Lecture 8 Constrained optimization and integer programming

Weinan $\mathsf{E}^{1,2}$ and Tiejun Li^2

¹Department of Mathematics, Princeton University, weinan@princeton.edu

²School of Mathematical Sciences, Peking University, *tieli@pku.edu.cn* No.1 Science Building, 1575

Outline

Examples

Constrained optimization

Integer programming

▲□▶ ▲圖▶ ▲ 둘▶ ▲ 董▶ · 董 · · 의۹ @

Constrained optimization

Suppose an investor own a block of S shares that we want to sell over the next N days. The total expected value of our shares is

$$V(\boldsymbol{s}) = \sum_{t=1}^{N} p_t s_t$$

where (s_1, \cdots, s_N) is the amount that we sell on each day and (p_1, \cdots, p_N) are the prices on each day. Moreover, the price p_t follows the following dynamics

$$p_t = p_{t-1} + \alpha s_t, \quad t = 1, \cdots, N$$

How should the investor sell his block of shares ?

Mathematical formulation:

$$\max \sum_{t=1}^{N} p_t s_t$$

 $\label{eq:subject} \text{Subject to the constraint} \ \sum_{t=1}^N s_t = S, \ p_t = p_{t-1} + \alpha s_t, \ s_t \geq 0, \ t = 1, \cdots, N;$

A constrained nonlinear optimization.

イロト 不得下 イヨト イヨト 三臣 うらの

0-1 Knapsack problem

- The thief wants to steal n items. The i-th item weights w_i and has value v_i. The problem is to take most valuable load with limit of weight W.
- Mathematical formulation:

$$\max V = \sum_{j=1}^{n} v_j x_j$$
$$\sum_{j=1}^{n} w_j x_j \le W$$
$$x_j = 0 \text{ or } 1, \quad j = 1, \dots, n$$

• x_j must be integers. An integer programming problem.

イロト 不得下 イヨト イヨト 三臣 うらの

Assignment problem

- Assign n persons to finish n jobs. The cost for the *i*-th person to do *j*-th job is c_{ij}. Find the optimal assignment procedure to minimize the cose.
- ▶ Mathematical formulation: Define x_{ij} = 1 if the *i*-th person does *j*-th job, and x_{ij} = 0 otherwise, then

$$\max z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = 1, i = 1, \dots, n$$

$$\sum_{i=1} x_{ij} = 1, j = 1, \dots, n$$

$$x_{ij} = 0 \text{ or } 1, \ i, j = 1, \dots, n$$

► A 0-1 integer programming problem.

Outline

Examples

Constrained optimization

Integer programming

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

General formulation for constrained nonlinear optimization

General form

 $\min f(oldsymbol{x})$ $g_i(oldsymbol{x}) \leq 0, \hspace{0.2cm} i=1,2,\ldots,m$ $h_j(oldsymbol{x})=0, \hspace{0.2cm} j=1,2,\ldots,p$ $oldsymbol{x} \in X \subset \mathbb{R}^n, oldsymbol{x}=(x_1,x_2,\ldots,x_n)$

and call the set

$$S = \left\{ \boldsymbol{x} | g_i(\boldsymbol{x}) \le 0, \ i = 1, 2, \dots, m; h_j(\boldsymbol{x}) = 0, \ j = 1, 2, \dots, p; \ \boldsymbol{x} \in X \right\}$$

the feasible solution of the problem.

イロト 不得下 イヨト イヨト 三臣 うらの

Penalty method

- The idea of penalty method is to convert the constrained optimization problem into an unconstrained optimization problem by introducing a penalty term.
- Define the penalty function

$$F(\boldsymbol{x}, M) = f(\boldsymbol{x}) + Mp(\boldsymbol{x})$$

M > 0 is called penalty factor, p(x) is called penalty term. In general $p(x) \ge 0$ for arbitrary $x \in \mathbb{R}^n$ and p(x) = 0 iff $x \in S$.

Penalty method

For equality constrain define

$$g_j^+(\boldsymbol{x}) = (h_j(\boldsymbol{x}))^2, \ j = 1, 2, \dots, p$$

and for inequality constrain define

$$g^+_{i+p}(m{x}) = \left\{egin{array}{cc} 0, & g_i(m{x}) \leq 0 \ (g_i(m{x}))^2, & g_i(m{x}) > 0 \end{array}
ight.$$

for $i=1,2,\ldots,m$.

• Define L = p + m and the penalty function

$$F(\boldsymbol{x}, M_k) = f(\boldsymbol{x}) + M_k \sum_{i=1}^{L} g_i^+(\boldsymbol{x})$$

where $M_k > 0$ and

 $M_1 < M_2 < \dots < M_k < \dots \to +\infty$

ション ふゆう メヨッ メヨッ マクシ

Penalty method

• If $M_k \gg 1$ and if the penalty function

$$F(\boldsymbol{x}, M_k) = f(\boldsymbol{x}) + M_k p(\boldsymbol{x})$$

is minimized, this will force the penalty term

 $p(\boldsymbol{x}) \approx 0.$

Otherwise M_k will amplify many times!! That's why it is called penalty method.

In general, take

$$M_{k+1} = cM_k, \ c \in [4, 50]$$

Algorithm for penalty method

- 1. Take $M_1 > 0$, tolerance $\epsilon > 0$, Initial sate x_0 , set k = 1;
- 2. Solve the unconstrained optimization

$$\min F(\boldsymbol{x}, M_k) = f(\boldsymbol{x}) + M_k \sum_{i=1}^{L} g_i^+(\boldsymbol{x})$$

with initial data x_{k-1} , and the solution is x_k ;

3. Define

$$au_1 = \max\{|h_i(\boldsymbol{x}_k)|\}, \ \ au_2 = \max\{g_i(\boldsymbol{x}_k)\}\$$

and $\tau = \max\{\tau_1, \tau_2\};$

4. If $\tau < \epsilon$, over; otherwise, set $M_{k+1} = cM_k$, k = k + 1, return to step 2.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ = · · · ○ Q @

ション ふゆう メヨッ メヨッ マクシ

Barrier method

Barrier method is suitable for optimization as

$$\min f(\boldsymbol{x}), \quad \text{s.t. } \boldsymbol{x} \in S$$

where S is a set characterized only by inequality constraints

$$S = \left\{ \boldsymbol{x} | g_i(\boldsymbol{x}) \le 0, \ i = 1, 2, \dots, m \right\}$$

Graphical interpretation of barrier method

Barrier method

$$B({m x}) \geq 0 \;\; {
m and} \;\; B({m x})
ightarrow \infty \;\; {
m as} \;\; {m x}
ightarrow {
m boundary} \; {
m of} \; S$$

Inverse barrier term

$$B(\boldsymbol{x}) = \sum_{i=1}^{m} g_i^+(\boldsymbol{x})$$

and

$$g_i^+(oldsymbol{x}) = -rac{1}{g_i(oldsymbol{x})}$$

Logarithmic barrier term

$$g_i^+(\boldsymbol{x}) = -\ln(-g_i(\boldsymbol{x}))$$

Barrier function

$$F(\boldsymbol{x}, r_k) = f(\boldsymbol{x}) + r_k B(\boldsymbol{x})$$

where

$$r_k > 0, \quad r_1 > r_2 > \dots > r_k > \dots \to 0.$$

ション ふゆう メヨッ メヨッ マクシ

Barrier method

Though the formulation of barrier method

$$F(\boldsymbol{x},r) = f(\boldsymbol{x}) + rB(\boldsymbol{x}), \boldsymbol{x} \in S$$

is still a constrained optimization, but the property

 $F({oldsymbol x},r)
ightarrow\infty$ as ${oldsymbol x}
ightarrow$ boundary of S

makes the numerical implementation an unconstrained problem.

• The implementation will be an iteration ($c \in [4, 10]$)

$$r_{k+1} = r_k/c$$

until some type of convergence criterion is satisfied.

Outline

Examples

Constrained optimization

Integer programming

イロト 不得下 イヨト イヨト 三臣 うらの

Discrete optimization

- Integer programming is a typical case in discrete optimization. There are large amount of discrete optimization problems in graph theory and computer science.
- Discrete optimization models are, except for some special cases, are extremely hard to solve in practice. They are NP-Hard problem. (Is NP=P? This is a million dollar problem.)
- Unfortunately there are no general widely applicable methods for solving discrete problems. But there are some common themes such as relaxation, branch-and-bound etc.
- There are some heuristic ideas such as local search methods, simulated annealing, genetic algorithms etc.

Integer linear programming

General form

$$\max z = c^T x$$

$$Ax \leq b, \ x \geq 0, \ x_i \in I, \ i \in J \subset \{1, 2, \cdots, n\}$$

where

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_n), \boldsymbol{c} = (c_1, c_2, \cdots, c_n)$$

 $\boldsymbol{b} = (b_1, b_2, \cdots, b_m), \quad \boldsymbol{A} = (a_{ij})_{m \times n}, \quad I = \{0, 1, 2, \ldots\}$

If $J = \{1, 2, \cdots, n\}$, it is a pure integer programming. If $J \neq \{1, 2, \cdots, n\}$, it is a mixed integer programming problem.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ─ のへで

ション ふゆう メヨッ メヨッ マクシ

Relaxation and decomposition

- Relaxation: the problem obtained after relaxing some constrained condition is called relaxation problem of the primitive problem. For example we obtain the linear programming after relaxing the integer constraints.
- **Decomposition**: define R(P) the feasible solution set of problem (P). If

 $\cup_{i=1}^{m} R(P_i) = R(P)$

$$R(P_i) \cap R(P_j) = \emptyset \ (1 \le i \ne j \le m),$$

we call the subproblems $(P_1), (P_2), \dots, (P_m)$ a decomposition of (P).

イロト 不得下 イヨト イヨト 三臣 うらの

Example

Example

$$\max z = 5x_1 + 8x_2$$
$$x_1 + x_2 \le 6, \quad 5x_1 + 9x_2 \le 45$$
$$x_1, x_2 \in I = \mathbb{N} \cup \{0\}$$

- ▶ Relaxation: let x₁, x₂ ≥ 0, it is a linear programming problem, the optimum is x = (2.25, 3.75) which does NOT belong to I!
- Decomposition: decompose the range of x_2 into

$$x_2 \ge 4$$
 or $x_2 \le 3$.

We obtain two subproblems.

イロト 不得下 イヨト イヨト 三臣 うらの

Branch-and-bound

- The basic framework of Branch-and-bound method is as follows
 - Upper Bounds: Efficient methods for determining a good upper bound UB(P);
 - Branching Rules: Methods for replacing an instance (P) of the discrete optimization problem with some further "smaller" subproblems (P_l) such that some optimal solution of (P) maps to an optimal solution of a subproblem (P_l).
 - 3. Lower Bounds: Efficient heuristics that attempt to determine a feasible candidate solution S with as low a value as is practical, yielding the lower bound LB(P).

Some definitions

• Define the floor and ceil function for any $a \in \mathbb{R}$

 $\lfloor a \rfloor :=$ The integer nearest to a but less than a

 $\lceil a \rceil :=$ The integer nearest to a but bigger than a

It's clear that

$$0 \le a - \lfloor a \rfloor < 1, \quad 0 \le \lceil a \rceil - a < 1$$

Examples

$$\lfloor -\frac{1}{7} \rfloor = -1, \ \lfloor \frac{1}{28} \rfloor = 0, \ \lfloor \frac{7}{4} \rfloor = 1$$

 $\lceil -\frac{1}{7} \rceil = 0, \ \lceil \frac{1}{28} \rceil = 1, \ \lceil \frac{7}{4} \rceil = 2$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

イロト 不得下 イヨト イヨト ニヨー つくや

Branching rules

Define the optimal solution of the linear-programming relaxation as

$$\boldsymbol{x}^* = (x_1, x_2, \cdots, x_n)$$

▶ Branching rule: We choose a variable x^{*}_k ∉ Z. We branch by creating two new subproblems:

1. (P') together with the additional inequality

 $x_k \le \lfloor x_k^* \rfloor$

2. (P') together with the additional inequality

$$x_k \ge \lceil x_k^* \rceil$$

Branch-and-bound: an example

Example

 $\max z = -x_1 + x_2$

Subject to

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ

イロト 不得下 イヨト イヨト ニヨー つくや

Branch-and-bound: an example

First solve the relaxation problem we have

Subprogram	z^*	x_1^*	x_2^*	
IP	1.29	2.12	3.41	

Then the lower and upper bounds

$$LB = -\infty, \quad UB = 1.29$$

 Branching x₁ we have two subprograms and solve the relaxation problems respectively

Subprogram	z^*	x_1^*	x_2^*
IP with $x_1 \leq 2$	0.75	2.00	2.75
IP with $x_1 > 3$	-0.55	3.00	2.45

Branch-and-bound: an example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Branch-and-bound: an example

• Branching x_2 of IP with $x_1 \leq 2$ and solve the relaxation problem

Subprogram	z^*	x_1^*	x_2^*
IP with $x_1 \leq 2, x_2 \leq 2$	0.14	1.86	2.00
IP with $x_1 \leq 2, x_2 \geq 3$	-	-	-

Thus we have subprograms

Subprogram	z^*	x_1^*	x_2^*
IP with $x_1 \geq 3$	-0.55	3.00	2.45
IP with $x_1 \leq 2, x_2 \leq 2$	0.14	1.86	2.00

and

$$LB = -\infty, \quad UB = 0.14$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

ション ふゆう メヨッ メヨッ マクシ

Branch-and-bound: an example

• Branching x_1 of IP with $x_1 \leq 2, x_2 \leq 2$ we have

Subprogram	z^*	x_1^*	x_2^*
IP with $x_1 \leq 2, x_2 \leq 2, x_1 \leq 1$	-	-	-
IP with $x_1 \leq 2, x_2 \leq 2, x_1 \geq 2$	0.00	2.00	2.00
and because $m^* \subset \mathbb{Z}$ in the subsystem was	have		

and because $x^* \in \mathbb{Z}$ in the subprogram, we have

LB = 0.00, UB = 0.14

• Because -0.55 < LB = 0.00, the subprogram

IP with $x_1 \ge 3$

is deleted.

So finally we have the optimal solution

 $x^* = (2,2), \quad z^* = 0.00$

イロト イポト イヨト イヨト ヨー つくで

Cutting-plane method

- A cutting-plane is a linear inequality that is generated as needed in the course of solving an integer linear program as a sequence of linear programs.
- Generic cutting-plane method
 - 1. Initially let LP be the linear programming relaxation of IP;
 - 2. Let x^* be an optimal extreme-point solution of LP;
 - 3. If x^* is all integer, then stop because x^* is optimal to IP;
 - If x* is not all integer, then find an inequality that is satisfied by all feasible solutions of IP, but is violated by x*, append the inequality to LP, and go to step 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Gomory cutting-plane

For an equality constraints

$$x_1 + \left(-\frac{1}{7}\right)x_3 + \frac{1}{28}x_4 = \frac{7}{4}$$

Perform transformation

$$\lfloor 1 \rfloor x_1 + \lfloor -\frac{1}{7} \rfloor x_3 + \lfloor \frac{1}{28} \rfloor x_4 - \lfloor \frac{7}{4} \rfloor = (\lfloor 1 \rfloor - 1) x_1$$
$$+ (\lfloor -\frac{1}{7} \rfloor + \frac{1}{7}) x_3 + (\lfloor \frac{1}{28} \rfloor - \frac{1}{28}) x_4 + \frac{7}{4} - \lfloor \frac{7}{4} \rfloor$$

イロト 不得下 イヨト イヨト ニヨー つくや

Gomory cutting-plane

We have

$$x_1 - x_3 - 1 = -\frac{6}{7}x_3 - \frac{1}{28}x_4 + \frac{3}{4}$$

Because

- 1. x_1, x_3 are integers from the left hand side;
- 2. $x_3, x_4 \in \mathbb{N} \cup \{0\}$ from the righthand side;

we have the cutting plane

$$-\frac{6}{7}x_3 - \frac{1}{28}x_4 + \frac{3}{4} \le 0$$

or equivalently

$$x_1 - x_3 - 1 \le 0$$

 Generating the inequality from the lower floor decomposition technique is called Gomory cutting plane method.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ

Concrete example of Gomory cutting plane method

Example

$$\min z = -x_1 - 27x_2$$
$$-x_1 + x_2 \le 1$$
$$24x_1 + 4x_2 \le 25$$
$$x_1, x_2 \ge 0, x_1, x_2 \in I$$

Transform into standard form and make relaxation

$$\min z = -x_1 - 27x_2$$
$$-x_1 + x_2 + x_3 = 1$$
$$24x_1 + 4x_2 + x_4 = 25$$
$$x_1, x_2 \ge 0$$

ション ふゆう メヨッ メヨッ マクシ

Concrete example of Gomory cutting plane method

Simplex method for optimal solution

Basis	a_1	$oldsymbol{a}_2$	a_3	$oldsymbol{a}_4$	b
$oldsymbol{a}_2$	0	1	$\frac{6}{7}$	$\frac{1}{28}$	$\frac{7}{4}$
$oldsymbol{a}_1$	1	0	$-\frac{1}{7}$	$\frac{1}{28}$	$\frac{3}{4}$

i.e. we have

$$\boldsymbol{x}^* = (\frac{3}{4}, \frac{7}{4})$$

• $x^{*} \notin \mathbb{Z}$, we determine the cutting plane

$$\frac{3}{4} - \frac{6}{7}x_3 - \frac{1}{28}x_4 \le 0$$

Transform into standard form we have

$$-24x_3 - x_4 + x_5 = -21$$

And supplement this constraint into the primitive constraints.

Concrete example of Gomory cutting plane method

Simplex method for optimal solution

Basis	\boldsymbol{a}_1	$oldsymbol{a}_2$	$oldsymbol{a}_3$	$oldsymbol{a}_4$	$oldsymbol{a}_5$	b
$oldsymbol{a}_2$	0	1	0	0	$\frac{1}{28}$	1
$oldsymbol{a}_1$	1	0	0	$\frac{1}{24}$	$-\frac{1}{168}$	$\frac{7}{8}$
$oldsymbol{a}_3$	0	0	1	$\frac{1}{24}$	$-\frac{1}{24}$	$\frac{7}{8}$

i.e. we have

$$\boldsymbol{x}^* = (rac{7}{8}, 1)$$

• $x^{*} \notin \mathbb{Z}$, we determine the cutting plane

$$\frac{7}{8} - \frac{1}{24}x_4 - \frac{23}{24}x_5 \le 0$$

Transform into standard form we have

$$-x_4 - 23x_5 + x_6 = -21$$

イロト 不得下 イヨト イヨト ニヨー つくや

Concrete example of Gomory cutting plane method

Simplex method for optimal solution

Basis	a_1	$oldsymbol{a}_2$	$oldsymbol{a}_3$	$oldsymbol{a}_4$	a_5	a_6	b
$oldsymbol{a}_2$	0	1	0	0	$\frac{1}{28}$	0	1
$oldsymbol{a}_1$	1	0	0	0	$-\frac{27}{28}$	$\frac{1}{24}$	0
$oldsymbol{a}_3$	0	0	1	0	-1	$\frac{1}{24}$	0
$oldsymbol{a}_4$	0	0	0	1	23	-1	21

i.e. we have

$$x^* = (0, 1)$$

• $x^* \in \mathbb{Z}$, so we obtain the optimal solution

$$x^* = (0, 1), \quad z^* = -27$$

The geometric meaning of Gomory cutting plane

Transforming the cutting plane into planes with primitive varibales x_1, x_2 , we have the cutiting plane equations

