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Constrained optimization

I Suppose an investor own a block of S shares that we want to sell over the

next N days. The total expected value of our shares is

V (s) =
N∑

t=1

ptst

where (s1, · · · , sN ) is the amount that we sell on each day and

(p1, · · · , pN ) are the prices on each day. Moreover, the price pt follows the

following dynamics

pt = pt−1 + αst, t = 1, · · · , N

How should the investor sell his block of shares ?

I Mathematical formulation:

max
N∑

t=1

ptst

Subject to the constraint
N∑

t=1

st = S, pt = pt−1+αst, st ≥ 0, t = 1, · · · , N ;

I A constrained nonlinear optimization.
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0-1 Knapsack problem

I The thief wants to steal n items. The i-th item weights wi and has value

vi. The problem is to take most valuable load with limit of weight W .

I Mathematical formulation:

max V =

n∑
j=1

vjxj

n∑
j=1

wjxj ≤ W

xj = 0 or 1, j = 1, . . . , n

I xj must be integers. An integer programming problem.
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Assignment problem

I Assign n persons to finish n jobs. The cost for the i-th person to do j-th

job is cij . Find the optimal assignment procedure to minimize the cose.

I Mathematical formulation: Define xij = 1 if the i-th person does j-th job,

and xij = 0 otherwise, then

max z =

n∑
i=1

n∑
j=1

cijxij

n∑
j=1

xij = 1, i = 1, . . . , n

n∑
i=1

xij = 1, j = 1, . . . , n

xij = 0 or 1, i, j = 1, . . . , n

I A 0-1 integer programming problem.
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General formulation for constrained nonlinear optimization

I General form

min f(x)

gi(x) ≤ 0, i = 1, 2, . . . , m

hj(x) = 0, j = 1, 2, . . . , p

x ∈ X ⊂ Rn, x = (x1, x2, . . . , xn)

and call the set

S =
{

x|gi(x) ≤ 0, i = 1, 2, . . . , m; hj(x) = 0, j = 1, 2, . . . , p; x ∈ X
}

the feasible solution of the problem.



Examples Constrained optimization Integer programming

Penalty method

I The idea of penalty method is to convert the constrained optimization

problem into an unconstrained optimization problem by introducing a

penalty term.

I Define the penalty function

F (x, M) = f(x) + Mp(x)

M > 0 is called penalty factor, p(x) is called penalty term. In general

p(x) ≥ 0 for arbitrary x ∈ Rn and p(x) = 0 iff x ∈ S.
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Penalty method

I For equality constrain define

g+
j (x) = (hj(x))2, j = 1, 2, . . . , p

and for inequality constrain define

g+
i+p(x) =

{
0, gi(x) ≤ 0

(gi(x))2, gi(x) > 0

for i=1,2,. . . ,m.

I Define L = p + m and the penalty function

F (x, Mk) = f(x) + Mk

L∑
i=1

g+
i (x)

where Mk > 0 and

M1 < M2 < · · · < Mk < · · · → +∞
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Penalty method

I If Mk � 1 and if the penalty function

F (x, Mk) = f(x) + Mkp(x)

is minimized, this will force the penalty term

p(x) ≈ 0.

Otherwise Mk will amplify many times!! That’s why it is called penalty

method.

I In general, take

Mk+1 = cMk, c ∈ [4, 50]
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Algorithm for penalty method

1. Take M1 > 0, tolerance ε > 0, Initial sate x0, set k = 1;

2. Solve the unconstrained optimization

min F (x, Mk) = f(x) + Mk

L∑
i=1

g+
i (x)

with initial data xk−1, and the solution is xk;

3. Define

τ1 = max{|hi(xk)|}, τ2 = max{gi(xk)}

and τ = max{τ1, τ2};

4. If τ < ε, over; otherwise, set Mk+1 = cMk, k = k + 1, return to step 2.
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Barrier method

I Barrier method is suitable for optimization as

min f(x), s.t. x ∈ S

where S is a set characterized only by inequality constraints

S =
{

x|gi(x) ≤ 0, i = 1, 2, . . . , m
}

I Graphical interpretation of barrier method
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Barrier method

I Define barrier term B(x) such that

B(x) ≥ 0 and B(x) →∞ as x → boundary of S

I Inverse barrier term

B(x) =

m∑
i=1

g+
i (x)

and

g+
i (x) = − 1

gi(x)

I Logarithmic barrier term

g+
i (x) = − ln(−gi(x))

I Barrier function

F (x, rk) = f(x) + rkB(x)

where

rk > 0, r1 > r2 > · · · > rk > · · · → 0.
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Barrier method

I Though the formulation of barrier method

F (x, r) = f(x) + rB(x), x ∈ S

is still a constrained optimization, but the property

F (x, r) →∞ as x → boundary of S

makes the numerical implementation an unconstrained problem.

I The implementation will be an iteration (c ∈ [4, 10])

rk+1 = rk/c

until some type of convergence criterion is satisfied.
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Discrete optimization

I Integer programming is a typical case in discrete optimization. There are

large amount of discrete optimization problems in graph theory and

computer science.

I Discrete optimization models are, except for some special cases, are

extremely hard to solve in practice. They are NP-Hard problem. (Is

NP=P? This is a million dollar problem.)

I Unfortunately there are no general widely applicable methods for solving

discrete problems. But there are some common themes such as relaxation,

branch-and-bound etc.

I There are some heuristic ideas such as local search methods, simulated

annealing, genetic algorithms etc.
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Integer linear programming

I General form

max z = cT x

Ax ≤ b, x ≥ 0, xi ∈ I, i ∈ J ⊂ {1, 2, · · · , n}

where

x = (x1, x2, · · · , xn), c = (c1, c2, · · · , cn)

b = (b1, b2, · · · , bm), A = (aij)m×n, I = {0, 1, 2, . . .}

If J = {1, 2, · · · , n}, it is a pure integer programming. If

J 6= {1, 2, · · · , n}, it is a mixed integer programming problem.
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Relaxation and decomposition

I Relaxation: the problem obtained after relaxing some constrained condition

is called relaxation problem of the primitive problem. For example we

obtain the linear programming after relaxing the integer constraints.

I Decomposition: define R(P ) the feasible solution set of problem (P ). If

∪m
i=1R(Pi) = R(P )

R(Pi) ∩R(Pj) = ∅ (1 ≤ i 6= j ≤ m),

we call the subproblems (P1), (P2), · · · , (Pm) a decomposition of (P ).
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Example

I Example

max z = 5x1 + 8x2

x1 + x2 ≤ 6, 5x1 + 9x2 ≤ 45

x1, x2 ∈ I = N ∪ {0}

I Relaxation: let x1, x2 ≥ 0, it is a linear programming problem, the

optimum is x = (2.25, 3.75) which does NOT belong to I!

I Decomposition: decompose the range of x2 into

x2 ≥ 4 or x2 ≤ 3.

We obtain two subproblems.
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Branch-and-bound

I The basic framework of Branch-and-bound method is as follows

1. Upper Bounds: Efficient methods for determining a good upper

bound UB(P );

2. Branching Rules: Methods for replacing an instance (P ) of the

discrete optimization problem with some further “smaller”

subproblems (Pl) such that some optimal solution of (P ) maps to an

optimal solution of a subproblem (Pl).

3. Lower Bounds: Efficient heuristics that attempt to determine a

feasible candidate solution S with as low a value as is practical,

yielding the lower bound LB(P ).
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Some definitions

I Define the floor and ceil function for any a ∈ R

bac := The integer nearest to a but less than a

dae := The integer nearest to a but bigger than a

It’s clear that

0 ≤ a− bac < 1, 0 ≤ dae − a < 1

I Examples

b−1

7
c = −1, b 1

28
c = 0, b7

4
c = 1

d−1

7
e = 0, d 1

28
e = 1, d7

4
e = 2
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Branching rules

I Define the optimal solution of the linear-programming relaxation as

x∗ = (x1, x2, · · · , xn)

I Branching rule: We choose a variable x∗k /∈ Z. We branch by creating two

new subproblems:

1. (P’) together with the additional inequality

xk ≤ bx∗kc

2. (P’) together with the additional inequality

xk ≥ dx∗ke
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Branch-and-bound: an example

I Example

max z = −x1 + x2

Subject to

12x1 + 11x2 ≤ 63

−22x1 + 4x2 ≤ −33

x1, x2 ≥ 0, x1, x2 ∈ Z

z=1.29
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Branch-and-bound: an example

I First solve the relaxation problem we have

Subprogram z∗ x∗1 x∗2

IP 1.29 2.12 3.41

Then the lower and upper bounds

LB = −∞, UB = 1.29

I Branching x1 we have two subprograms and solve the relaxation problems

respectively

Subprogram z∗ x∗1 x∗2

IP with x1 ≤ 2 0.75 2.00 2.75

IP with x1 ≥ 3 -0.55 3.00 2.45
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Branch-and-bound: an example

z=−0.55

z=0.75
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Branch-and-bound: an example

I Branching x2 of IP with x1 ≤ 2 and solve the relaxation problem

Subprogram z∗ x∗1 x∗2

IP with x1 ≤ 2, x2 ≤ 2 0.14 1.86 2.00

IP with x1 ≤ 2, x2 ≥ 3 - - -

I Thus we have subprograms

Subprogram z∗ x∗1 x∗2

IP with x1 ≥ 3 -0.55 3.00 2.45

IP with x1 ≤ 2, x2 ≤ 2 0.14 1.86 2.00

and

LB = −∞, UB = 0.14
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Branch-and-bound: an example

I Branching x1 of IP with x1 ≤ 2, x2 ≤ 2 we have

Subprogram z∗ x∗1 x∗2

IP with x1 ≤ 2, x2 ≤ 2, x1 ≤ 1 - - -

IP with x1 ≤ 2, x2 ≤ 2, x1 ≥ 2 0.00 2.00 2.00

and because x∗ ∈ Z in the subprogram, we have

LB = 0.00, UB = 0.14

I Because −0.55 < LB = 0.00, the subprogram

IP with x1 ≥ 3

is deleted.

I So finally we have the optimal solution

x∗ = (2, 2), z∗ = 0.00
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Cutting-plane method

I A cutting-plane is a linear inequality that is generated as needed in the

course of solving an integer linear program as a sequence of linear

programs.

I Generic cutting-plane method

1. Initially let LP be the linear programming relaxation of IP ;

2. Let x∗ be an optimal extreme-point solution of LP ;

3. If x∗ is all integer, then stop because x∗ is optimal to IP ;

4. If x∗ is not all integer, then find an inequality that is satisfied by all

feasible solutions of IP , but is violated by x∗, append the inequality

to LP , and go to step 2.
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Gomory cutting-plane

I For an equality constraints

x1 + (−1

7
)x3 +

1

28
x4 =

7

4

Perform transformation

b1cx1 + b−1

7
cx3 + b 1

28
cx4 − b7

4
c = (b1c − 1)x1

+(b−1

7
c+

1

7
)x3 + (b 1

28
c − 1

28
)x4 +

7

4
− b7

4
c
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Gomory cutting-plane

I We have

x1 − x3 − 1 = −6

7
x3 −

1

28
x4 +

3

4

I Because

1. x1, x3 are integers from the left hand side;

2. x3, x4 ∈ N ∪ {0} from the righthand side;

we have the cutting plane

−6

7
x3 −

1

28
x4 +

3

4
≤ 0

or equivalently

x1 − x3 − 1 ≤ 0

I Generating the inequality from the lower floor decomposition technique is

called Gomory cutting plane method.
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Concrete example of Gomory cutting plane method

I Example

min z = −x1 − 27x2

−x1 + x2 ≤ 1

24x1 + 4x2 ≤ 25

x1, x2 ≥ 0, x1, x2 ∈ I

I Transform into standard form and make relaxation

min z = −x1 − 27x2

−x1 + x2 + x3 = 1

24x1 + 4x2 + x4 = 25

x1, x2 ≥ 0
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Concrete example of Gomory cutting plane method

I Simplex method for optimal solution

Basis a1 a2 a3 a4 b

a2 0 1 6
7

1
28

7
4

a1 1 0 − 1
7

1
28

3
4

i.e. we have

x∗ = (
3

4
,
7

4
)

I x∗ /∈ Z, we determine the cutting plane

3

4
− 6

7
x3 −

1

28
x4 ≤ 0

Transform into standard form we have

−24x3 − x4 + x5 = −21

And supplement this constraint into the primitive constraints.



Examples Constrained optimization Integer programming

Concrete example of Gomory cutting plane method

I Simplex method for optimal solution

Basis a1 a2 a3 a4 a5 b

a2 0 1 0 0 1
28

1

a1 1 0 0 1
24

− 1
168

7
8

a3 0 0 1 1
24

− 1
24

7
8

i.e. we have

x∗ = (
7

8
, 1)

I x∗ /∈ Z, we determine the cutting plane

7

8
− 1

24
x4 −

23

24
x5 ≤ 0

Transform into standard form we have

−x4 − 23x5 + x6 = −21

And supplement this constraint into the primitive constraints.
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Concrete example of Gomory cutting plane method

I Simplex method for optimal solution

Basis a1 a2 a3 a4 a5 a6 b

a2 0 1 0 0 1
28

0 1

a1 1 0 0 0 − 27
28

1
24

0

a3 0 0 1 0 −1 1
24

0

a4 0 0 0 1 23 −1 21

i.e. we have

x∗ = (0, 1)

I x∗ ∈ Z, so we obtain the optimal solution

x∗ = (0, 1), z∗ = −27
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The geometric meaning of Gomory cutting plane

Transforming the cutting plane into planes with primitive varibales x1, x2, we

have the cutiting plane equations

Cutting plane 1 x2 ≤ 1

Cutting plane 2 x1 + 27x2 ≤ 27

x  =1(0,1)
(7/8,1)

(3/4,7/4)

x  +27x  =271 2

2
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