − X(τk−)]. (18)

It has been shown in Ref. 21 that this definition can be
viewed as the Wong-Zakai type smoothing limit of the con-
sidered SDE. It also satisfies the Newton-Leibnitz chain rule,
which can be verified directly or obtained from the equiva-
lence to the Di Paola-Falsone formulation. We should remark
that though these two formulations are formally equivalent,
the ODE formulation requires less smoothness assumption on
g(x) and h(x). More importantly, they are totally different in
the numerical performance. Usually the truncation cause se-
vere error and the resulting scheme is not stable enough. On
the other hand, we will observe that the path x(s) generated
by Marcus mapping is also an indispensable component of
the solution though the trajectory X(t) itself does not see this
information! This point will be further clarified in Sec. IV.

C. Equivalence between the ∗ integral
and Marcus integral

In this subsection we give a direct derivation of the Mar-
cus mapping for the Marcus integral through smoothing ap-
proach. As we have stated in the Introduction, the limit-
ing solution obtained by smoothing approach is often more
physically relevant. The smoothing idea is indeed taken by
Marcus22 and other researchers,2, 21 and it is also implicitly
used in Ref. 28 as we show in Sec. II A. This direct derivation
also shows the equivalence between the ∗ integral proposed
in Ref. 2 and Marcus integral.

Now consider a special realization of the Poisson noise
with a single jump with height R0 at t = 0, i.e., L(t)
= R0H(t). The corresponding Poisson white noise ξ (t)
= dL(t)/dt = R0δ(t), where δ( · ) is the Dirac’s δ-function. We
take the same smoothing

ξε(t) = 1

ε

∫ t

t−ε

dL(s), Lε(t) =
∫ t

−∞
ξε(s)ds (19)
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as adopted in Refs. 2 and 21. The idea to define the solution
of Eq. (8) through smoothing is to consider

dXε(t) = g(Xε(t), t)dLε(t) (20)

and take the limit Xε(t) → X(t) as the smoothing parameter ε

→ 0. We equip Eq. (20) with an initial condition, say Xε(−1)
= x0.

For Eq. (20), it is straightforward to obtain the limit X(t)
= x0 for any t ≤ 0 since Lε(t) = 0 for any t ≤ 0. For any
t > 0, we have the limit X(t) = limε → 0Xε(t) = Xε(ε) when ε

is small enough, where

dXε(t)

dt
= R0

ε
g(Xε(t)), Xε(0) = x0, t ∈ [0, ε].

Define x(t) = Xε(εt), then X(t) = x(1) and x(t) satisfies

dx

dt
= g(x) · R0, x(0) = x0, t ∈ [0, 1]. (21)

This is exactly the Marcus mapping introduced in
Subsection II B and it is easy to observe that all of the
above derivations hold in the vectorial case.

Furthermore, let us consider Y(t) for equation

dY (t) = h(X(t))dL(t), Y (−1) = y0 (22)

defined through the following smoothing procedure

dYε(t) = h(Xε(t))dLε(t), Yε(−1) = y0,

where X(t) and Xε(t) are the limit solution and the smoothed
solution of (20), respectively. We will have Y(t) = y0 for any
t ≤ 0. For any t > 0, we have

Y (t) = lim
ε→0

Yε(t) = y0 + 1

ε

∫ ε

0
h(Xε(s))R0ds,

when ε is small enough. With the same definition for x(t) as
in (21), we have

Y (t) = y0 +
∫ 1

0
h(x(τ ))R0dτ.

This is equivalent to say Y(t) = y(1), where y(t) satisfies

dy

dt
= h(x)R0, y(0) = y0, t ∈ [0, 1]. (23)

In fact, this result has been contained in interpreting (20) by
using (21) since it also holds for multidimensional case. With
the definition

X(t) = (X(t), Y (t))T , g(X(t)) = (g(X(t)), h(X(t)))T ,

we have

dX(t) = g(X(t))dL(t) (24)

by combining the equations for X and Y together, where the
solution is interpreted as the smoothing limit. Thus the ap-

plication of the multidimensional version of (21) gives (23)
directly.

For Z(t) = h(X(t)), we will show it satisfies

dZ(t) = h′(X(t))dX(t) = h′(X(t))g(X(t))dL(t)

in the sense of smoothing limit. From the result for the SDE
(22), we have the smoothing limit Z(t) = z(1) where z(t)
satisfies

dz

dt
= h′(x)g(x)R0, z(0) = z0, t ∈ [0, 1], (25)

and z(0) = h(x0). It has the unique solution z(t) = h(x(t)). So
the smoothing limit Z(t) = h(x0) if t ≤ 0 and Z(t) = h(x(1)) if
t > 0. This coincides with the definition of Z(t) = h(X(t)). This
verifies the definition by smoothing limit satisfies the chain
rule.

We should remark that we have skipped the right conti-
nuity condition of the solution at the discontinuity point with
the above limiting process. Another important fact about the
above derivations is that the smoothing (20) and the limit of
(20) exactly embodies the idea of the construction of ∗ inte-
gral discussed in Ref. 2. For X(t) satisfying SDE (8), the ∗
integral is defined as∫ t

0
g(X(t)) ∗ ξ (t)dt := lim

ε→0
lim
δt→0

∑
i

δtξε(ti)g(X(ti)), (26)

in which {ti} is a subdivision of the time interval and δt is the
corresponding stepsize. The first limit as δt → 0 corresponds
to take the continuous integral and the second limit as ε → 0
corresponds to take the smoothing limit. These procedures are
implicitly taken in the above derivations. This again explains
the equivalence between the ∗ integral and Marcus integral.
We note that since Marcus integral and ∗ integral can be ob-
tained by the same smoothing approach, these two integrals
should be equivalent in the sense of “almost surely.” A slight
difference between these two may be that the Marcus integral
needs to introduce a new variable to form a simultaneous sys-
tem while the ∗ integral does not need such an operation each
time when one wants to evaluate a new stochastic integral.

D. General formulations

Consider the following multidimensional SDE

dX(t) = f (X(t), t)dt + g(X(t), t) � dL(t), (27)

where

L(t) =
N(t)∑
k=1

RkH (t − τk),

X ∈ Rd , f : Rd × R → Rd , g : Rd × R → Rd×u, and
R ∈ Ru. Then, the Marcus integral for this SDE through
Marcus mapping is

X(t) = X(0) +
∫ t

0
f (X(s), s)ds

+
N(t)∑
k=1

[
g(X(τk−), Rk) − X(τk−)]. (28)
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The flow map 
g at t = τ k is defined through the ODEs

dx
ds

= g(x, τk)Rk, s ∈ [0, 1],

(29)
x(0) = X(τk−),

and 
g(X(τk−), Rk) = x(1).
For the case that

L(t) =
N(t)∑
k=1

RkH (t − τk) + bW (t), (30)

where W (t) is a u-dimensional standard Brownian motion,
the Marcus integral for SDE (27) through Marcus mapping is
defined as

X(t) = X(0) +
∫ t

0
f (X(s), s)ds

+ b

∫ t

0
g(X(s), s) ◦ dW (s)

+
N(t)∑
k=1

[
g(X(τk−), Rk) − X(τk−)]. (31)

For the case that L is a more general Lévy process, we refer
the readers to Ref. 5.

Finally we should comment that the Marcus integral is
only defined for the integrands which are only arbitrary func-
tions of the solution of the SDEs (27). It can be easily ex-
tended to the integrand which has explicit dependence on t.5

But for an arbitrary function h(t) which is not known to de-
pend on X explicitly, there will be difficulty to define the Mar-
cus integral.

III. PATHWISE SIMULATION ALGORITHM

With the mathematical description of the Marcus integral
in Sec. II, it is ready to propose the pathwise simulation al-
gorithm based on the Marcus mapping. We note that it is also
proposed in Ref. 26.

A. Algorithm and its convergence analysis

For simplicity, we refer Exp(λ) to exponentially dis-
tributed random variable with mean 1/λ. We propose the path-
wise simulation algorithm for the following SDE:

dX(t) = f (X(t))dt + g(X(t)) � dL(t). (32)

When L(t) = ∑N(t)
k=1 RkH (t − τk), we can get the following

algorithm.

Algorithm 1 (Pathwise Simulation Algorithm)

1. Given t = 0, initial state X(0), and the end time T.
2. Generate a waiting time τ ∼ Exp(λ) and a jump size

R ∼ μ where μ is the distribution of random jumps.

3. Solve the following ODE with initial value X(t) until time
s = τ to get its solution X(u) (u ∈ [t, t+τ )).

dy

ds
= f (y), y(0) = X(t). (33)

4. Solve the following ODE with initial value X((t+τ )−)
until time s = 1 to get X(t+τ ).

dx

ds
= g(x) · R, x(0) = X((t + τ )−). (34)

5. Set t = t+τ , go to Step 2 unless t ≥ T.

We note that this algorithm can be easily generalized into the
vectorial case. We remark that this pathwise simulation algo-
rithm can be also easily extended into SDEs which are driven
by Gaussian and non-Gaussian noises simultaneously. For in-
stance, when

L(t) =
N(t)∑
k=1

RkH (t − τk) + bW (t), (35)

where Wt is a standard Brownian motion, with formulation
(31), we can get a pathwise simulation algorithm below.

Algorithm 1′ (Pathwise Simulation Algorithm)

1. Given t = 0, initial state X(0) and the end time T.
2. Generate a waiting time τ ∼ Exp(λ) and a jump size

R ∼ μ where μ is the distribution of random jumps.
3. Solve the following SDE with initial value X(t) until time

s = τ to get its solution X(u) (u ∈ [t, t+τ )).

dy = f (y)ds + g(y) ◦ dWs, y(0) = X(t). (36)

4. Solve the following ODE with initial value X((t+τ )−)
until time s = 1 to get X(t+τ ).

dx

ds
= g(x) · R, x(0) = X((t + τ )−). (37)

5. Set t = t+τ , go to Step 2 unless t ≥ T.

We define the ODEs (33) and (34) as drift and jump ODE,
respectively, in the later texts for simplicity. The numerical in-
tegration of them can be done with any existing ODE solver.
Since the successive approximation will induce the accumu-
lation of the errors, we should make an analysis to ensure the
convergence of the overall scheme. Below we state the strong
convergence result of this algorithm.

Theorem 1 (Convergence of pathwise simulations).
For the SDE (32), assume that f and g are Lipschitz func-
tions with Lipschitz constants Lf and Lg respectively. Denote
λ the jump intensity and R the random jumpsize. Assume the
exponential moment K = E exp(Lg|R|) exists. If we apply a
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pth order ODE solver to (33) with stepsize h1 and a qth order
ODE solver to (34) with stepsize h2, we will have

E|Xn(T ) − X(T )| ≤ C1E|Xn(0) − X(0)| + C2h
p

1 + C3h
q

2,

where Xn(t) is the numerical solution and X(t) is the exact
solution. Here

C1 = exp(Lf T + λT (K − 1)),

C2 = Ĉ2(exp(Lf T ) − 1)(exp(λT (K − 1)) + 1),

C3 = Ĉ3 exp(Lf T )(exp(λT (K − 1)) − 1),

where Ĉ2 and Ĉ3 are independent of h1, h2, T, λ, K, Lf, Lg, p,
and q.

The proof is shown in the Appendix.

It is interesting to observe that the strong convergence
result for Algorithm 1 is quite different from the case when
the SDE is driven by Gaussian white noise.30 Usually the
strong convergence order of the Euler-Maruyama scheme is
1/2. However, in the considered case, it is very easy to achieve
high order accuracy, which is due to the simplicity of the com-
pound Poisson process. We can observe from the theorem that
the initial error will be amplified depending on the driving
process and the final time T. High order numerical methods
for (33) and (34) is useful in general. In Algorithm 1′, how-
ever, the strong convergence order would be limited by step
3 where the SDE is driven by Gaussian white noise. We also
note that the strong convergence for Algorithm 1′ could be
easily obtained by mimicking the proof of Theorem 1.

B. Numerical results

Now we apply the pathwise simulation algorithm to the
so-called quasi-linear model

dX(t) = −X(t)dt + X(t) � dL(t), X(0) = 1. (38)

in Di Paola’s paper.31 It is a stochastic process driven by the
double well potential U(x) = x2/2 and the fluctuations depend-
ing linearly on the state and impulses. In our example, we
choose L(t) to be a compound Poisson process with jump size
N(0, σ 2) and intensity λ.

At first let us check the difference between the Ito integral
and Marcus integral. It is easy to find that X(t) = X(0)e−t+L(t).
The simulation for a specific realization of the solution com-
pared with the Ito integral is shown in Fig. 2. We can observe
that the pathwise simulation coincides with the exact solution
perfectly well and the clear difference between different defi-
nitions of stochastic integrals.

Next we check the convergence order of the scheme and
compare it with our theoretical estimate in Theorem 1. We
use pth and qth order Runge-Kutta methods for (33) and (34)
respectively and choose different stepsizes to extract conver-
gence order. The stepsize for (33) and (34) are chosen to be
the same. We find the numerical convergence order is quite
close to the theoretical value min {p, q}, which confirms our
estimate (shown in Table I). To further examine the depen-
dence on initial error, we artificially add a small perturbation
to the initial value. This is done by choosing Xn(0) = X(0)
+h, where h is the stepsize. Thus the convergence order
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FIG. 2. Shown in the figure is one specific realization of the solution. The
blue solid line is the theoretical solution. The star symbol shows the numer-
ical result by pathwise simulation algorithm and the red circle corresponds
to the Ito integral. The second order Runge-Kutta methods are used for both
drift and jump ODEs and the time stepsize δt = 0.01. Some other parameters
are λ = 20 and σ = 0.2.

should be 1 based on our theorem if p and q are both bigger
than 1. The convergence order is computed as shown in the
left panel of Fig. 3, which gives the numerical order 1.0157.
The right panel gives the numerical slope of error against
stepsize curve as 4.1905, while the theoretical estimate is C1

= 4.0716 by our theorem. All these results show that our theo-
rem gives a good estimate to the convergence order. However,
it is hard to provide error analysis for either the smoothing
method2 or the method based on the Taylor series (14). In this
sense, the pathwise simulation algorithm is more tractable.

IV. COMPUTATION OF THERMODYNAMIC
QUANTITIES

A. Computational strategy

Physical quantities like heat, potential, and energy are
important concepts in realistic problems. In classical mechan-
ics and thermodynamics, these quantities are deterministic
variables. In the context of stochastic energetics,8, 32, 33 these
quantities become stochastic, depending on the individual re-
alization of the stochastic system. In Ref. 2, the stochastic
energetics for non-Gaussian processes was established based

TABLE I. For ODEs (33) and (34), we use pth and qth order Runge-Kutta
methods, respectively. The time stepsize is chosen to be �t = 0.01, 0.008,
0.005, 0.004, 0.002, and 0.001. Some parameters are λ = 20, σ = 0.2, and
T = 1. Two thousand samples are simulated. The numbers shown in the
table are the slope by linear fitting compared with the theoretical value in
parenthesis.

q = 2 q = 3 q = 4

p = 2 1.9909 (2) 1.9851 (2) 1.9827 (2)
p = 3 1.9889 (2) 2.9915 (3) 2.9937 (3)
p = 4 1.9427 (2) 3.0012 (3) 3.9937 (4)
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FIG. 3. For ODEs (33) and (34), we use the Runge-Kutta methods with p = 3
and q = 3. The time stepsize is chosen to be �t = 0.006, 0.005, 0.004, 0.003,
and 0.002. Some parameters are λ = 20, σ = 0.2, T = 1. Three thousand
samples are simulated. Shown in the left panel is the log-log plot of the error
of mean versus time stepsizes, which gives numerical order 1.0157. The right
panel shows the linear fitting of error against stepsize curve, which gives
slope 4.1905.

on ∗ integral, and a computational strategy was proposed to
compute thermodynamic quantities based on the smoothing
techniques. Realizing the equivalence between ∗ integral and
Marcus integral, here we aim to provide another strategy to
pathwisely compute these thermodynamic quantities based on
Marcus integral.

Consider the d-dimensional SDEs (27) and assume the
thermodynamic quantity Y satisfies

dY (t) = h(X(t), t)dt + q(X(t), t) � dL(t), (39)

where q(t), L(t) ∈ Ru. Treating (XT (t), Y (t))T as a (d+1)-
dimensional variable, we can obtain

d

(
X(t)

Y (t)

)
=

(
f (X(t), t)

h(X(t), t)

)
dt +

(
g(X(t), t)

q(X(t), t)

)
� dL(t).

(40)
According to the multidimensional version of the Marcus
mapping (29), the induced state change of (XT (t), Y (t))T at
jump time t of L(t) with jump size �L(t) can be computed
by solving the ODEs

dx
ds

= g(x, t−) · �L(t), x(0) = X(t−),

(41)
dy

ds
= q(x, t−) · �L(t), y(0) = Y (t−),

and X(t) = x(1), Y (t) = y(1). We note that the same idea
has also been used in (16) and (17).

The above formulation directly leads to a computational
method for any thermodynamic quantity Y(t) satisfying (39)
by numerically integrating the ODE system (41). But this can
be done more efficiently when a realization of X(t) is given,
which is the usual case in practice. Now suppose we have
already got one trajectory of X(t), and the jump of L(t) is
characterized by (τi, Ri) indexed from i = 1, where τ i and

Ri are the jump time and the jump amplitude, respectively. In
particular, we denote the Marcus mapping at time τ i as xi(s)
for s ∈ [0, 1]. Then, we can obtain the following algorithm to
compute thermodynamic quantities.

Algorithm 2 (Computing thermodynamic quantities)

1. Given t = 0 (denoted as τ 0), initial state Y(0) and the
end time T. Let i = 0.

2. Integrate the drift part, i.e., compute the following in-
tegral �Yout

i+1 by using a numerical quadrature scheme
(for example, the midpoint scheme), and let Y (τi+1−)
= Y (τi) + �Yout

i+1. Here

�Yout
i+1 =

∫ τi+1

τi

h(X(t), t)dt

≈ 1

2

n−1∑
j=0

(h(X(tj ), tj ) + h(X(tj+1), tj+1))δtj ,

(42)

where τ i = t0 < t1 < . . . < tn = τ i+1 and δtj = tj+1−tj.
3. Integrate the jump part, i.e., compute the following in-

tegral �Y in
i+1 by using a numerical quadrature scheme

(for example, the midpoint scheme), and let Y (τi+1)
= Y (τi+1−) + �Y in

i+1. Here

�Y in
i+1 =

∫ 1

0
q(xi+1(s), τi+1−) · Ri+1ds

≈ 1

2

n−1∑
j=0

(p(sj ) + p(sj+1))δsj , (43)

where p(s) := q(xi+1(s), τi+1−) · Ri+1, 0 = s0 < s1

< . . . < sn = 1 and δsj = sj+1−sj.
4. Set i = i+1, go to Step 2 unless τ i ≥ T.

We note that the midpoint quadrature can be replaced
by any other higher order methods as well. We highlight
that not only the history of X(t) is necessary for computing
Y(t) but also the hidden path xi(s)—path generated by Mar-
cus mapping—is an indispensable component of the solution.
This observation also provides insights about how the non-
Gaussianity of noises affect the statistic properties of stochas-
tic systems. Moreover, this algorithm only involves the nu-
merical integration without any smoothing step or solving
ODEs. In Subsections IV B and IV C, we will use this compu-
tational strategy to compute different thermodynamic quanti-
ties and demonstrate its efficiency.

B. The first law of thermodynamics in an overdamped
Langevin equation

Consider the following one-dimensional overdamped
Langevin equation

dX(t) = −∇U (X(t))dt + g(X(t)) � dL(t). (44)

where X(t), t, and U(X(t)) are dimensionless position, time,
and potential energy. L is a compound Poisson process with
intensity λ/2 corresponding to the jumpsize ±I, respectively.
Here we choose U(x) = x2/2+εx4/4+sin x and g(x) = x. In
the terminology of stochastic energetics,2 U is the total energy
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FIG. 4. The red circle corresponds to the heat Û based on Marcus integral
and the blue solid line corresponds to the total energy U. Some parameters
are set as λ = 5, λI2 = 1, ε = 0.1 and the time stepsize δs = 0.01 for solving
both drift and jump ODEs.

and Û defined as
∫ t

0 ∇U (X(s)) � dX(s) is the heat. The first
law of thermodynamics tells us that Û (X(t)) should be identi-
cal to U(X(t))−U(X(0)) in the pathwise sense. Now we come
to verify this relation numerically. According to the chain rule
of Marcus integral, Û (X(t)) satisfies

dÛ (X(t)) = ∇U (X(t)) � dX(t)

= −|∇U (X(t))|2dt + ∇U (X(t))g(X(t)) � dL(t).

We use Algorithm 1 to solve the SDE (44). Then, with the
information of SDE (44), Û can be computed by Algorithm
2. Numerically, We choose ε = 0.1, λ = 5, λI2 = 1, �t
= 0.01 for both (33) and (34), X(0) = 1 and T = 1. Fig. 4
shows one sample of the result. The heat Û (shown with ∗) is
almost the same as the total energy U (shown with solid line),
demonstrating the first law of thermodynamics.

C. Heat measurement formula

Consider the following underdamped Langevin equation

dx = p

m
dt, (45)

dp = −γpdt − ∇U (x, α)dt + g(x, p) � dL. (46)

In the context of stochastic energetics,2, 8 the total energy dif-
ference is divided into two parts

dE = dQ + dW, (47)

where E = p2/2m+U(x, α) and

dW = ∂U

∂α
dα,

(48)

dQ = −γp2

m2
dt + g(x, p)p

m
� dL.

Here, W and Q are respectively termed as applied work and
heat respectively.

In Ref. 2, a formula for heat measurement is developed
for additive non-Gaussian noises. However, this formula
may become very complicate when noise is multiplicative,
as stated in Ref. 2. With the strategy developed in Sec.
IV A, we can obtain a compact formula for heat mea-
surement. Now let us denote (x, p)T and Q as X and Y
respectively, and let L = L. Then, the functions in Eq. (40)
have the form f (X) = (p/m,−γp − ∇U (x, α))T , g(X)
= (0, g(x, p))T , h(X) = −γp2/m2, and q(X)
= g(x, p)p/m. Now, using the formula (41), we can
obtain the following heat measurement formula

Qt = Q0 −
∫ t

0

γp2

m2
ds

+
N(t)∑
k=1

{
g((x, p,Q)|t=τk−,�L(τk)) − Q(τk−)}, (49)

where 
g((x, p,Q)|t=τk−,�L(τk)) denotes the solution of z
of the following ODEs:

dx

ds
= 0, x|s=0 = x(τk−),

dp

ds
= g(x, p), p|s=0 = p(τk−),

dz

ds
= g(x, p)p

m
, z|s=0 = Q(τk−),

at time s = 1.
For the numerical aspect of heat Q, we consider the non-

dimensional form. Choose U(x, α) = x2/2 and g(x, p) = x. In
this situation, the first law of thermodynamics becomes that
dE = dQ. We compute the heat Q by using Algorithm 2 and
compare it with the total energy E. The results are shown in
Fig. 5. The perfect matching between Q and E verifies the
first law of thermodynamics in the case of multiplicative non-
Gaussian noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time

Q

Numerical simulation
Theoretical solution

FIG. 5. The red circle corresponds to the numerical heat Q and the blue
solid line corresponds to the theoretical energy E which equals to Q. L(t) is a
compound Poisson process with rate λ = 10 and P(x → x ± I) = λ/2, where
I satisfies λI2 = 1. The stepsizes δs = 0.01 for both drift and jump ODEs.
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V. TAU-LEAPING ALGORITHM

In some cases, we care more about the statistical average
of physical quantities such as the mean, variance, or the dis-
tribution than the exact path. In these cases, it is not necessary
to simulate the paths exactly and we are aiming at a speed-
up of the computation. This speed-up can be realized through
a fixed time stepping but with a cost of losing the exactness.
This is similar to the problem in chemical reaction kinetics.24

Gillespie proposed an algorithm called tau-leaping24 instead
of accurately simulating the trajectories in pathwise sense.34

In this section we borrow the idea of tau-leaping to design a
fixed time stepping scheme for stochastic differential equa-
tions driven by non-Gaussian noise.

A. Algorithm construction

Motivated by the tau-leaping algorithm in chemical re-
action kinetics, we propose the following deterministic time
stepping algorithm for Eq. (32) instead of simulating trajec-
tories along each jump time. We restrict L(t) to the class of
compound Poisson process with finite kinds of jumps, such
as the ATP reception model.2 In mathematical setup, we sup-
pose the jump intensity λ = ∑k

j=1 λj , where λj is the inten-
sity corresponding to each kind of jump with jumpsize �Lj,
respectively.

Algorithm 3 (Tau-leaping Algorithm)

1. Given t = 0, X(0), time stepsize �tf, �tg and the end time
T. Here �tf and �tg are the time stepsizes for solving
ODEs (33) and (34), respectively.

2. Tau-leaping step.
a. Generate k Poisson random variables Nj with param-

eter λj�tf for j = 1: k.
b. Solve ODE (33) with any ODE solver, say forward

Euler scheme, xf = X(t)+f(X(t))�tf.
c. Solve ODE (34) with initial date X(t) to time s = 1

with jump size �Lj to get solution x
g

j for j = 1: k.
3. Update state

X(t + �tf ) = xf +
k∑

j=1

(
x

g

j − X(t)
)
Nj .

Set t = t+�tf. Go to Step 2 unless t ≥ T.

A natural way to understand the above tau-leaping
scheme can be explained as follows. Note that we can rep-
resent the solution of SDE (32) as

X(t + �t) = X(t) +
∫ t+�t

t

f (X(s))ds

+
k∑

j=1

Nj (�t)∑
i=1

{

g

(
X

(
τ

j

i − )
,�Li

) − X
(
τ

j

i − )}
.

(50)

where Nj(�t) is number of jumps occurring in [t, t+�t] in
the jth class which are Poisson random variables with param-
eter λj�t, and τ

j

i is the ith jump time in the jth class. To con-
struct the tau-leaping algorithm, we introduce the forward Eu-
ler type approximation. That is, we freeze X(s) and X(τ j

i −) on

the rhs as X(t), which is the idea of forward Euler discretiza-
tion in ODEs and chemical reaction kinetics. We obtain the
numerical scheme

X̂(t + �t) = X̂(t) + f (X̂(t))�t

+
k∑

j=1

Nj (�t)∑
i=1

{
g(X̂(t),�Lj ) − X̂(t)}, (51)

where X̂(t) is the numerical solution. The implementation is
exactly the tau-leaping algorithm presented above.

To further improve the efficiency of the above algorithm,
we can reduce the number of ODEs to be solved in case of
the jump size can be linearly sorted. We notice that when �L

∈ R+ the ODE

dy

ds
= g(y)�L, y(0) = x, s ∈ [0, 1] (52)

can also be rewritten as

dy

ds
= g(y), y(0) = x, s ∈ [0,�L]. (53)

This motivates us to sort the jumps in a linear order 0 < �L1

< �L2 < ··· < �Lk. We only need to solve one ODEs from
s = 0 to �Lk and the solution at intermediate time can be
extracted automatically. When the jump �Lj < 0, we may
consider

dy

ds
= −g(y), y(0) = x, s ∈ [0,−�Lj ]. (54)

This trick is very useful when there are many types of jumps
which will be shown in Sec. VI.

Usually it costs much more time to generate a Poisson
random variable than an exponentially distributed random
variable. We can further increase the computational efficiency
if we generate less Poisson random variables. Recall the prop-
erty that the sum of two independent Poisson random vari-
ables with intensity λ1 and λ2 is a Poisson random variable
with intensity λ1+λ2. So we propose the following efficient
modified tau-leaping algorithm. We assume that �Lj has been
sorted in increasing order.

Algorithm 4 (Modified Tau-leaping Algorithm)

1. Given t = 0, X(0), time step size �tf, �tg and the end
time T. Here �tf and �tg are the time stepsize for solving
ODEs (33) and (34), respectively.

2. Tau-leaping step.
a. Generate a Poisson random variable N with parame-

ter λ�tf, and generate N uniform distributed random
variables ui, i = 1: N.

b. Set the number of jumps Nj = 0 (j = 1: k).
For i = 1: N, search for j such that

∑j−1
l=1 λl ≤ ui

<
∑j

l=1 λl , set Nj = Nj+1.
c. Solve ODE (33) with any ODE solver, say forward

Euler scheme, xf = X(t)+f(X(t))�tf.
d. If �Lk > 0, solve ODE (53) with initial date X(t) to

time �Lk and keep track of xg(�Lj).
e. If �L1 < 0, solve ODE (54) with initial date X(t) to

time −�L1 and keep track of xg(−�Lj).
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3. Update state

X(t + �tf ) = xf +
k∑

j=1

(xg(�Lj ) − X(t))Nj .

Set t = t+�tf. Go to Step 2 unless t ≥ T.

Though we will only focus on the Poisson noise in this
paper, we simply remark that by mimicking the idea in con-
structing Algorithm 1′, we can extend the tau-leaping al-
gorithm to SDEs driven by the Gaussian and non-Gaussian
noises simultaneously. For instance, if the driving process is
like (35), we only need to replace Step 2(c) in Algorithm 4
with the Step 3 in Algorithm 1′.

B. Tau-leaping condition

The main purpose to choose tau-leaping instead of path-
wise algorithm is to speed up the simulation. It is expected to
have as larger time stepsize as possible. However, it is widely
known that large time step size may cause numerical insta-
bility and large numerical error. Thus we need to add some
constrains on �t to gain speedup but not lose accuracy at the
same time. It is natural to require that X(t) does not suffer a
relatively big change, i.e.,

|X(t + �t) − X(t)| ≤ ε|X(t)|, (55)

where ε is a prescribed small number, say 0.1. Back to the tau-
leaping scheme, the condition (55) is equivalent to demand

|
f (X,�t) − X| ≤ εX,

(56)
λ�t |
g(X,�L) − X| ≤ εX

in the average sense.
To make it more concise and explicit, we shall give an

estimation to the solution of (34). Without loss of generality,
we focus on one dimensional case at first. Due to the fact that
we restrict the relative change to be small, we can expand the
rhs in Taylor series and keep the terms up to order 1

dx

ds
≈ g(x0)R + g′(x0)(x − x0)R, s ∈ [0, 1].

Solving this equation to s = 1, we have an approximation to
the exact solution

x(1) = x0 + g(x0)

g′(x0)
(eg′(x0)R − 1).

Putting this solution into (56), we get the more explicit tau-
leaping condition

�t ≤ min

{
εx0g

′(x0)

λg(x0)(eg′(x0)R − 1)
,

εx0f
′(x0)

f (x0)(ef ′(x0) − 1)

}
(57)

with another part from the ODE (33).

If g′(x0)R and f ′(x0) is small, we can take eg′(x0)R ≈ 1
+ g′(x0)R and ef ′(x0) ≈ 1 + f ′(x0). This leads to the follow-
ing more concise form of tau-leaping condition:

�t ≤ min

{
εx0

λg(x0)R
,

εx0

f (x0)

}
. (58)

The above analysis motivates us the idea of switching be-
tween two algorithms when necessary. That is to say, when
the timestep given by tau-leaping condition is very small, it
is a better choice to do pathwise simulations. We can give a
threshold �t0 so that when �t > �t0 we use tau-leaping simu-
lation and switch to pathwise simulation otherwise. However,
this depends heavily on our knowledge about the SDEs we
simulate. In Sec. V C, we will give a more reasonable switch-
ing strategy.

All the procedures above can be extended to high di-
mensional case by replacing x0, R, g with x0 ∈ Rd, R ∈ Ru,

g ∈ Rd×u. Following the previous analysis, we can give the
more general form of tau-leaping condition as below

�t ≤ min
i

{
εxi

0

λyi
,

εxi
0

f i(x0)

}
, (59)

where x0 = (x1
0 , x2

0 , . . . , xd
0 )T , y = (y1, y2, . . . , yd )T

= g(x0)R, and f (x0) = (f 1(x0), f 2(x0), . . . , f d (x0)).

C. Efficiency analysis

When is the tau-leaping method more efficient than the
pathwise simulation? If there are very few jumps, it is obvi-
ous that the performance of tau-leaping method may be not
superior than the pathwise simulations. Thus we require the
condition

λ�t � 1 (60)

to be satisfied, which means the jump must occur frequently.
Otherwise, there is no need to apply tau-leaping algorithm.
Below we analyze the efficiency of modified tau-leaping
method when tau-leaping condition and (60) are satisfied.

The computational costs are comprised of three parts: (i)
solving ODEs (33), (ii) solving ODEs (53) and (54), (iii) gen-
erating random numbers. The cost saving for Part (i) is obvi-
ous since we only need to solve one ODE in tau-leaping but
the pathwise simulation needs to solve N (�t) ODEs in each
time step, where N (�t) is the Poisson random number with
parameter λ�t � 1. For the Part (ii), the pathwise simulation
algorithm needs to solve λT ODEs in the whole time interval
[0, T] in average, but the tau-leaping algorithm only needs to
solve 2T/�t ODEs. Notice that the end time of the ODEs in
pathwise simulation and tau-leaping are different, we take the
notation t τg for the average time of solving the ODEs (53) and
(54) once in tau-leaping simulation and t

p
g for solving ODEs

(34) in pathwise simulation. If we denote T τ
g and T

p
g the total

computational cost in solving jump ODEs for tau-leaping and
pathwise simulation respectively, we can define the accelera-
tion ratio (or boosting factor)

r = T
p
g

T τ
g

≈ λ�tt
p
g

2t τg
(61)
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to characterize the speedup on solving ODEs in Part (ii). For
a given SDE, the boosting factor r depends only on �t. This
leads to the following switching strategy naturally. We gen-
erate a stepsize �t by the tau-leaping condition (58) at first.
Then put it into (61) to get the boosting factor r. We may
choose tau-leaping algorithm if r > r0 and switch to pathwise
simulation otherwise, where r0 is a threshold set up by users.
This choice means we can achieve at least r0 times speedup
if the whole simulation is done with tau-leaping under this
thresholding strategy. The threshold r0 also gives a definition
of (60). At the same time, we should note that the real compu-
tational cost is not an increasing function of r0 since bigger r0

will make the condition of using tau-leaping more stringent
and thus switching to pathwise simulation occurs more fre-
quently. This may increase the computational effort of course,
but result in better accuracy. For concrete systems, there will
be a trade-off between the efficiency and accuracy by choos-
ing a suitable r0. This point is shown in the numerical example
C in Sec. VI.

Now let us discuss the efficiency associated with Part
(iii). T τ

r , T τ ′
r , and T

p
r denote the computational cost for gen-

erating random variables in modified tau-leaping (Algorithm
3), primitive tau-leaping (Algorithm 4), and pathwise simu-
lation, respectively. τ p, τ u, and τ e denote the cost for gener-
ating single Poisson random variable, uniformly distributed
random variable, and exponentially distributed random vari-
able, respectively. We have

T τ
r ≈ T

�t
τp + λT τu + tsearch, (62)

T τ ′
r ≈ kT

�t
τp, (63)

T p
r ≈ λT τe. (64)

Usually τ p � τ u, while τ u ∼ τ e. Thus if the jump type k
is large, we expect our modified tau-leaping scheme spends
less time on generating random variables than primitive tau-
leaping from Eqs. (62) and (63). Comparing (62) and (64), we
can see that tau-leaping scheme spends more time on generat-
ing Poisson random variables and doing search. Since the time
for searching is usually small due to well-developed quick
search algorithm and the problem we want to solve is usually
of high dimensions, Tg will dominate the computation thus
Tr for the extra cost for generating random variables can be
neglected. In this case, we achieve the goal of speedup.

VI. NUMERICAL RESULTS BY TAU-LEAPING METHOD

A. Random motion near two parallel walls

The classical Brownian dynamics describing the move-
ment of a particle perturbed by the noise has the form

dX(t) = −∇U (X(t))dt + g(X(t)) � dL(t). (65)

Usually the diffusion function D(x) = g2(x) is a constant
and L(t) is chosen to be Brownian motion. But recently re-
searchers are also interested in stochastic models in which the
diffusion function depends on the position when the particle is
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FIG. 6. The distribution of X at time T = 10. The symbol ∗ shows the dis-
tribution obtained by tau-leaping algorithm and ◦ shows the distribution ob-
tained by pathwise simulations. Some parameters are λ = 400, A = 500, and
X(0) = B/2 = 500. The time step is δt = 0.01 for pathwise simulations and
�t = 0.06 for tau-leaping method. Five thousand samples are simulated.

bounded by two walls.35, 36 Under this circumstance, the dif-
fusion function is given by D(x) = 1−(x/B)2, where B is the
half of the distance between two walls. Here we replace L(t)
with a compound Poisson process with equal jump intensity
λj = λ/6 = 400/6 corresponding to jumpsizes I = ±0.1, ±0.2,
and ±0.3, respectively. With this choice we keep the strength
of the noise λI2 ∼ O(1). The driving potential is chosen as
U(x) = (x−A)2/2. We want to compare the numerical solution
X(t) by pathwise and tau-leaping simulations. The other pa-
rameters are chosen as A = 500, B = 1000, and X(0) = 500
in this example.

For pathwise simulations, we choose the second order
Runge-Kutta method with uniform stepsize δt = 0.01 for both
drift and jump ODEs, which guarantees the stability and accu-
racy. The jump intensity λ = 400 will force the time between
two jumps usually smaller than δt. We will march with this
smaller jump time to solve the drift ODEs instead of 0.01 in
this case. We remark that the time stepsize δt is kept fixed
just for confirming our previous efficiency analysis. To set the
stepsize for tau-leaping algorithm, we need some knowledge
about the SDE trajectories. Running pathwise simulations for
5000 times with stepsize δt = 0.01 until the end time T = 10,
we find that the solution varies from 300 to 700. If we allow a
relative change no more than 5%, an easy calculation with the
tau-leaping condition (58) with X = 300 and ε = 0.05 gives
the largest allowed stepsize 0.065. Thus we choose �t = 0.06
in the tau-leaping algorithm.

The accuracy of the tau-leaping algorithm is remarkable.
We compare the histogram of X at T = 10 for both methods in
Fig. 6, which shows that the tau-leaping algorithm catches the
distribution very well. The mean value and standard deviation
are listed in Table II. The relative error of these two quantities
are 0.02% and 3.5%, respectively, which is accurate enough.

Now let us compare the efficiency of these two algo-
rithms. The time cost for each part of simulations are listed in
Table II. We can observe that the acceleration ratio for solving
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TABLE II. tr, tf, tg, and ttotal are the time for generating random variables,
solving the drift ODE (33), solving the jump ODEs (53) and (54), and the
total computation time, respectively. Mean and Std are the mean value and
standard deviation of X(T = 10). Five thousand simulations are performed.
The parameters are the same as those in Fig. 6.

tr tf tg ttotal Mean Std

Tau-leaping 0.062 0.031 3.45 3.55 500.038 29.754
Pathwise 0.051 0.61 27.62 28.28 499.985 30.882

the jump ODE (34) is 27.62/3.45 ≈ 8.0058. Now let us check
our efficiency analysis for this. In tau-leaping method we need
to solve the ODE to the end time s = 0.3 corresponding to the
largest jumpsize and in pathwise simulations we need to solve
the ODE to the end time s = 0.2 corresponding to the mean
jumpsize. Thus the cost ratio for solving the jump ODE once
is t

p
g /tτg ≈ 2/3. With this, we get the expected acceleration

ratio for solving the jump ODEs as

r ≈ λ�t

2
· t

p
g

tτg
= 8

from (61), which is quite close to the previous numeri-
cal acceleration ratio. The whole acceleration ratio rtotal

= t
p

total/tτtotal = 28.28/3.55 ≈ 7.966 which is also close to 8.
This is because solving ODE (34) dominates the whole com-
putations in this example.

From Table II we can also observe that the time for gen-
erating random variables is increased from 0.051 s to 0.062
s when using tau-leaping methods. This indicates that if the
time for generating random variables cannot be neglected, we
need a careful consideration on evaluating the efficiency of
tau-leaping method. But in the current example, the time for
generating random variables is very small compared to the
whole time cost. It will be similar in the examples considered
in Subsections VI B–VI D. Thus we will only compare the
whole time cost instead of treating them separately. It can be
easily seen that if the jump intensity increases, the number
of ODEs needed to be solved increases too. Our example is
a simple scalar model, and it is expected more time will be
consumed for solving the high dimensional ODEs or more
complicated ODE forms. Thus tau-leaping should be more
preferred in those cases.

B. Langevin equation with double well potential

Now let us consider the stochastic differential equations

dX(t) = −∇U (X(t))dt + g(X(t)) � dL(t), (66)

with a double well potential U(x) = A[(x−a)2/b2−1]2 whose
plot is shown in Fig. 7(a). Here A describes the depth of the
well, a is the local maximum point, and b is somehow the
width of the well. The particle will fall into one of the two
deep wells while the noise may drive the particle moving from
one well to another. We expect a bistability of the distribu-
tion of X. The coefficient g(x) of the noise is chosen the same
as the previous example, that is g(x) =

√
1 − (x/B)2. L(t)

b
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FIG. 7. Comparison between the pathwise and tau-leaping simulations with
adaptive stepsize for double well potential. (a) Plot of the double well po-
tential and (b) the distribution of X at time T = 10. Shown with blue stars
is the distribution obtained by tau-leaping algorithm and red circles is the
distribution obtained by pathwise algorithm. Five thousand realizations are
simulated.

is a symmetric compound Poisson process with intensity λ

equally divided by two jumps with sizes ±I, respectively. We
note that this equation can potentially model the adenosine
triphosphate reception by red blood cell membranes.2, 18, 19

In the following numerical test, we choose the parame-
ters as A = 20, a = 400, b = 20, λ = 200, I = 0.6, B = 500,
X0 = 400, and the parameter ε = 0.05 in the tau-leaping
condition. We want to find the distribution of X at time T
= 10. In previous example, we fixed the time stepsize in tau-
leaping algorithm. However, we will use tau-leaping condi-
tion to achieve adaptive time stepping here. The strategy is
that at each time t, we utilize the tau-leaping condition to get
a largest allowed stepsize and perform tau-leaping with it. In
the considered example, the stepsize suggested by tau-leaping
condition is always accepted and we do not need to switch
to pathwise simulations as done in Subsection VI C. For
the pathwise algorithm in comparison, we choose stepsize δt
= 0.01 which is sufficient since the jump intensity λ = 200.
We do 5000 realizations for each algorithm and compare their
statistical behavior.
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TABLE III. Comparison between the pathwise and tau-leaping simulations
with adaptive stepsize for double well potential. The computation time is for
5000 simulations. Mean and Std are the mean value and standard deviation
of X(10).

Time Mean Std

Tau-leaping 9.61s 400.12 17.73
Pathwise 97.7s 399.17 17.27

The distribution of X is shown in Fig. 7(b). We can ob-
serve that the distribution of X is bimodal as we expected.
The distribution shown with blue ∗ symbol obtained by
tau-leaping algorithm matches the result with red ◦ symbol
obtained by pathwise algorithm well. The mean value and
standard variation of X(10) are also shown in Table III. The
relative error for both mean and standard deviation are 0.24%
and 2.67%, which is acceptable. This shows our tau-leaping
condition works well and the tau-leaping algorithm keeps the
accuracy in a tolerable range. At the same time tau-leaping
algorithm only cost 9.61 s while the pathwise algorithm cost
97.7 s for the whole simulation. We achieve more than ten
times acceleration.

From this example, we can see our algorithm works well
for double well potential case. The distribution and some sta-
tistical quantities are caught with good accuracy. It is clear
that how well the tau-leaping algorithm performs depends on
the choice of time stepsize. Larger stepsize will surely accel-
erate the simulation more but it may cause the loss of accu-
racy. Our tau-leaping condition is shown to be effective on
the trade-off between these two. Further improvement of the
condition will be discussed in the continued works.

C. Langevin equation with periodic forcing

We consider the stochastic differential equations with pe-
riodic forcing

dX(t) = (−∇U (X(t)) + f (t))dt + g(X(t)) � dL(t) (67)

in this subsection. Here f(t) is an externally applied periodic
forcing to the system. Without f(t), the particle will move un-
der the potential in the same way as the previous examples.
The periodic driving force will push the particle periodically
away from the equilibrium. We use such an example to ex-
amine our switching strategy between tau-leaping algorithm
and pathwise algorithm. We call it adaptive tau-leaping al-
gorithm. We choose the potential U(x) = (x−A)2/2 and f(t)
= asin t where a is the strength of the periodic force. g(x) and
L(t) have the same form as previous examples.

In the numerical test, we choose the parameters as A = 0,
a = 400, λ = 400, I = 0.4, B = 500, X(0) = 300, ε = 0.05
in the tau-leaping condition and the threshold of the boosting
factor r0 = 1 for switching. We want to find the distribution of
X at time T = 10. Our switching strategy is as follows. In each
time step we get a largest allowed stepsize �t and compute the
boosting factor r by (61). If r > r0, we do one step tau-leaping
with stepsize �t, otherwise we switch to pathwise simulation
until the next jump of L(t). We choose stepsize in the pathwise
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FIG. 8. Comparison between the pathwise and tau-leaping simulations with
adaptive switching for periodic forcing. (a) The distribution of X at time
T = 10. Shown with blue stars is the distribution obtained by tau-leaping
algorithm and red circles is the distribution obtained by pathwise algorithm.
Five thousand realizations are simulated. (b) Time history of utilized step-
sizes by adaptive tau-leaping algorithm. The red horizontal line corresponds
to the threshold �t0. The blue curve corresponds to the stepsizes used in
tau-leaping steps while the green dots corresponds to the stepsizes used in
pathwise simulation steps.

algorithm as the previous example. Five thousand realizations
are performed for extracting the statistical quantities.

The comparison of the distribution of X between adaptive
tau-leaping and pathwise simulations is shown in Fig. 8(a).
We can observe that the tau-leaping algorithm catches the dis-
tribution very well. The mean value and standard variation
of X are also shown in Table IV. The relative error for both
mean and standard deviations are 0.46% and 0.79% which
is quite accurate. If we check one typical sample of the uti-
lized time stepsizes in the adaptive tau-leaping algorithm, we
have Fig. 8(b). Based on the boosting factor threshold r0,
we have the stepsize threshold �t0 = 2r0/λ = 0.005 in tau-
leaping algorithm, which is shown as the red horizontal line in
Fig. 8(b). When the stepsize �t given by tau-leaping condi-
tion is above the threshold �t0, we choose tau-leaping which
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TABLE IV. Comparison between the pathwise and adaptive tau-leaping
simulations with different thresholds r0 for periodic forcing. The computation
time is for 5000 simulations. Mean and Std are the mean value and standard
deviation of X(10).

Time (s) Mean Std

Pathwise 162.61 59.062 5.314
Tau-leaping r0 = 1 29.28 58.798 5.356
Tau-leaping r0 = 2 30.93 58.853 5.420
Tau-leaping r0 = 3 35.15 58.444 5.361
Tau-leaping r0 = 4 39.95 58.785 5.302
Tau-leaping r0 = 5 45.06 58.818 5.360

corresponds to the blue curve in Fig. 8(b). Otherwise we
switch to pathwise simulation until next jump occurs, which
gives the stepsizes shown with green dots in Fig. 8(b). This
plot of the history of utilized stepsizes shows the effective-
ness of our adaptive strategy. The computational cost for both
methods is shown in Table IV. We observe that the adaptive
tau-leaping achieves about five to six times boosting than the
pathwise simulations but with reasonable accuracy.

The threshold r0 plays an important role here. Bigger
r0 means accelerating the simulation more when doing tau-
leaping steps but also putting more time on pathwise sim-
ulations which will cost more time. The time cost of adap-
tive tau-leaping simulation with different r0 is also shown in
Table IV. It is clear that time cost increases as r0 increases. On
the other hand, It is natural to think that if we do more path-
wise simulations, the accuracy should be better. However, for
this example, the accuracy is not improved monotonically. We
attribute this to the statistical fluctuations since the result has
been accurate enough.

We emphasize that it is necessary to switch to pathwise
simulations when the permitted time stepsize for tau-leaping
is too small. Furthermore, tau-leaping may introduce some
non-physical solutions such as the negative populations as in
chemical reaction kinetics.24 The switching to pathwise sim-
ulations can somehow alleviate this possibility in many situa-
tions. In any case, the adaptivity is necessary and effective.

D. High dimensional case with multiplicative noise

We consider the application of the tau-leaping algorithm
for high dimensional case in this subsection. The equation
reads

dX(t) = −∇U (X(t))dt + g(X(t)) � dL(t), (68)

where the potential is chosen to be U (x) = ∑4
i=1(xi −

Ai)2/20, the jumping term is gi(x) =
√

1 − (xi/Bi)2 and L
is a compound Poisson process with equal intensity λ/2 cor-
responding to jumpsizes ±I. We want to check our high di-
mensional tau-leaping condition (59) with this example.

In our numerical test, we choose the parameters as
λ = 200, I = 1, A1 = A3 = 400, A2 = A4 = 420, B1 = B2

= 1000, B3 = B4 = 900, X(0) = (370, 400, 380, 410)T . We
want to find the distribution of X at T = 10. The stepsize in
pathwise simulation is choosen to be 0.01 and the stepsize
in tau-leaping simulation is chosen by tau-leaping condition
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FIG. 9. The distribution of X3 at time T = 10. The symbol ∗ shows the dis-
tribution obtained by tau-leaping algorithm and ◦ shows the distribution ob-
tained by pathwise simulations.

(59). In this example, the stepsize suggested by tau-leaping
condition is always accepted thus we do not need to switch to
the pathwise simulations. Both algorithms are simulated 5000
times.

The comparison of the distribution of X3 with adaptive
tau-leaping and pathwise simulation is shown in Fig. 9. We
can observe that the tau-leaping algorithm catches the distri-
bution well. The mean value and standard variation of X are
shown in Table V. The relative error of mean and standard
variation for all variables are smaller than 3.15%, which is
highly accurate. This shows our tau-leaping condition for high
dimensional cases works well and the tau-leaping algorithm
keeps the accuracy in a tolerable range. At the same time, tau-
leaping simulation costs only 45.59 s while the pathwise sim-
ulation costs 944.9 s. The acceleration is amazing due to the
high dimensionality of the stochastic differential equations.

In this example, the jump ODEs needed to be solved are
not so complicated. But the efficiency of the tau-leaping has
been exhibited. In the case of much more complicate jump
ODEs involved, tau-leaping will be more preferred if applica-
ble since it will save much time for solving the jump ODEs
for pathwise simulations if the jump occurs very frequently.
That is why tau-leaping algorithm functions for the consid-
ered examples.

TABLE V. Comparison between the pathwise and tau-leaping simulations
with adaptive stepsize for high dimensional equations. The computation time
is for 5000 simulations. In each column of Xi, the mean value and standard
variation of Xi(10) are listed.

Time X1 X2

Tau-leaping 45.69s 377.67/33.63 408.71/33.51
Pathwise 944.9s 377.25/32.60 407.61/32.49

X3 X4

Tau-leaping 387.72/33.27 418.12/33.14
Pathwise 386.21/32.26 419.01/32.14
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VII. CONCLUSION

In this paper, we give a comprehensive introduction to
Marcus integral and compare two equivalent definitions in the
literature: the Taylor series formulation by Di Paola-Falsone
formula and the ODE formulation by Marcus mapping. We in-
troduce the exact pathwise simulation algorithm based on the
Marcus mapping and give the error analysis. We show how
to compute the thermodynamic quantities in stochastic ener-
getics based on the Marcus integral instead of the smooth-
ing approach existing in the literature. We further propose the
tau-leaping algorithm, which advances the process with de-
terministic time steps when tau-leaping condition is satisfied.
The efficiency analysis shows that it can significantly speed
up the simulation even for small systems without losing much
accuracy. The numerical experiments verify the analysis. We
believe the proposed tau-leaping algorithm is promising in the
context of SDEs driven by non-Gaussian processes. Further
studies including applications to larger systems will be inves-
tigated in the future.
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APPENDIX: PROOF OF THEOREM 1

Firstly, let us consider an arbitrary ODE

dy

dt
= f (y), y(0) = y0. (A1)

We take the notation y(t) and yn(t) for the exact so-
lution and numerical solution. Define the absolute error
e(t) = |y(t)−yn(t)|. If the numerical solution is obtained by
using an ODE solver of pth order and stepsize h, we have the
following estimate:

e(T ) ≤ Kf e(0) + (Kf − 1)Chp, (A2)

where Kf = exp (LfT), Lf is the Lipschitz constant of function
f and C is independent of h and T.

Based on this, we focus on one sample path of the SDE

dX(t) = f (X(t))dt + g(X(t)) � dL(t). (A3)

Denote σ i the ith jump time and σ 0 = 0. Thus τ i = σ i−σ i−1 is
the gap time between the ith and (i−1)th jump. Recall that the
pathwise simulation algorithm is composed of alternatively
solving the drift ODE from σ i−1 to σ i using a pth order ODE
solver with stepsize h1 and solving the jump ODE at time σ i

using a qth order ODE solver with stepsize h2. With the gen-
eral error estimate (A2), we get the error estimates in the two
alternating steps as

e(σi−) ≤ Fie(σi−1) + (Fi − 1)C1h
p

1 ,

e(σi) ≤ Gie(σi−) + (Gi − 1)C2h
q

2,

where Fi = exp (Lfτ i) and Gi = exp (Lg|Ri|). Lg is the
Lipschitz constant of function g. C1 and C2 are independent

of h and τ , and Ri is the ith random jumpsize. Combining the
two estimates above together, we get the error propagation
from σ i−1 to σ i as below

e(σi) ≤ FiGie(σi−1) + C1(Fi − 1)Gih
p

1

+C2(Gi − 1)hq

2, (A4)

where Fi = exp (Lfτ i) and Gi = exp (Lg|Ri|).
Now we iterate the estimation from t = 0 to σ 1, σ 2···σ N,

t = T and we get

e(T ) ≤ Kf

(
N∏

i=1

Gi

)
e(0) + C1(exp(Lf (T − σN )) − 1)hp

1

+C1

N−1∑
i=1

⎛
⎝ N∏

j=i+1

FjGj

⎞
⎠(Fi −1)Gih

p

1 exp(Lf (T −σN ))

+C2

N−1∑
i=1

⎛
⎝ N∏

j=i+1

FjGj

⎞
⎠ (Gi −1)hq

2 exp(Lf (T −σN )),

where N is a Poisson random number with parameter λT. Note
that 1 ≤ ∏N

j=i Fj exp(Lf (T − σN )) = exp(Lf (T − σi−1))

≤ Kf and
∏N

j=i Gj ≤ ∏N
j=1 Gj , we have

e(T ) ≤ Kf

(
N∏

i=1

Gi

)
e(0) + C1(exp(Lf (T − σN )) − 1)hp

1

+C1

N−1∑
i=1

⎛
⎝ N∏

j=i

Fj −
N∏

j=i+1

Fj

⎞
⎠ exp(Lf (T − σN ))

×
⎛
⎝ N∏

j=1

Gj

⎞
⎠h

p

1 +C2

N−1∑
i=1

⎛
⎝ N∏

j=i

Gj −
N∏

j=i+1

Gj

⎞
⎠ Kf h

q

2

≤ Kf

(
N∏

i=1

Gi

)
e(0) + C1(Kf −1)

⎛
⎝ N∏

j=1

Gj +1

⎞
⎠ h

p

1

+C2

⎛
⎝ N∏

j=1

Gj − GN

⎞
⎠ Kf h

q

2 .

With the assumption Kg = E exp(Lg|R|) < ∞ and taking the
conditional expectation on the equation above, we obtain

E(e(T )|N = n) ≤ Kf Kn
gE(e(0)|N = n)

+C1(Kn
g + 1)(Kf − 1)hp

1

+C2Kf (Kn
g − 1)hq

2 .

Finally let us take expectation with respect to the Poisson ran-
dom variable N and using the fact EKN

g = exp(λT (Kg − 1)),
we have

Ee(T ) ≤ exp(Lf T + λT (K − 1))Ee(0)

+C1(exp(λT (K − 1)) + 1)(exp(Lf T ) − 1)hp

1

+C2 exp(Lf T )(exp(λT (K − 1)) − 1)hq

2, (A5)

which ends the proof.

Downloaded 14 Mar 2013 to 162.105.68.28. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



104118-17 Li, Min, and Wang J. Chem. Phys. 138, 104118 (2013)

1Ya. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
2K. Kanazawa, T. Sagawa, and H. Hayakawa, Phys. Rev. Lett. 108, 210601
(2012).

3W. Schoutens, Levy Processes in Finance: Pricing Financial Derivatives
(Wiley, 2003).

4M. Schürmann, White Noise on Bialgebras, Lecture Notes in Mathematics
Vol. 1544 (Springer-Verlag, Berlin, 1991).

5D. Applebaum, Lévy Processes and Stochastic Calculus (Cambridge
University Press, Cambridge, 2004).

6K. Sato, Lévy Process and Infinitely Divisible Distributions (Cambridge
University Press, Cambridge, 1999).

7C. Bustamante, J. Liphardt, and F. Ritort, Phys. Today 58(7), 43 (2005).
8K. Sekimoto, Stochastic Energetics (Springer-Verlag, Berlin, 2010).
9U. Seifert, Rep. Prog. Phys. 75, 126001 (2012).

10J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, Jr., and C. Bustamante,
Science 296, 1832 (2002).

11S. Toyabe et al., Nat. Phys. 6, 988 (2010).
12D. Collin et al., Nature (London) 437, 231 (2005).
13E. H. Trepagnier et al., Proc. Natl. Acad. Sci. U.S.A. 101, 15038 (2004).
14E. Wong and M. Zakai, Ann. Math. Stat. 36, 1560 (1965).
15H. Sussmann, Ann. Probab. 6, 19 (1978).
16P. Reimann, Phys. Rep. 361, 57 (2002).
17J. Luczka, T. Czernik, and P. Hangii, Phys. Rev. E 56, 3968 (1997).
18N. Gov, Phys. Rev. Lett. 93, 268104 (2004).

19E. Ben-Isaac, Y. K. Park, G. Popescu, F. L. H. Brown, N. S. Gov, and
Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011).

20M. Hoare, Adv. Chem. Phys. 20, 135 (1971).
21T. G. Kurtz, E. Pardoux, and P. Protter, Ann. Inst. H. Poincare

B 31, 351 (1995) (available online at http://cat.inist.fr/?
aModele=afficheN&cpsidt=3452872).

22S. I. Marcus, IEEE Trans. Inf. Theory 24(2), 164 (1978).
23S. I. Marcus, Stochastics 4, 223 (1981).
24D. Gillespie, J. Phys. Chem. 115, 1716 (2001).
25T. Li, Multiscale Model. Simul. 6, 417 (2007).
26X. Sun, J. Duan, and X. Li, Probab. Eng. Mech. 32, 1 (2013).
27C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry

and Natural Sciences (Springer-Verlag, Berlin, 2004).
28M. Di Paola and G. Falsone, Probab. Eng. Mech. 8(3), 197 (1993).
29M. Di Paola and G. Falsone, ASME J. Appl. Mech. 60, 141 (1993).
30P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential

Equations (Springer-Verlag, Berlin, 1999).
31M. Di Paola and M. Vasta, Int. J. Non-Linear Mech. 32(5), 855 (1997).
32U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
33V. Blickle, T. Speck, L. Helden, U. Seifert, and C. Bechinger, Phys. Rev.

Lett. 96, 070603 (2006).
34D. Gillespie, J. Comput. Phys. 22, 403 (1976).
35L. P. Faucheux and A. J. Libchaber, Phys. Rev. E 49, 5158 (1994).
36A. W. C. Lau and T. C. Lubnesky, Phys. Rev. E 76, 011123 (2007).

Downloaded 14 Mar 2013 to 162.105.68.28. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1016/S0370-1573(99)00123-4
http://dx.doi.org/10.1103/PhysRevLett.108.210601
http://dx.doi.org/10.1063/1.2012462
http://dx.doi.org/10.1088/0034-4885/75/12/126001
http://dx.doi.org/10.1126/science.1071152
http://dx.doi.org/10.1038/nphys1821
http://dx.doi.org/10.1038/nature04061
http://dx.doi.org/10.1073/pnas.0406405101
http://dx.doi.org/10.1214/aoms/1177699916
http://dx.doi.org/10.1214/aop/1176995608
http://dx.doi.org/10.1016/S0370-1573(01)00081-3
http://dx.doi.org/10.1103/PhysRevE.56.3968
http://dx.doi.org/10.1103/PhysRevLett.93.268104
http://dx.doi.org/10.1103/PhysRevLett.106.238103
http://dx.doi.org/10.1002/9780470143681.ch4
http://cat.inist.fr/?aModele=afficheN&cpsidt=3452872
http://cat.inist.fr/?aModele=afficheN&cpsidt=3452872
http://dx.doi.org/10.1109/TIT.1978.1055857
http://dx.doi.org/10.1080/17442508108833165
http://dx.doi.org/10.1063/1.1378322
http://dx.doi.org/10.1137/06066792X
http://dx.doi.org/10.1016/j.probengmech.2012.12.006
http://dx.doi.org/10.1016/0266-8920(93)90015-N
http://dx.doi.org/10.1115/1.2900736
http://dx.doi.org/10.1016/S0020-7462(96)00081-9
http://dx.doi.org/10.1103/PhysRevLett.95.040602
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1103/PhysRevLett.96.070603
http://dx.doi.org/10.1016/0021-9991(76)90041-3
http://dx.doi.org/10.1103/PhysRevE.49.5158
http://dx.doi.org/10.1103/PhysRevE.76.011123

