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We aim to construct higher order tau-leaping methods for numerically simulating stochastic
chemical kinetic systems in this paper. By adding a random correction to the primitive tau-leaping
scheme in each time step, we greatly improve the accuracy of the tau-leaping approximations. This
gain in accuracy actually comes from the reduction in the local truncation error of the scheme in the
order of �, the marching time step size. While the local truncation error of the primitive tau-leaping
method is O��2� for all moments, our Poisson random correction tau-leaping method, in which the
correction term is a Poisson random variable, can reduce the local truncation error for the mean to
O��3�, and both Gaussian random correction tau-leaping methods, in which the correction term is a
Gaussian random variable, can reduce the local truncation error for both the mean and covariance
to O��3�. Numerical results demonstrate that these novel methods more accurately capture crucial
properties such as the mean and variance than existing methods for simulating chemical reaction
systems. This work constitutes a first step to construct high order numerical methods for simulating
jump processes. With further refinement and appropriately modified step-size selection procedures,
the random correction methods should provide a viable way of simulating chemical reaction systems
accurately and efficiently. © 2009 American Institute of Physics. �DOI: 10.1063/1.3091269�

I. INTRODUCTION

Traditional deterministic modeling of chemical reactions
using ordinary differential equations �ODEs� may not be ad-
equate for microscopic chemical kinetic systems such as the
reaction networks in a single living cell.1–4 The deterministic
reaction rate equation in the ODE approach is a result of the
large volume limit as the number of reacting molecules goes
to infinity.5 When the number of some reactant species is so
small that the stochastic effect cannot be neglected, the large
volume limit can be misleading and we need to return to
chemical kinetics.

Consider a spatially homogeneous well-stirred chemical
reaction system. The time evolution of the molecular popu-
lations of the reactant species Xt can be modeled stochasti-
cally by a discrete Markov jump process,6 where the sub-
script means the dependence of X on the time t. The
fundamental simulation algorithm for this system is
Gillespie’s stochastic simulation algorithm �SSA�.7,8 The
SSA is essentially exact because it is rigorously based on the
same microphysical principles that underlie the chemical
master equation �CME�.6 Because it needs to simulate every
reaction that fires in the system one at a time, it is extremely
inefficient for realistic systems where reactions fire very fre-
quently.

To speed up discrete stochastic simulation, Gillespie9

proposed the tau-leaping method as an approximate simula-
tion strategy. The basic idea of tau-leaping is as follows. First
choose a preselected time step � that encompasses many re-
action events, but not so many that the state of the system

will change substantially. Then approximate the number of
reaction events during the time interval � corresponding to
each reaction channel by a Poisson random number. Such a
procedure would allow us to leap along the system’s history
axis from one subinterval of length � to the next, instead of
stepping along from one reaction event to the next. This
tau-leaping simulation method can greatly speed up SSA, but
it sacrifices some accuracy.

To estimate the numerical error of the tau-leaping ap-
proximation, Rathinam et al.10 performed a consistency
check for the tau-leaping discretization and showed that its
local truncation error �LTE� is O��2� for all moments of Xt.
They also proved that the tau-leaping is of first order weak
accuracy for the special case of linear propensity functions.
Li11 extended this result to general propensity functions.
Moreover, he showed that the time evolution of Xt can be
described by SDE driven by Poisson type noise and the tau-
leaping scheme is just a forward Euler discretization with
strong order 1/2 and weak order 1 for this SDE.

Considerable work is being done to improve the accu-
racy of the tau-leaping method. Gillespie9 originally pro-
posed the midpoint tau-leaping �MP�, which is analogous to
the midpoint rule for ODEs. Burrage and Tian12 proposed the
Poisson Runge–Kutta method, which is essentially a re-
implementation of the Runge–Kutta methods for ODEs13 in
SDEs driven by Poisson noise. From the numerical results
reported, it looks like these methods have significantly im-
proved in accuracy over the primitive tau-leaping. Neverthe-
less, apparently no rigorous error analysis based on solid
mathematical ground has been performed for these methods.
The community working on solving SDEs also addresses
higher order methods for jump processes. However the re-
sults either apply only to the SDEs driven by constant rate
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Poisson processes14 or remain an abstract formula that is not
sufficient for implementation �Ref. 15, p. 986�. To the au-
thors’ knowledge, all the current simulation methods for
chemical reaction systems are of weak order 1.16

In this paper we propose some highly accurate methods
for solving chemical reaction systems and we call them ran-
dom correction tau-leaping or RC-tau-leaping methods. Our
approach is to add a random correction to the Poisson ran-
dom number in the primitive tau-leaping method. We will
show that with carefully chosen random correction terms,
second order accuracy can be achieved at least for the mean
and covariance of Xt, which are the most interesting quanti-
ties for its probability distribution function �PDF�. The nov-
elty of our method lies in introducing a correlation between
the primitive tau-leaping Poisson term and the random cor-
rection term, which is crucial for us to design schemes that
are of high order accuracy for covariance. By taking advan-
tage of the Taylor expansion of the CME for the probabilities
and the consequent results for moments as derived by Rathi-
nam et al.10 and matching the LTE up to the second order in
the expansion, we obtain the necessary conditions for gener-
ating random correction terms that will lead to high accuracy.

The study of LTE is the first step to analyze the accuracy
of a numerical scheme. While the LTE of the primitive tau-
leaping is O��2� for all moments,10 we prove that the
Poisson-RC-tau-leaping method �PRC� can reduce LTE for
the mean of Xt to O��3�; the Gaussian-RC-tau-leaping
method version 1 �GRC1� can reduce LTE for both the mean
and covariance to O��3�. Milstein and Tretyakov17 demon-
strated that O��3� LTE leads to second order accuracy in
SDEs driven by Gaussian white noise. We speculate that this
is also true for SDEs driven by Poisson noise, although this
property has not yet been strictly proven. Then, from the
above results for LTE, the PRC is of second order accuracy
for the mean and the GRC1 is of second order accuracy for
both mean and covariance. This is consistent with our nu-
merical results. We also proposed a variation in the
Gaussian-RC-tau-leaping method �GRC2� that reduces the
variance of the random correction and gives more accurate
results than GRC1. More research is underway to explain
why the GRC2 algorithm is more accurate.

One of our treatments is still open to debate. In GRC1
and GRC2 we choose not to restrict the number of reactions
and the population of reactant species to integer values. Oth-
erwise it may happen that the second order conditions in the
GRC1 or GRC2 cannot be satisfied. In the authors’ opinion,
although noninteger valued reaction number and population
are physically unrealistic, the simulations remain meaningful
in a statistical sense. In other words, the approach is justified
by the result that GRC1 and GRC2 do produce a more accu-
rate mean, covariance, and even PDF of the population of
reactant species, which is exactly what we want from a prag-
matic point of view. In addition, if an integer sample value is
needed, one can round Xt to its nearest integer at the end of
each simulation. Similar treatment is also used in some weak
methods solving SDEs driven by Gaussian white noise.

Like the tau-leaping algorithm, the new methods also
suffer from the negative population problems, in which the
unbounded Poisson or Gaussian random variables may lead

to unphysical states with negative species populations. A lot
of work addresses this problem for the tau-leaping methods:
Chatterjee et al.18 proposed the binomial tau-leaping method;
Gillespie and co-workers19–21 developed more robust and ef-
ficient leap-size selection strategies. These ideas can also be
applied to our new methods. The new methods will be more
useful if they can be used to solve stiff systems which usu-
ally involve several widely varying time scales. Stiffness is
the norm rather than the exception in chemical reaction sys-
tems and a lot of work addresses the issue. Relevant papers
include Refs. 22–26. Presumably we could incorporate these
strategies into our methods to improve accuracy and handle
stiffness simultaneously. Systematic study of these possibili-
ties will be a future research topic.

The rest of this paper is organized as follows. In Sec. II,
we will briefly review the SSA, tau-leaping, and MP. In Sec.
III, we present some theoretical results and then propose our
PRC, GRC1, and GRC2. In Sec. IV, we report the numerical
results of different chemical reaction systems. Section V pre-
sents our conclusions. Proofs for the most important results
in this paper can be found in the Appendixes.

II. BACKGROUND

Assume that a well-stirred chemical reaction system has
N chemical species �S1 , . . . ,SN� interacting through M reac-
tion channels �R1 , . . . ,RM�. The state of the system is speci-
fied by the vector Xt= �X1t , . . . ,XNt�T, where Xit denotes the
number of molecules of the species Si at time t. Each reac-
tion Rj is completely characterized by a non-negative pro-
pensity function aj�x� and a state-change vector � j

= ��1j , . . . ,�Nj�T�j=1, . . . ,M�. Denote the vector for propen-
sity functions as a�x�= �a1�x� , . . . ,aM�x��T, and the stoichi-
ometry matrix as �= ��1 , . . . ,�M�. Rules governing the sto-
chastic evolution of such a system are as follows.

�1� Given the current state Xt=x, the reaction Rj will fire
with probability aj�x�dt during an infinitesimal time in-
terval dt, and the reactions are independent of each
other.

�2� If Rj fires, then the state of the system is updated as
Xt+� j.

An exact simulation method for the above chemical re-
action system is the SSA, which simulates each chemical
reaction event, one at a time.7,8 It is essentially composed of
the following three steps:

Algorithm 1. Stochastic simulation algorithm �SSA�.

• Step 1: Sample the waiting time � as an exponentially
distributed random variable with rate a0�Xt�
=� j=1

M aj�Xt�.

• Step 2: Sample an M point random variable k with
probability aj�Xt� /a0�Xt� for the jth reaction.

• Step 3: Update Xt+�=Xt+�k.

Although SSA is exact and simple to implement, its han-
dling of individual reaction events renders it prohibitively
slow for realistic simulations where reactions fire very fre-
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quently. An approximate but much faster simulation proce-
dure is the tau-leaping algorithm.9 By dividing the system’s
history axis into a set of contiguous subintervals in which the
number of firings for each reaction channel is approximated
by Poisson random variable, the tau-leaping algorithm can
leap from one subinterval to the next rather than requiring an
updating of propensity functions at every reaction event.

Algorithm 2. Tau-leaping algorithm �tauleap�.

• Step 1: Given the state Xn at time tn, determine a leap
time �.

• Step 2: Generate r= �r1 , . . . ,rM�T, where rj

=P j�aj�Xn��� are Poisson random variables with rate
aj�Xn��.

• Step 3: Update time to tn+� and Xn+1=Xn+� ·r.

Remark 1. In the tau-leaping algorithm, the adaptive
selection of the time step size � is very important for the
overall performance of the algorithm. There are different
strategies to choose a reasonably large � without introducing
large errors. Readers may refer to Refs. 9 and 19–21 for
more details.

Essentially, the tau-leaping scheme is the forward Euler
discretization for SDEs driven by the state-dependent Pois-
son processes.11 In a mathematically nonrigorous form, the
SDEs describing the chemical reaction system satisfy

dXt = �
j=1

M

� jP j�aj�Xt−�dt� �1�

in the infinitesimal sense, where P j�� j� are independent Pois-
son random variables with parameter � j, and Xt−

=lims�t,s→t Xs. A rigorously justified formulation may be
found in Refs. 27 and 28. Integration of Eq. �1� from t to t
+� gives

Xt+� = Xt + �
j=1

M

� j�
t

t+�

P j�aj�Xs−�ds� , �2�

where ��0 is a small time increment. Generally, the inte-
grals 	t

t+�P j�aj�Xs−�ds� cannot be calculated exactly. In the
tau-leaping approximation, the propensity functions aj�Xs�
are treated as constants in the time interval �t , t+��. Under
this approximation, the integrals in Eq. �2� become

�
t

t+�

P j�aj�Xs−�ds� = P j�aj�Xt��� , �3�

which explains step 2 in Algorithm 2 and this procedure is
analogous to the explicit Euler method for ODEs.

When applying tau-leaping algorithm to simulate Eq.
�1�, it will introduce some systematic error, i.e., errors that
cannot be reduced by increasing the sample size. It has been
proven by Rathinam et al.10 and Li11 that the tau-leaping
method is of weak order 1. Considerable work is being done
to improve the accuracy of the tau-leaping method.
Gillespie9 originally proposed the MP. The basic implemen-
tation of this algorithm is as follows.

Algorithm 3. Midpoint-tau-leaping �MP�.

• Step 1: Given the state Xn at time tn, determine a leap
time �.

• Step 2: Compute X�1�=Xn+� 1
2� ·a�Xn���. Here �·�

means round off to the nearest integer.

• Step 3: Generate r= �r1 , . . . ,rM�T, where rj

=P j�aj�X�1����.

• Step 4: Update time to tn+� and Xn+1=Xn+� ·r.

The idea behind this algorithm is similar to the midpoint
rule for ODEs: in the time interval �tn , tn+��, it takes the
estimated value of X at tn+� /2 instead of freezing the value
of X at tn. The MP can significantly improve accuracy in
many cases. However we will show later that the LTE of MP
for the covariance of X cannot be O��3�. So at least for
covariance MP does not have second order accuracy.

III. RANDOM CORRECTION TAU-LEAPING METHODS

In this section, some highly accurate methods for simu-
lating chemical reaction systems will be proposed. More pre-
cisely, the PRC method is believed to be of second order
accuracy only for the mean; the GRC1 and GRC2 methods
are believed to be of second order accuracy for both the
mean and covariance. First let us state some mathematical
definitions and propositions that will help to clarify the ra-
tionale behind the new methods.

In designing a numerical scheme for simulating Eq. �1�,
the goal is to find approximations of the integrals rj

�


	t
t+�P j�aj�Xs�ds� , j=1, . . . ,M. Then Eq. �2� transforms

into

Xn+1 = Xn + � · r�, �4�

where r�= �r1
� , . . . ,rM

� �T. All the numerical schemes in the pa-
per have this form. An analysis of its LTE is the first step for
rationalizing the construction of a numerical scheme.

Following Rathinam et al.,10 we define the qth order
weak consistency of the pth moment of X for the numerical
scheme �4� as follows.

Definition 1 (weak consistency). Let Xtn
and Xtn+� be the

exact solution of Eq. (1) at time tn and tn+� , respectively; Xn

and Xn+1 be the simulation of Eq. (1) using numerical
scheme (4) at time tn and tn+�, respectively. The pth mo-
ments of the increment Xtn+�−Xtn

and Xn+1−Xn are
Ex��Xtn+�−Xtn

�p� and Ex��Xn+1−Xn�p� , respectively. Here
Ex�·� denotes the expectation conditioned on Xtn

=Xn=x and
�Xtn+�−Xtn

�p is the shortcut for the p-fold tensor product. We
say that the numerical scheme (4) is weakly consistent for
the pth moment to qth order, or the LTE of the scheme for
the pth moment is O��q+1� if there exist C�0 and ��0 such
that ∀�� �0,��,

�Ex��Xn+1 − Xn�p� − Ex��Xtn+� − Xtn
�p�� � C�q+1. �5�

Here the norm � · � can be any suitable norm such as the
induced 2-norm for tensors.

Remark 2. Straightforwardly, we can define qth order
consistency for the covariance as
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�Covx�Xn+1 − Xn� − Covx�Xtn+� − Xtn
�� � C�q+1.

Since we have Cov�X�=E�X2�− �E�X��2, if the scheme is qth
order consistent for both the mean and second moment, then
it is qth order consistent for both the mean and covariance.
The contrary is also true.

Remark 3. The definition of weak consistency and LTE is
similar to that in ODEs, where we have the relation: consis-
tency plus stability implies convergence. For SDEs driven by
Poisson noise, this relation has not yet been proven with a
rigorous mathematical approach, but we speculate that it is
true. This would mean if a numerical scheme is stable and
qth order consistent (or with O��q+1� LTE), then it is of qth
order accuracy. Our numerical results are consistent with
this speculation.

Rathinam, et al.10 Taylor expanded the exact pth mo-
ment Ex��Xtn+�−Xtn

�p� to the second order of � �see Eq. �A1�
in Appendix A or Eqs. �3.5� and �3.6� in Ref. 10�. By sub-
stituting the tau-leaping approximation rj

�=P j�aj�Xn��� in
Eq. �4�, they showed that the numerical pth moment
Ex��Xn+1−Xn�p� matches the first order terms in the exact
expansion for all p. So the LTE of the tau-leaping method for
all moments is O��2�, indicating that the tau-leaping scheme
is weakly first order consistent.

To develop weakly higher order accurate methods, natu-
rally one asks its LTE to be O��3� for all moments. Actually
we do not know how to accomplish this. So instead, we try
to construct numerical schemes that have higher order LTE
for the most important parameters of a PDF. More precisely,
we present in Sec. III A the Poisson random correction tau-
leaping method, whose LTE is O��3� at least for the mean;
and in Sec. III B the Gaussian random correction tau-leaping
method, whose LTE is O��3� at least for both the mean and
covariance. Our approach is to add a random correction r̃ to
the primitive tau-leaping term r so r�=r+ r̃. More impor-
tantly, r̃ is generated conditioning on r. We find that the new
methods are much more accurate than the primitive tau-
leaping algorithm.

A. Poisson random correction tau-leaping method

Define the M �M matrix function ��x�= �	 jk�x�� as

	 jk�x� = aj�x + �k� − aj�x� . �6�

In what follows, we will denote aj�x� as aj and ��x� as �
when the context is clear. The following proposition provides
a guideline to design numerical schemes that are second or-
der consistent for the mean.

Proposition 1. Assume that we have a numerical scheme
Xn+1=Xn+� ·r�, where r�=r+ r̃. r is a vector with M mutu-
ally independent components rj =P j�aj�Xn��� , j=1, . . . ,M.
Given Xn=x, if the components of r̃ satisfy

Ex�Er�r̃ j�� =
�2

2 �
k=1

M

ak	 jk + O��3�, j = 1, . . . ,M , �7�

then the scheme is of second order consistency for the mean.
Remark 4. Note here and in what follows the conditional

expectation of r̃j given the initial Xn=x can be represented

with Ex�Er�r̃ j�� since r̃j is generated conditioning on r, which
is conditioning on x.

Remark 5. In proving all of the propositions in this pa-
per, it will be helpful to keep in mind that the mean and
covariance properties of the independent Poisson random
variables,

EPi��i� = �i, E�Pi��i�P j�� j�� = �i� j + �ij�i.

Proof. Please see Appendix B. �

This proposition shows that to achieve second order con-
sistency for the mean, the random correction r̃ only needs to
satisfy Eq. �7�. In fact, there are many such r̃ to make Eq. �7�
hold. For example, it can be easily verified that r̃ j

=sgn�� j�P j��� j�� with the following choices of � j are accept-
able.

�1� � j = �� /2��k=1
M rk	 jk.

�2� � j = �1 /2��k=1
M �rk�rk−1� /ak�	 jk assuming ak�0 here.

�3� � j = ��2 /2��k=1
M ak	 jk.

Note that r̃ and r are mutually dependent in the first two
choices, while they are mutually independent in the last one.
In fact, the independent property in the last case allows us to
generate rj

�=rj + r̃ j as a Poisson random variable in one pass,
that is, rj

�=P j�
 j�, where


 j = aj� +
�2

2 �
k=1

M

ak	 jk. �8�

Thus we have the following numerical scheme:

Algorithm 4. Poisson random correction tau-leaping �PRC�.

• Step 1: Given the state Xn at time tn, compute the matrix
��Xn� and determine a leap time �.

• Step 2: Generate Poisson random variables rj
�=P j�
 j�,

where 
 j is defined in Eq. �8�.

• Step 3: Update time to tn+� and Xn+1=Xn+� ·r�.

Remark 6. In step 2 of the above algorithm, we actually
assume 
 j �0 in rj

�=P j�
 j�. Theoretically it is possible that

 j �0 in a system with multiple reactions if � j �0 and � is
too large. In fact, 
 j �0 implies �r̃ j��rj, i.e., the correction
terms dominate the primitive tau-leaping terms, which
should never happen because intuitively the correction r̃j

should be small compared with rj. This problem can be
avoided with properly selected �. More precisely, we could
impose 
 j �0 as a necessary condition to limit the time step
size � so that

� � min
j,�j�0 
−

2aj

�k=1

M
ak	 jk

� .

If this admissible � is too small we may switch to SSA. In our
numerical tests we use fixed � to test the accuracy of the
methods. We find that even for moderate valued � the case

 j �0 seldom occur. If it does happen, for simplicity we just
set 
 j =0, whose effect on the sample value can be neglected.
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It is easy to check that the LTE of PRC for the mean is
reduced to O��3�. For other moments, the LTE is still O��2�.
Let us take a closer look at Eqs. �6� and �8�. If we take the
approximation

	 jk�x� = aj�x + �k� − aj�x� 
 �
l=1

N
�aj�x�

�xl
�lk �9�

without considering that the magnitude of �k may not be
small, substitute it into Eq. �8�, we obtain


 j 
 ��aj + �
l=1

N
�aj

�xl
�
k=1

M
�

2
ak�lk� � �aj

�.

Note that the physical meaning of the term �k=1
M �� /2�ak�lk is

the expectation of the amount of change in Xl in a time
length of � /2, assuming the reaction rates are frozen at a�x�.
So aj

� is just the estimated reaction rate at the midpoint of
time. In this sense, PRC is another type of MP. While the
primitive MP tries to estimate the midpoint value of X, the
PRC tries to estimate the midpoint value of the reaction rate
a�.

The computational effort for these two methods is al-
most the same. Unlike the MP, where the estimated midpoint
value X�1� needs to be converted to integers in step 2 of
Algorithm 3, we can directly use real-valued estimated reac-
tion rate a�. What is more important, we can prove that the
LTE of PRC for the mean is O��3�, while there is no such
result for MP.

B. Gaussian random correction tau-leaping method

Now we construct methods with LTE to be O��3� for
both the mean and covariance. This is not so easy because
for systems with multiple reactions the reactions are coupled
together; hence, intuitively, the number of firings for each
reaction channel during the time interval �tn , tn+�� should be
correlated. In order to achieve higher order accuracy, the
components of r� in Eq. �4� should be mutually dependent.
Otherwise, as the following proposition shows, in general, a
numerical method cannot be second order consistent for the
covariance.

Proposition 2. For a numerical method solving Eq. (1)
with the form (4), if the random variables �rj

�� are mutually
independent, then, in general, it cannot be second order con-
sistent for the covariance of X.

Proof. Please see Appendix C. �

It is easy to check that the �rj
�� in MP are mutually in-

dependent, so as we mentioned earlier that MP cannot be
second order consistent for the covariance. To introduce cor-
relations to the components of r�, our strategy is to generate
r̃ conditioning on r, while still keeping the components in r̃
to be mutually independent. The next proposition gives a
sufficient condition of generating such r̃ so that Eq. �4� sat-
isfies second order consistency for both the mean and cova-
riance.

Proposition 3. Assume that we have a numerical scheme
Xn+1=Xn+� ·r�, where r�=r+ r̃. r is a vector with M mutu-
ally independent components rj =P j�aj�Xn��� , j=1, . . . ,M.
Given Xn=x , if the components of r̃ satisfy

�1� Ex�Er�r̃ j��= ��2 /2��k=1
M ak	 jk+O��3�;

�2� for j�k, Ex�Er�r̃ jr̃k��=O��3�;
�3� for j�k, Ex�rjEr�r̃k��= ��2 /2�aj	kj +O��3�; and

�4� Ex�Er�r̃ j
2��+2Ex�rjEr�r̃ j��= ��2 /2��k=1

M ak	 jk+�2aj	 j j

+O��3�,

then the scheme is second order consistent for both the mean
and covariance.

Proof. Please see Appendix D. �

Based on this proposition, we now propose a scheme for
choosing r̃ so that it satisfies all four conditions above. Given
r as stated in the proposition, let r̃ be a vector with M mu-
tually independent components r̃ j with the mean and vari-
ance conditioning on r to be, respectively,

Er�r̃ j� =
�

2�
k=1

M

rk	 jk +
�

2 �
	jk�0

�ak

aj
rj − �ak�	 jk, �10�

where �	jk�0 means the summation with respect to such k
that 	 jk�0, and

Varr�r̃ j� =
�2

2 �
k=1

M

ak�	 jk� � 0. �11�

It is demonstrated in Appendix E that such an r̃ satisfies all
four conditions in Proposition 3.

Remark 7. For consistency it is required that if aj�x�
=0 then 	 jk�0 in Eq. (10). This is true since when aj�x�
=0, we have 	 jk=aj�x+�k�−aj�x�=aj�x+�k��0 from
Eq. (6).

Remark 8. Now given the mean and variance as in Eqs.
(10) and (11), we want to generate an appropriate random
variable r̃j. The physical meaning of rj

� would demand an
integer-valued r̃j. However, by our approach, r̃j is generated
conditioning on rj as a compensator to the primitive tau-
leaping terms. It may happen that the mean and variance
required for r̃j are both very small such that no integer-
valued random variable could satisfy these conditions. For
example, if a random variable X has mean 1/2 and second
moment 1 /3�1 /4, then it cannot be integer valued since it
must satisfy EX2�EX. So in our implementation, r̃j is simply
generated as a real-valued Gaussian random variable, which
also leads r� and X to be real valued. This treatment is still
open to debate. We think it is acceptable in simulations be-
cause stochastic trajectories should be understood in a sta-
tistical sense. One trajectory cannot really describe the evo-
lution of a system. The new methods can give a more
accurate mean, covariance, and even PDF, and that is ex-
actly what we want. Finally, in any case, we can enforce the
positive integer condition for X just by rounding them after
the simulations.

Now we have the following GRC1 method, which is
weakly second order consistent for both the mean and cova-
riance.

Algorithm 5. Gaussian random correction tau-leaping ver-
sion 1 �GRC1�.

• Step 1: Given the state Xn at time tn, compute the matrix
��Xn�, and determine a leap time �.
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• Step 2: Generate the random vector r whose compo-
nents are mutually independent Poisson random vari-
ables rj =P j�aj�Xn���.

• Step 3: Generate random vector r̃ conditioning on r,
whose components are mutually independent Gaussian
random variables with mean Er�r̃ j� and variance
Varr�r̃ j� as in Eqs. �10� and �11�, respectively.

• Step 4: Update time to tn+� and Xn+1=Xn+� · �r+ r̃�.

During the implementation of this algorithm, we identi-
fied a modification that makes it much more accurate for
chemical reaction systems with multiple reactions. Note that
the second term on the right hand side of Eq. �10� makes no
contribution to Ex�Er�r̃ j��, Ex�Er�r̃ jr̃k��, and Ex�rjEr�r̃k�� up to
O��2�. The function of this term is to ensure that Varr�r̃ j�
�0. Without this term Varr�r̃ j� becomes �2�k=1

M ak	 jk /2,
which may be negative! Actually, it is easy to check that each
term like ��akrj /aj −�ak�	 jk /2 contributes to Varr�r̃ j� a posi-
tive part −�2ak	 jk if 	 jk�0. So in Eq. �11� we have
Varr�r̃ j�= ��2 /2��k=1

M ak�	 jk�, which is definitely non-negative.
Since we only need Varr�r̃ j��0, not as much as the

��2 /2��k=1
M ak�	 jk�, a modified algorithm is to first compute

Er�r̃ j� =
�

2�
k=1

M

rk	 jk, �12�

Varr�r̃ j� =
�2

2 �
k=1

M

ak	 jk. �13�

If Varr�r̃ j��0, we directly generate r̃ j with this mean and
variance. Otherwise, we select k such that 	 jk�0, add the
term ��akrj /aj −�ak�	 jk /2 to the right hand side of Eq. �12�,
add −�2ak	 jk to the right hand side of Eq. �13�, and then
check if Varr�r̃ j��0. We iterate in k until a non-negative
Varr�r̃ j� is obtained. Such an iteration will definitely end be-
cause in the worst case we would get Varr�r̃ j�
= ��2 /2��k=1

M ak�	 jk��0, which is the same as the GRC1. The
r̃ j thus obtained in the modified approach may have a smaller
variance yet all four conditions in Proposition 3 still hold.
We name the modified algorithm Gaussian random correc-
tion tau-leaping version 2 �GRC2�.

Algorithm 6. Gaussian random correction tau-leaping ver-
sion 2 �GRC2�.

• Step 1: Given the state Xn at time tn, compute the matrix
��Xn�, and determine a leap time �.

• Step 2: Generate the random vector r whose compo-
nents are mutually independent Poisson random vari-
ables rj =P j�aj�Xn���.

• Step 3: Calculate

Er�r̃ j� =
�

2�
k=1

M

rk	 jk,

Varr�r̃ j� =
�2

2 �
k=1

M

ak	 jk.

• Step 4: For k=1 to M such that 	 jk�0,
�1� if Varr�r̃ j��0, go to step 5;
�2� otherwise

Er�r̃ j� ª Er�r̃ j� +
�

2
�ak

aj
rj − �ak� ,

Varr�r̃ j� ª Varr�r̃ j� − �2ak	 jk.

• Step 5: Generate the random vector r̃, whose compo-
nents are mutually independent Gaussian random vari-
ables with the mean Er�r̃ j� and variance Varr�r̃ j� given
above.

• Step 6: Update time to tn+� and Xn+1=Xn+� · �r+ r̃�.

For the convenience of the reader, we list some impor-
tant features of the tau-leaping, MP, PRC, GRC1, and GRC2
in Table I.

C. Implementation issues

1. Leap-size selection

So far we have not discussed how to determine the time
step size �. For realistic systems, using an adaptive leap-size
selection procedure can greatly improve the efficiency. There
are several leap-size selection procedures for the tau-leaping
method. Here we briefly review two of them that will be
tested with our new methods.

Define a0=� j=1
M aj, the M �M matrix f= �f jk�, where

f jk � �
l=1

N
�aj

�xl
�lk, �14�

and the vector ��1�= �
1
�1� , . . . ,
M

�1��T and ��2�

= �
1
�2� , . . . ,
M

�2��T, where


 j
�1� � �

k=1

M

f jkak, �15�


 j
�2� � �

k=1

M

�f jk�2ak. �16�

Gillespie9 originally proposed a leap-size selection pro-
cedure which is to take

TABLE I. Comparison of numerical schemes simulating the chemical reac-
tion system �1�. The second �third� column compares the order of consis-
tency for the mean �covariance�. The last column compares the number of
random variables needed in each time step, indicating the computational
effort needed by each method. Here M is the number of reactions in the
system.

Scheme Mean Covariance No. of random variables

Tauleap First First M
MP Not clear Not clear M
PRC Second First M
GRC1 Second Second 2M
GRC2 Second Second 2M
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� = min
 �a0


1
�1� , . . . ,

�a0


M
�1�� �17�

for a given parameter �
1. Gillespie and Petzold19 proposed
an improved version in which

� = min
 �a0


1
�1� ,

�2a0
2


1
�2� , . . . ,

�a0


M
�1� ,

�2a0
2


M
�2� � . �18�

The difference between the two procedures is that only the
change in the mean of a is considered in the first, while the
changes in both the mean and variance of a are considered in
the second. Cao et al.21 proposed a more robust version, but
since in this work our major interest is the scheme itself, not
the step size selection, we will not incorporate this in our
code.

From Eqs. �9� and �14� we can see that the matrix � is a
discrete approximation of the matrix f. To save computa-
tional cost, we use � to replace f in Eqs. �15� and �16� and
then use Eqs. �17� and �18� to select the leap-size �. The
same � is used to determine the random corrections in the
new methods.

2. Computational efficiency

The computational costs needed by the tau-leaping, the
MP, and the PRC are relatively the same. In PRC, we need
the M �M matrix � defined in Eq. �6� to estimate the mean
of r�. However the same � can be used in the leap-size
selection procedure to determine �. There will be no notice-
able computational overhead compared with the more time-
consuming random number generating processes.

Approximately the computational costs are doubled for
the GRC1 and GRC2 compared with the tau-leaping because
the random variables needed by them are doubled in each
time step. However, the GRC1 and GRC2 can be more effi-
cient than other methods because they have much better ac-
curacy. This will be shown in Sec. IV.

IV. NUMERICAL RESULTS

We apply the tau-leaping, MP, PRC, GRC1, and GRC2
to four chemical reaction systems. In the first two systems,
exact solutions for the mean and variance can be obtained. In
the other two systems, the mean and variance sampled from
the SSA are considered to be exact values. Note that since
there is only one reaction in the first two systems, the GRC1
and GRC2 are exactly the same, and they are simply called
GRC. For the other two systems, the GRC1 and GRC2 are
effectively different.

In order to demonstrate the order of accuracy, we follow
a procedure that is widely used in the numerical study of
ODEs. We simulate Xt from time t=0 to t=T, advancing by
a fixed time step size �. If the sample size is large enough,
the statistical fluctuations in Ej

�, the sample mean of Xj with
step size �, can be neglected. Then we doubled the step size
to 2� and obtain the sample mean Ej

2�. If the simulation
method has pth order accuracy for the mean, there exists a
constant C such that

�Ej
� − E�Xj�� 
 C�p, j = 1, . . . ,M .

It follows

�Ej
2� − E�Xj��

�Ej
� − E�Xj��



C�2��p

C�p 
 2p, j = 1, . . . ,M .

For example, if p=2, then �Ej
2�−E�Xj��
4�Ej

�−E�Xj��, i.e.,
the absolute error of the mean will be approximately four
times larger when the step size is doubled. In addition, the
log-log plot of the absolute error of the mean over the step
size will be a straight line with slope 2. The same is true for
the variance. These substantiate the order of accuracy.

A. System 1: S\0”

For this system the propensity function is a�x�=cx,
where the rate constant c=0.1. The state-change vector is
�=−1. The initial condition is set to X0=10 000. The mean
and variance can be solved explicitly,

E�XT� = X0e−cT,

Var�XT� = X0�e−cT − e−2cT� .

For this system the GRC1 and GRC2 are identical, in which
r̃ satisfies

Er�r̃� = �	r −
�2

2
a	 �19�

since 	=−0.1�0. We simulate the reaction from time 0 to
T=10.4 using different step sizes.

We plot the absolute errors of mean and variance in Fig.
1. The sample size is as large as 108 so that the magnitude of
statistical fluctuation is small. It shows that for this system,
tauleap has first order accuracy for mean and variance; PRC
has second order accuracy for mean and first order accuracy
for variance; GRC has second order for mean, for variance it
is not a straight line �the error of variance for GRC is so
small for this system that statistical fluctuation become sig-
nificant�; MP has first order accuracy for variance, while for
the mean it shows second order accuracy only when � is
large. This phenomenon that the second order property is lost
as � gets small is perhaps due to the rounding of X�1�. An
interesting discussion of this irregular behavior of rounding
may be found in Ref. 10.

In Fig. 2 we plot the histograms of XT for different meth-
ods. The histogram of tauleap has large deviations from
SSA; GRC shows the best performance in capturing the PDF.

B. System 2: S\2S

This system has one reaction with propensity function
a�x�=cx, where the rate constant c=0.1. The state-change
vector is �=1. The initial condition is X0=400. The exact
mean and variance of XT can be solved explicitly,

E�XT� = X0ecT,
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Var�XT� = X0�e2cT − ecT� .

The major difference from system 1 is that we have 	=0.1
�0, which causes the second term in Eq. �19� to vanish so
that

Er�r̃� =
�

2
	r . �20�

We plot the absolute errors of mean and variance in Fig.
3. The sample size is 108 for each sample mean and variance.
For the mean, PRC and GRC are almost identical, showing
convergence of the order of 2; MP seems to have no order
relation for this system. For the variance, all methods fit in
straight lines �for GRC there is a little statistical fluctuation
when the error is extremely small�. It clearly shows that
GRC improve the order of accuracy of the variance com-
pared with other methods. We can see that the errors of the
sample mean and variance for GRC when �=1.6 are �4.171
and �47.846, respectively. To achieve the same accuracy
using the tauleap method, one needs �=0.1 when the errors
are �5.830 and �47.564, respectively, which means for this
particular case, GRC is eight times more efficient than
tauleap.

In Fig. 4 we plot the histograms of XT for different meth-
ods. The histogram of tauleap has large deviations from
SSA; GRC shows the best performance in capturing the PDF.

C. System 3: The Michaelis–Menten system

The Michaelis–Menten system describes the kinetics of
some enzymes. It involves four species participating in three
chemical reactions. The chemical reactions are

R1:S1 + S2 → S3,

R2:S3 → S1 + S2,
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FIG. 1. �Color online� �System 1� Comparison of the absolute errors of
sample mean and variance of X at t=10.4, with a sample size of 108. For the
mean, tauleap has first order accuracy; PRC and GRC both have second
order accuracy; the behavior of MP is less regular than the others. For the
variance, tauleap, MP, and PRC all have first order accuracy; GRC has
extremely small error and statistical fluctuation become evident, especially
when step size is small. Error values of mean and variance are presented in
Tables IV and V.
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FIG. 2. �Color online� �System 1� Comparison of the histograms obtained
from 106 samples. We can see that tauleap shows significant deviations from
SSA. The other three methods can capture the PDF quite well. The histo-
gram distance appears in Table VI.

124109-8 Y. Hu and T. Li J. Chem. Phys. 130, 124109 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



R3:S3 → S2 + S4.

Detailed simulation of this system can be found in
Ref. 29. In our implementation, the rate constant
c= �1�10−4 ,0.5,0.5�T, the propensity function is a�x�
= �c1x1x2 ,c2x3 ,c3x3�T, and the initial value of X is X0

= �1000,200,2000,0�T. We simulate the system in the time
interval �0,6� with sample size equal to 106.

For this system, GRC1 and GRC2 behave differently. As
Figs. 5 and 6 show, the absolute errors of mean of both
methods are quite similar, but for variance GRC2 is more
accurate than GRC1. GRC1 shows second order accuracy for
the variance of both X1 and X2. Due to the statistical fluctua-
tion, the error of variance for GRC2 does not form a straight
line. Strangely, when � goes from 0.4 to 0.8, the absolute
error of the variance of X2 for GRC2 grows 12 times. Above
all, for both GRC1 and GRC2, the overall picture of second
order accuracy for both mean and variance is still valid.

Histograms obtained from 106 samples of X1 and X2 us-
ing different step sizes are plotted in Figs. 7 and 8. For rela-
tively large �, it is evident from the figures that GRC2
achieves outstanding performance in capturing the PDF.

D. System 4: A more complicated system

This system involves 8 species and 12 reactions.30 The
chemical reactions, propensity functions, and initial values
used in our implementation are listed in Tables II and III. We
simulate the system in the time interval �0,3� with sample
size equal to 106.

The log-log plots and histograms of X1 and X7 are given
in Figs. 9–12. It shows that the four improved methods—MP,
PRC, GRC1, and GRC2—all have comparable accuracy for
the mean of both X1 and X7, and also for the variance of X1.
However, for the variance of X7, the accuracy of MP and
PRC are even worse than that of tauleap, while GRC1 and
GRC2 still show very good accuracy. It appears that MP and
PRC can significantly improve the accuracy of the mean, but
the errors of variance for these methods are somehow unpre-
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FIG. 3. �Color online� �System 2� Comparison of the absolute errors of X at
t=10.4, with a sample size of 108. For the mean, tauleap shows first order
accuracy; PRC and GRC both show second order accuracy; there is still no
clear order of accuracy for MP. For the variance, tauleap, MP, and PRC all
show first order accuracy; GRC clearly shows second order accuracy. Error
values are presented in Tables VII and VIII.
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FIG. 4. �Color online� �System 2� Comparison of histograms obtained from
106 samples. Compared with SSA histogram, that of GRC is much closer
than tauleaps and slightly closer than MPs and PRCs. The histogram dis-
tance appears in Table IX.
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dictable. On the other hand, GRC1 and GRC2 have approxi-
mately second order accuracy for both the mean and vari-
ance. So if we demand small error in both the mean and
variance, using GRC1 and, especially, GRC2 will be more
effective.

E. System 4 with adaptive leap-size selection

In all the above examples, the step sizes in each sam-
pling are fixed. Here we will test the performance of the new
schemes with adaptive leap-size selection. Two leap-size se-
lection procedures are reviewed in Sec. III C 1.

For system 4, both procedures �17� and �18� work for the
tauleap method if � is not too big. However for the GRC1
and GRC2, the difference between these two strategies is
drastic: if we use Eq. �17�, negative population is likely to
happen during the simulation even when the parameter � is
very small; if we use Eq. �18�, then there will be no such
problem. This example reminds us that when applying the
new methods, we should be careful in selecting the leap size.
It should be possible to design a more robust leap-size selec-
tion strategy for GRC1 and GRC2. We speculate that it must
be related to their numerical stability. For now, we just rec-
ommend the leap-size selection procedure �18� and plan to
study this in the future.

We test all the five methods for system 4 using adaptive
leap-size selection procedure �18� with �=0.01 and �
=0.005, respectively. For a sample size of 106, the errors of
mean and variance for each species are presented in Tables
XXII–XXV. For the mean, it seems that, the four improved
methods have comparable accuracy �statistical fluctuations
are relatively large for this system� and their improvements
over tauleap are evident. For the variance, the errors of vari-
ance of X5 and X7 are very large for MP and PRC, but they
are small for GRC1 and GRC2, which shows their advan-
tage. For �=0.01, GRC1 seems less accurate than MP and
PRC. However for �=0.005, GRC1 is more accurate than
both. GRC2 is more accurate than MP and PRC even for �
=0.01 and it is the most accurate scheme of all.

V. CONCLUSION

Some highly accurate methods for simulating spatially
homogeneous well-stirred chemical reaction systems are pro-
posed. The idea of the new methods is to add random cor-
rection to the primitive tau-leaping term. More precisely, in
the new methods, the vector r� approximating the number of
firings of each reaction channel in a time interval �t0 , t0+�� is
generated in two steps. The first is to generate Poisson ran-
dom vector r, which is the same as the primitive tau-leaping.
Next is to generate a random correction vector r̃ according to
certain conditions. The final approximation is the sum of the
two parts, r�=r+ r̃. The novelty of our methods is that the
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FIG. 5. �Color online� �System 3, X1� Absolute errors of sample mean and
variance of X1 at t=6 with a sample size of 106. The sample mean and
variance of 106 simulations using the SSA is considered the exact value. For
this system, GRC2 differs from GRC1. For the mean, tauleap shows first
order accuracy, while the PRC, GRC1, and GRC2 show second order accu-
racy and MP shows no clear order relation. For variance, tauleap, MP, and
PRC show first order accuracy, while GRC1 and GRC2 are of second order
accuracy. Note that even though MP and PRC give a more accurate mean
than tauleap, they are less accurate than tauleap for variance. GRC1 and,
especially GRC2, have good accuracy for this system. Error values are
presented in Tables X and XI.
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FIG. 6. �Color online� �System 3, X2� Absolute errors of sample mean and
variance of X2 at t=6 with a sample size of 106. The behavior of these
methods is essentially the same as the case for X1. Note that the accuracy of
GRC2 for variance is much better than the others. Error values are presented
in Tables XII and XIII.
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random correction r̃ is generated conditioning on r. This al-
lows us to design schemes that are of higher order accuracy
at least for the mean and covariance of Xt, which is one first
step towards high order accuracy method for simulating
jump processes.

In this paper three examples of RC-tau-leaping schemes
are proposed, namely, the PRC, GRC1, and GRC2. Their
improvement in accuracy comes from the fact that these
schemes have higher order LTE for moments of Xt. It has
been shown that the LTE of the primitive tau-leaping is

O��2� for all moments.10 Our first objective is to reduce the
LTE of a scheme to O��3� just for the mean. This is a rela-
tively simple task and there are many alternatives for choos-
ing such a random correction. In the PRC scheme, we
adapted a simple form in which r� can be generated in one
pass. At the end of Sec. III A we demonstrated that, from
another perspective, the PRC can be considered a variation
in the MP. The major difference between the two is that
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FIG. 7. �Color online� �System 3, X1� Histograms of X1 at t=6 obtained
from 106 samples. The histograms of GRC2 appear to be the closest one to
SSAs for all step sizes. The histogram distance appears in Table XIV.
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FIG. 8. �Color online� �System 3, X2� Histograms of X2 at t=6 obtained
from 106 samples. It clearly shows that the GRC1 and, especially GRC2,
capture the PDF of X2 better than the other methods. For �=0.2, GRC1 and
GRC2 are almost identical with SSA, while for tauleap, MP, and PRC the
error is quite obvious. The histogram distance appears in Table XV.
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while the MP tries to estimate the midpoint of the population
of reactant species Xt, the PRC tries to estimate the midpoint
of the propensity functions a. Numerical results show that
the PRC is more accurate than the MP.

The next goal, which is more interesting and challeng-
ing, is to reduce the LTE of a scheme to O��3� for both the
mean and covariance of Xt. We proved in Proposition 2 that
this goal cannot be achieved unless the components in r� are
mutually dependent. We introduced a correlation among
components in r� by generating r̃ conditioned on the previ-
ous approximation r. This is the central idea behind the RC
tau-leaping methods. By matching the coefficients in the
Taylor expansion of the exact mean and covariance of Xt up
to O��2�, we presented in Proposition 3 a sufficient condition
for r̃ that leads to second order consistency for both the mean
and covariance.

Both the GRC1 and GRC2 satisfy the second order con-
dition in Proposition 3, and numerical results indeed show
second order accuracy for them. Their difference lies in the
procedure for generating the random correction r̃. In the
GRC1, r̃ is generated according to Eqs. �10� and �11�, which
is in a concrete form and easier to understand. The modifi-
cation in the GRC2 aims to reduce the variance of the com-
ponents in r̃. The approach is not very systematic, but the
numerical result is much better than those of GRC1. We
speculate that keeping the variance of the components in r̃ as
small as possible is beneficial for the method’s accuracy and
stability. However more study is needed to understand this
mechanism and to develop methods that are even faster and
more accurate.

TABLE II. List of reactions and propensity functions for system 4.

Reaction Propensity Rate constant

1 EA→EA+A a1=c1�EA� c1=150
2 EB→EB+B a2=c3�EB� c2=150
3 EA+B→EAB a3=c3�EA��B� c3=0.001
4 EAB→EA+B a4=c4�EAB� c4=6
5 EAB+B→EAB2 a5=c5�EAB��B� c5=0.001
6 EAB2→EAB+B a6=c6�EAB2� c6=6
7 A→0” a7=c7�A� c7=5
8 EB+A→EBA a8=c8�EB��A� c8=0.001
9 EBA→EB+A a9=c9�EBA� c9=6

10 EBA+A→EBA2 a10=c10�EBA��A� c10=0.001
11 EBA2→EBA+A a11=c11�EBA2� c11=6
12 B→0” a12=c12�B� c12=5

TABLE III. List of species and their initial value �in number of molecules�
for system 4.

Species Initial value

1 A 2000
2 B 1500
3 EA 950
4 EB 950
5 EAB 200
6 EAB2 50
7 EBA 200
8 EBA2 50
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FIG. 9. �Color online� �System 4, X1� Absolute errors of sample mean and
variance of X1 at t=3 with a sample size of 106. The mean and variance
sampled from the SSA are considered exact value. The improvement in the
accuracy of variance by using GRC1 and GRC2 is quite obvious. Error
values are presented in Tables XVI and XVII.

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

10
1

time step

ab
so

lu
te

er
ro

r

tauleap
MP
PRC
GRC
GRC2

Mean

(a)

10
−3

10
−2

10
−1

10
−1

10
0

10
1

10
2

10
3

time step

ab
so

ul
ut

e
er

ro
r

tauleap
MP
PRC
GRC
GRC2

Variance

(b)

FIG. 10. �Color online� �System 4, X7� Absolute errors of sample mean and
variance of X7 at t=3 with a sample size of 106. Here we can see that for the
variance of X7, the performances of MP and PRC are worse than those of
tauleap. The GRC1 and GRC2, however, still preserve second order accu-
racy for both the mean and variance. Error values are presented in Tables
XVIII and XIX.
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The new methods presented in this paper can be directly
applied to chemical reaction systems for which the tau-
leaping method is suitable. The PRC, which improves accu-
racy while requiring almost the same computational effort,
can be used as a replacement for MP. The GRC2, which is
probably better than the GRC1, seems to be more promising
for simulating chemical reaction systems. It doubles the
computational cost of the tau-leaping method, but greatly

improves accuracy. Numerical results show that it can be
more efficient overall than other schemes. Finally we men-
tion that, in simulating complex chemical reaction systems,
one still needs an adaptive step-size selection procedure.
There exist several step-size selection strategies, but they
have only been tested with the tau-leaping method. As seen
in Sec. IV E, for system 4, the leap-size selection procedure
�17� works fine in the tau-leaping method but suffers from
the negative population issue if applied to GRC1 and GRC2.
We believe that analyzing the stability property will provide
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FIG. 11. �Color online� �System 4, X1� Histograms of X1 at t=3 obtained
from 106 samples. The histogram distance appears in Table XX.
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FIG. 12. �Color online� �System 4, X7� Histograms of X7 at t=3 obtained
from 106 samples. The histogram distance appears in Table XXI.
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insight in designing more robust leap-size selection proce-
dure for the new methods, rendering them even more effi-
cient.
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APPENDIX A: TAYLOR EXPANSION
OF Ex†„Xtn+�−Xtn

…

p
‡

Here we state some results that have been reported in
Ref. 10. By first Taylor expanding the CME of the chemical
reaction system, and then taking the pth moment of the in-
crement Xtn+�−Xtn

, one obtains that for p�1,

Ex��Xtn+� − Xtn
�p�

= ��
j=1

M

� j
paj −

�2

2 �
j=1

M

�
k=1

M

� j
pajak −

�2

2 �
j=1

M

�
k=1

M

� j
pajak�x + �k�

+
�2

2 �
j=1

M

�
k=1

M

�� j + �k�pajak + O��3� . �A1�

Note that here � j�k, which should be interpreted as the ma-
trix � j�k

T, is not equal to �k� j, which should be interpreted as
the matrix �k� j

T.
Letting p=1,2, substituting Eq. �6� and simplifying, we

obtain

TABLE IV. �System 1� Error of the mean, as shown by Fig. 1�a�. Note that
here the sign of error is kept while in the figures it is their absolute value.
Numbers in the brackets are the increasing ratio of the error when the step
size is doubled.

� Tauleap MP PRC GRC

0.8 �152.03�NaN� 3.84 �NaN� 4.15 �NaN� 4.17�NaN�
0.4 �74.72�2.03� 0.70�5.49� 1.01�4.11� 1.01�4.13�
0.2 �37.14�2.01� �0.15��4.67� 0.17�5.94� 0.25�4.04�
0.1 �18.56�2.00� �0.36�0.42� �0.04��4.25� 0.06�4.17�

TABLE V. �System 1� Error of the variance, as shown by Fig. 1�b�.

� Tauleap MP PRC GRC

0.8 148.30�NaN� 191.70�NaN� 191.60�NaN� 1.29 �NaN�
0.4 71.89�2.06� 94.03�2.04� 93.28�2.05� 0.47�2.74�
0.2 38.36�1.87� 49.88�1.89� 50.20�1.86� �0.44��1.07�
0.1 20.03�1.92� 25.21�1.98� 24.97�2.01� �0.20�2.20�

TABLE VI. �System 1� The L1-distance for the histograms compared with
the SSA. For tauleap, the distance is doubled when step size is doubled. This
is reasonable because it has first order accuracy for all moments. For other
methods there is no obvious order relation.

� Tauleap MP PRC GRC

0.8 1.750 0.069 0.073 0.063
0.4 1.112 0.022 0.023 0.026
0.2 0.600 0.010 0.011 0.017
0.1 0.306 0.007 0.005 0.004

TABLE VII. �System 2� Error of the mean, as shown by Fig. 3�a�.

� Tauleap MP PRC GRC

3.2 �138.099 �NaN� �15.074 �NaN� �14.640 �NaN� �14.634 �NaN�
1.6 �79.125�1.745� �4.780�3.153� �4.150�3.528� �4.171�3.509�
0.8 �43.816�1.806� �1.892�2.526� �1.160�3.578� �1.165�3.579�
0.4 �22.699�1.930� �1.120�1.690� �0.300�3.867� �0.303�3.851�
0.2 �11.562�1.963� �0.901�1.243� �0.090�3.333� �0.069�4.411�
0.1 �5.830�1.983� �0.807�1.117� �0.020�4.500� �0.016�4.183�

TABLE VIII. �System 2� Error of the variance, as shown by Fig. 3�b�.

� Tauleap MP PRC GRC

3.2 �939.632 �NaN� �592.069 �NaN� �591.310 �NaN� �170.086 �NaN�
1.6 �582.306�1.614� �312.914�1.892� �311.940�1.896� �47.846 �3.555�
0.8 �336.894�1.728� �164.700�1.900� �162.080�1.925� �13.645 �3.506�
0.4 �180.311�1.868� �84.503�1.949� �82.850�1.956� �3.348 �4.075�
0.2 �92.724�1.945� �43.492�1.943� �41.000�2.021� �0.574 �5.837�
0.1 �47.564�1.949� �23.118�1.881� �20.640�1.986� �0.346 �1.657�

TABLE IX. �System 2� The L1-distance for the histograms compared with
the SSA. The improvement in the accuracy of MP, PRC, and especially
GRC over the tauleap is significant for this system.

� Tauleap MP PRC GRC

0.8 0.769 0.050 0.044 0.028
0.4 0.387 0.020 0.023 0.014
0.2 0.203 0.020 0.015 0.005
0.1 0.107 0.021 0.014 0.005

TABLE X. �System 3� Error of the mean of X1, as shown by Fig. 5�a�.

� Tauleap MP PRC GRC1 GRC2

0.8 �29.35�NaN� 0.26�NaN� 7.66�NaN� 7.73�NaN� 7.67�NaN�
0.4 �12.45�2.36� 0.90�0.29� 1.83�4.19� 1.88�4.11� 1.81�4.24�
0.2 �5.71�2.18� 0.40�2.25� 0.43�4.26� 0.40�4.70� 0.38�4.76�
0.1 �2.74�2.08� 0.21�1.90� 0.12�3.58� 0.10�4.00� 0.09�4.22�

TABLE XI. �System 3� Error of the variance X1, as shown by Fig. 5�b�.

� Tauleap MP PRC GRC1 GRC2

0.8 61.99�NaN� 168.66�NaN� 168.44�NaN� 124.62�NaN� 39.47�NaN�
0.4 38.53�1.61� 89.16�1.89� 88.88�1.90� 26.71�4.67� 9.12�4.33�
0.2 16.63�2.32� 37.98�2.35� 38.51�2.31� 5.67�4.71� 2.18�4.18�
0.1 8.95�1.86� 16.91�2.25� 19.74�1.95� 2.97�1.91� 0.48�4.54�

TABLE XII. �System 3� Error of the mean of X2, as shown by Fig. 6�a�.

� Tauleap MP PRC GRC1 GRC2

0.8 6.27�NaN� �6.70 �NaN� �8.47�NaN� �8.46�NaN� �8.44�NaN�
0.4 3.10�2.02� �0.08�83.75� �0.89�9.52� �0.89�9.51� �0.91�9.27�
0.2 1.67�1.86� 0.40��0.20� �0.16�5.56� �0.20�4.45� �0.20�4.55�
0.1 0.88�1.90� 0.42�0.95� �0.03�5.33� �0.05�4.00� �0.05�4.00�
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TABLE XIII. �System �3�� Error of the variance X2, as shown by Fig. 6�b�.

� Tauleap MP PRC GRC1 GRC2

0.8 103.31 �NaN� 218.76 �NaN� 219.98 �NaN� 68.20 �NaN� 13.52 �NaN�
0.4 69.14 �1.49� 128.85 �1.70� 128.13 �1.72� 14.53 �4.69� �1.07 ��12.64�
0.2 29.45 �2.35� 56.06 �2.30� 56.30 �2.28� 2.86 �5.08� �0.30 �3.57�
0.1 13.27 �2.22� 25.51 �2.20� 25.79 �2.18� 0.96 �2.98� �0.36 �0.83�

TABLE XIV. �System 3, X1� The L1-distance for the histograms compared with the SSA. The MP, PRC, GRC1,
and GRC2 give similar results on histogram distance. Their improvement over tauleap is evident.

� Tauleap MP PRC GRC1 GRC2

0.8 0.845 0.111 0.241 0.237 0.235
0.4 0.376 0.065 0.080 0.058 0.054
0.2 0.177 0.029 0.030 0.014 0.012
0.1 0.086 0.013 0.015 0.008 0.007

TABLE XV. �System 3, X2� The L1-distance for the histograms compared with the SSA. When �=0.8, the
distances for all the methods are close, but as � gets smaller, GRC1 and GRC2 give better results.

� Tauleap MP PRC GRC1 GRC2

0.8 0.354 0.434 0.481 0.418 0.434
0.4 0.203 0.234 0.236 0.039 0.024
0.2 0.106 0.117 0.119 0.017 0.016
0.1 0.057 0.058 0.060 0.026 0.025

TABLE XVI. �System 4� Error of the mean of X1, as shown by Fig. 9�a�.

� Tauleap MP PRC GRC1 GRC2

0.04 �137.42�NaN� 9.01�NaN� 33.55�NaN� 48.02�NaN� 39.14 �NaN�
0.02 �57.88�2.37� 5.52�1.63� 8.02�4.18� 12.91�3.72� 11.57�3.38�
0.01 �22.99�2.52� 2.85�1.94� 7.58�1.06� 4.29�3.01� 2.44�4.74�
0.005 �11.79�1.95� 5.16�0.55� 2.50�3.03� 1.58�2.72� 0.04�61.00�

TABLE XVII. �System 4� Error of the variance X1, as shown by Fig. 9�b�.

� Tauleap MP PRC GRC1 GRC2

0.04 �481 902.97�NaN� �79 168.90�NaN� �41 920.25�NaN� 392 130.51 �NaN� 124 655.17 �NaN�
0.02 �239 708.57�2.01� �49 304.18�1.61� �52 396.39�0.80� 103 463.86�3.79� 30 397.63�4.10�
0.01 �123 456.45�1.94� �30 703.45�1.61� �26 553.29�1.97� 19 967.65�5.18� 13 283.21�2.29�
0.005 �67 855.77�1.82� �14 223.73�2.16� �11 196.76�2.37� �5785.42��3.45� �3896.82��3.41�

TABLE XVIII. �System 4� Error of the mean of X7, as shown by Fig. 10�a�.

� Tauleap MP PRC GRC1 GRC2

0.04 1.60�NaN� �0.11�NaN� �0.32�NaN� �0.70�NaN� �0.47�NaN�
0.02 0.69�2.32� �0.06�1.83� �0.06�5.33� �0.21�3.33� �0.14�3.36�
0.01 0.27�2.56� �0.03�2.00� �0.09�0.67� �0.05�4.20� �0.05�2.80�
0.005 0.15�1.80� �0.07�0.43� �0.02�4.50� �0.06�0.83� �0.02�2.50�
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TABLE XIX. �System 4� Error of the variance X7, as shown by Fig. 10�b�.

� Tauleap MP PRC GRC1 GRC2

0.04 159.39�NaN� 362.48�NaN� 370.83�NaN� 196.34 �NaN� �22.30�NaN�
0.02 48.09�3.31� 142.70�2.54� 141.37�2.62� 29.50�6.66� �7.12�3.13�
0.01 19.91�2.42� 62.80�2.27� 61.38�2.30� 5.47�5.39� �1.10�6.47�
0.005 9.18�2.17� 27.08�2.32� 30.37�2.02� �1.58��3.46� �0.78�1.41�

TABLE XX. �System 4, X1� The L1-distance for the histograms compared with the SSA.

� Tauleap MP PRC GRC1 GRC2

0.04 0.066 0.012 0.015 0.041 0.017
0.02 0.031 0.008 0.008 0.012 0.006
0.01 0.015 0.005 0.006 0.004 0.004
0.005 0.009 0.005 0.005 0.004 0.004

TABLE XXI. �System 4, X7� The L1-distance for the histograms compared with the SSA.

� Tauleap MP PRC GRC1 GRC2

0.04 0.099 0.190 0.194 0.104 0.029
0.02 0.033 0.086 0.085 0.031 0.022
0.01 0.014 0.040 0.040 0.022 0.021
0.005 0.007 0.018 0.019 0.022 0.021

TABLE XXII. The error of the mean for X= �X1 ,X2 , . . . ,X8� at t=3 with �=0.01, where � is the parameter in
the leap-size selection procedure. The sample size is 106. Still, the sample mean and variance obtained from the
SSA is considered as the exact value. “Steps” is the averaged time steps needed in one simulation.

Method X1 X2 X3 X4 X5 X6 X7 X8 Steps

Tauleap �29.94 14.23 �1.20 0.50 0.17 0.93 0.40 �0.90 124.41
MP �0.96 �4.35 0.02 �0.12 �0.05 �0.08 0.03 0.09 126.01
PRC 0.87 �5.38 0.13 �0.17 �0.07 �0.16 0.02 0.15 125.99
GRC1 6.02 4.26 0.28 0.21 �0.30 �0.08 �0.16 �0.04 122.78
GRC2 �3.30 2.63 �0.10 0.13 �0.12 0.12 �0.01 �0.13 121.55

TABLE XXIII. The error of the variance with �=0.01. The result of MP and PRC is very good, except for X5

and X7 where the errors are still large for both methods. The error of the variance of GRC1 is still very large
here. The result of GRC2 is more accurate than others.

Method X1 X2 X3 X4 X5 X6 X7 X8

Tauleap �168 088.49 �103 188.48 �209.30 �105.55 104.74 �216.88 110.03 �174.23
MP �57 954.72 �47 756.14 7.06 25.45 189.52 �7.91 210.15 24.66
PRC �51 985.41 �41 925.67 21.98 38.21 190.80 11.16 210.75 46.35
GRC1 149 537.88 109 554.75 235.22 186.80 53.02 283.72 77.46 283.88
GRC2 13 307.03 8857.88 22.18 13.74 �12.96 23.66 �22.98 14.57

TABLE XXIV. The error of the mean with �=0.005. Here all the methods can capture the mean very well,
except for tauleap where there is still some noticeable error in X1.

Method X1 X2 X3 X4 X5 X6 X7 X8 Steps

Tauleap �6.97 1.99 �0.29 0.10 0.03 0.17 0.10 �0.20 398.01
MP 5.15 �5.55 0.20 �0.15 �0.02 �0.28 �0.09 0.24 397.86
PRC 1.65 �2.30 0.08 �0.03 �0.03 �0.15 �0.03 0.06 397.90
GRC1 0.79 �1.16 0.05 0.00 �0.08 �0.07 �0.06 0.06 397.56
GRC2 2.75 �3.13 0.12 �0.05 �0.04 �0.18 �0.04 0.09 397.51
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Ex�Xtn+� − Xtn
� = ��

j=1

M

� jaj +
�2

2 �
j=1

M

�
k=1

M

� jak	 jk + O��3�

�A2�

for the mean and

Ex��Xtn+� − Xtn
�2�

= ��
j=1

M

� j
2aj + ���

j=1

M

� jaj�2

+
�2

2 �
j=1

M

�
k=1

M

� j
2ak	 jk

+
�2

2 �
j=1

M

�
k=1

M

� j�kaj	kj +
�2

2 �
j=1

M

�
k=1

M

� j�kak	 jk + O��3�

�A3�
for the second moment.

APPENDIX B: PROOF OF PROPOSITION 1

To prove the second order consistency for the mean, we
just need to verify that Eq. �5� holds for p=1, q=2. From
Eq. �4�, we have

Ex�Xn+1 − Xn� = Ex�Er�� · r + � · r̃��

= Ex�� · r� + Ex�Er�� · r̃��

= �
j=1

M

� jEx�rj� + �
j=1

M

� jEx�Er�r̃ j��

= ��
j=1

M

� jaj +
�2

2 �
j=1

M

�
k=1

M

� jak	 jk + O��3� .

Comparing it with Eq. �A2� we see that the difference is of
O��3�. Thus Eq. �5� has been verified for p=1, q=2, which
completes the proof.

APPENDIX C: PROOF OF PROPOSITION 2

By Definition 1, if the numerical scheme for solving
chemical reaction system �1�

Xn+1 = Xn + � · r�

is second order consistent for the covariance of X, then

Covx�Xtn+� − Xtn
� = Covx�Xn+1 − Xn� + O��3� .

On the one hand, from Eqs. �A2� and �A3�, we have

Covx�Xtn+� − Xtn
�

= ��
j=1

M

� j
2aj +

�2

2 �
j=1

M

�
k=1

M

� j
2ak	 jk +

�2

2 �
j=1

M

�
k=1

M

� j�kaj	kj

+
�2

2 �
j=1

M

�
k=1

M

� j�kak	 jk + O��3� � ��P + Q��T + O��3� ,

where �= ��1 , . . . ,�M� is a N�M matrix,

P = diag��a1 +
�2

2 �
k=1

M

ak	1k, . . . ,�aM +
�2

2 �
k=1

M

ak	Mk�
is a M �M diagonal matrix and

Q =�
�2a1	11

�2

2
�a2	12 + a1	21� . . .

�2

2
�aM	1M + a1	M1�

�2

2
�a2	12 + a1	21� � . . . ]

] . . . � ]

�2

2
�aM	1M + a1	M1� . . . . . . �2aM	MM

�

TABLE XXV. The error of the variance with �=0.005. Here GRC1 and GRC2 achieve relatively the same
accuracy, which is much better than the other three methods.

Method X1 X2 X3 X4 X5 X6 X7 X8

Tauleap �60 025.15 �39 320.80 �76.77 �42.25 21.32 �91.97 21.24 �72.42
MP �13 060.29 �16 769.64 �2.31 �4.59 45.73 �10.69 50.52 �2.51
PRC �16 376.93 �14 449.99 �4.37 3.29 45.81 �8.75 52.15 8.44
GRC1 2340.39 �3872.82 3.16 �2.34 1.89 1.00 2.62 �0.94
GRC2 �2252.49 �4748.28 �4.86 �2.71 �0.93 �7.51 �1.98 �5.27
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is a M �M symmetric matrix. On the other hand, by using
the condition that rj

� and rk
� are mutually independent for j

�k, we obtain

Covx�Xn+1 − Xn� = Covx��
j=1

M

� jrj
��

= �
j=1

M

� j
2 Varx�rj

�� = �D�T,

where

D = diag�Varx�r1
��, . . . ,Varx�rM

� ��

is an M �M diagonal matrix. So to achieve second order
consistency, we need,

��P + Q − D��T = O��3� .

This is a system of N�N equations with
�Varx�r1

�� , . . . ,Varx�rM
� �� being the M unknowns. Since N

�N may greater than M, in general, there could be no solu-
tion which means second order consistency cannot be
achieved. Another derivation is that if the diagonal matrix D
has expansion D=�D1+�2D2+O��3�, then for general
choices of � there will be no solution for the matrix equa-
tions obtained by comparing each order of �. This completes
the proof.

APPENDIX D: PROOF OF PROPOSITION 3

From Remark 2, we need to check Eq. �5� for p=1 and 2
with q=2. The case of p=1 has already been proved in
Proposition 1 if condition 1 holds. So the proof would be
finished if we can check

Ex��Xn+1 − Xn�2� = Ex��Xtn+� − Xtn
�2� + O��3� . �D1�

On the left hand side,

Ex��Xn+1 − Xn�2�

= Ex���
j=1

M

� jrj + �
j=1

M

� jr̃ j�2�
= �

j=1

M

� j
2Ex�rj

2� + �
j=1

M

�
k=1, k�j

M

� j�kEx�rjrk�

+ �
j=1

M

� j
2Ex�Er�r̃ j

2�� + �
j=1

M

�
k=1, k�j

M

� j�kEx�Er�r̃ jr̃k��

+ �
j=1

M

�
k=1

M

� j�kEx�rjEr�r̃k�� + �
j=1

M

�
k=1

M

� j�kEx�rkEr�r̃ j�� .

�D2�

Substituting rj =P j�aj�� and applying Ex�rjrk�=Ex�rj�Ex�rk�
for j�k, the second line of Eq. �D2� becomes

��
j=1

M

� j
2aj + ���

j=1

M

� jaj�2

.

By condition 2, the second term in the third line is of the
order of O��3� and can be dropped off. Substituting condi-
tions 3 and 4 into the above equation, we obtain

Ex��Xn+1 − Xn�2�

= ��
j=1

M

� j
2aj + ���

j=1

M

� jaj�2

+
�2

2 �
j=1

M

�
k=1

M

� j
2ak	 jk

+
�2

2 �
j=1

M

�
k=1

M

� j�kaj	kj +
�2

2 �
j=1

M

�
k=1

M

� j�kak	 jk + O��3� .

Comparing it with Eq. �A3�, we see that all the O��� and
O��2� terms are identical, which completes the proof.

APPENDIX E: VERIFY CONDITIONS IN PROPOSITION
3 FOR GRC1

Here we will verify that under conditions �10� and �11�,
r̃ satisfy all the conditions in Proposition 3.

Condition 1. Ex�Er�r̃ j��= ��2 /2��k=1
M ak	 jk.

Taking expectation Ex on both sides of Eq. �10�, we have

Ex�Er�r̃ j�� = Ex� �

2�
k=1

M

rk	 jk� + Ex� �

2 �
	jk�0

ak

aj
rj	 jk�

−
�

2 �
	jk�0

�ak	 jk.

Since aj and 	 jk depend only on X, when taking expectation
Ex they can be treated as constants, which gives

Ex�Er�r̃ j�� =
�2

2 �
k=1

M

ak	 jk +
�2

2 �
	jk�0

ak	 jk −
�2

2 �
	jk�0

ak	 jk

=
�2

2 �
k=1

M

ak	 jk,

which is just the first condition.
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Condition 2. For j�k, Ex�Er�r̃ jr̃k��=O��3�.

Ex�Er�r̃ jr̃k�� = Ex�Er�r̃ j�Er�r̃k�� =
�2

4
��

l=1

M

�
m=1

M

	 jl	kmEx�rlrm� + �
l=1

M

�
	km�0

am

ak
	 jl	kmEx�rlrk�� − �

l=1

M

�
	km�0

�am	 jl	kmEx�rl�

+ �
	jl�0

�
m=1

M
al

aj
	 jl	kmEx�rjrm� + �

	jl�0
�

	km�0

alam

ajak
	 jl	kmEx�rjrk� − �

	jl�0
�

	km�0

alam

aj
�	 jl	kmEx�rj�

− �
	jl�0

�
m=1

M

�al	 jl	kmEx�rm� − �
	jl�0

�
	km�0

alam

ak
�	 jl	kmEx�rk� + � �

	jl�0
�

	km�0
�2alam	 jl	km� .

It is easy to check that each term on the right hand side in the
above equation is at least of the order of O���, thus the
second condition is satisfied.

Condition 3. For j�k, Ex�rjEr�r̃k��= ��2 /2�aj	kj +O��3�.
Substituting Eq. �10�, we have

Ex�rjEr�r̃k�� =
�

2�
l=1

M

Ex�rjrl�	kl +
�

2 �
	kl�0

al

ak
Ex�rjrk�	kl

−
�

2 �
	kl�0

Ex�rj��al	kl.

All the terms are of O��3� except for the first term with l
= j, so it gives

Ex�rjEr�r̃k�� =
�2

2
aj	kj + O��3� ,

which is just the third condition.
Condition 4. Ex�Er�r̃ j

2��+2Ex�rjEr�r̃ j��= ��2 /2��k=1
M ak	 jk

+�2aj	 j j +O��3�.
It can be checked in the same way as checking

Ex�Er�r̃ jr̃k��=O��3� that Ex�Er�r̃ j�2�=O��3�. From Eq. �11� it
follows that

Ex�Er�r̃ j
2�� = Ex�Varr�r̃ j�� + Ex�Er�r̃ j�2�

=
�2

2 �
k=1

M

ak�	 jk� + O��3� . �E1�

Substituting Eq. �10�, we have

Ex�rjEr�r̃ j�� =
�

2�
k=1

M

Ex�rjrk�	 jk +
�

2 �
	jk�0

ak

aj
Ex�rj

2�	 jk

−
�

2 �
	jk�0

Ex�rj��ak	 jk

=
�2

2
aj	 j j +

�2

2 �
	jk�0

ak	 jk + O��3� . �E2�

With Eqs. �E1� and �E2�, we obtain

Ex�Er�r̃ j
2�� + 2Ex�rjEr�r̃ j��

=
�2

2 �
k=1

M

ak�	 jk� + �2aj	 j j +
�2

2 �
k=1

M

ak�	 jk − �	 jk�� + O��3�

=
�2

2 �
k=1

M

ak	 jk + �2aj	 j j + O��3� ,

which is exactly the last condition.
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