Topics in Stochastic Modeling and Simulations

Topic (2017): Rare Events: Theory and Computation

Instructor: Tiejun Li (Peking Univ., http://dsec.pku.edu.cn/~tieli)

Course Outline:

Lect01: Introduction: Formulation, examples and issues

Part 1: Zero temperature regime

Lect02: Gradient system:

Path integral and LDT (diffusion process),

Transition path: MAM, NEB, String method etc.

Lect03: Transition rate asymptotics: 1D and Multi-D

Lect04: Saddle points finding: Dimer, GAD etc.

Lect05: Non-gradient system:

Chemical reaction kinetics, large volume limit,

Path integral and LDT (jump process)

Lect06: Energy landscape and gMAM

Lect07: Non-gradient system: difficulties and unsolved issues

Lect08: Spectral theory approach

Lect09: Onsager-Machlup and Freidlin-Wentzell dilemma

Part 2: Finite temperature case

Lect10: Potential Theory for Markov processes: I

Lect11: Potential Theory for Markov processes: II

Lect12: Transition path theory: Diffusion and jump case

Lect13: Finite temperature string method

Lect14: Markov state modeling: I (Formulation and computation)

Lect15: Markov state modeling: II (Analysis and applications)

Part 3: Sampling approach

Lect16: Accelerated MD, TAMD, AFED etc.

Lect17: Umbrella sampling, meta-dynamics, replica exchange etc.

Topics to be covered: rare events on manifold, multiscale system, max-flux formulation, meta-stability theory, ...