# Lecture 8 Constrained optimization and integer programming 

Weinan $\mathrm{E}^{1,2}$ and Tiejun $\mathrm{Li}^{2}$

[^0]
## Outline

## Examples

## Constrained optimization

Integer programming

## Constrained optimization

- Suppose an investor own a block of $S$ shares that we want to sell over the next N days. The total expected value of our shares is

$$
V(\boldsymbol{s})=\sum_{t=1}^{N} p_{t} s_{t}
$$

where $\left(s_{1}, \cdots, s_{N}\right)$ is the amount that we sell on each day and $\left(p_{1}, \cdots, p_{N}\right)$ are the prices on each day. Moreover, the price $p_{t}$ follows the following dynamics

$$
p_{t}=p_{t-1}+\alpha s_{t}, \quad t=1, \cdots, N
$$

How should the investor sell his block of shares ?

- Mathematical formulation:

$$
\max \sum_{t=1}^{N} p_{t} s_{t}
$$

Subject to the constraint $\sum_{t=1}^{N} s_{t}=S, \quad p_{t}=p_{t-1}+\alpha s_{t}, \quad s_{t} \geq 0, \quad t=1, \cdots, N ;$

- A constrained nonlinear optimization.


## 0-1 Knapsack problem

- The thief wants to steal $n$ items. The $i$-th item weights $w_{i}$ and has value $v_{i}$. The problem is to take most valuable load with limit of weight $W$.
- Mathematical formulation:

$$
\begin{gathered}
\max V=\sum_{j=1}^{n} v_{j} x_{j} \\
\sum_{j=1}^{n} w_{j} x_{j} \leq W \\
x_{j}=0 \text { or } 1, \quad j=1, \ldots, n
\end{gathered}
$$

- $x_{j}$ must be integers. An integer programming problem.


## Assignment problem

- Assign $n$ persons to finish $n$ jobs. The cost for the $i$-th person to do $j$-th job is $c_{i j}$. Find the optimal assignment procedure to minimize the cose.
- Mathematical formulation: Define $x_{i j}=1$ if the $i$-th person does $j$-th job, and $x_{i j}=0$ otherwise, then

$$
\begin{gathered}
\max z=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\sum_{j=1}^{n} x_{i j}=1, i=1, \ldots, n \\
\sum_{i=1}^{n} x_{i j}=1, j=1, \ldots, n \\
x_{i j}=0 \text { or } 1, \quad i, j=1, \ldots, n
\end{gathered}
$$

- A 0-1 integer programming problem.


## Outline

## Examples

Constrained optimization

Integer programming

## General formulation for constrained nonlinear optimization

- General form

$$
\begin{gathered}
\min f(\boldsymbol{x}) \\
g_{i}(\boldsymbol{x}) \leq 0, \quad i=1,2, \ldots, m \\
h_{j}(\boldsymbol{x})=0, \quad j=1,2, \ldots, p \\
\boldsymbol{x} \in X \subset \mathbb{R}^{n}, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

and call the set

$$
S=\left\{\boldsymbol{x} \mid g_{i}(\boldsymbol{x}) \leq 0, i=1,2, \ldots, m ; h_{j}(\boldsymbol{x})=0, j=1,2, \ldots, p ; \quad \boldsymbol{x} \in X\right\}
$$

the feasible solution of the problem.

## Penalty method

- The idea of penalty method is to convert the constrained optimization problem into an unconstrained optimization problem by introducing a penalty term.
- Define the penalty function

$$
F(\boldsymbol{x}, M)=f(\boldsymbol{x})+M p(\boldsymbol{x})
$$

$M>0$ is called penalty factor, $p(x)$ is called penalty term. In general $p(\boldsymbol{x}) \geq 0$ for arbitrary $\boldsymbol{x} \in \mathbb{R}^{n}$ and $p(\boldsymbol{x})=0$ iff $\boldsymbol{x} \in S$.

## Penalty method

- For equality constrain define

$$
g_{j}^{+}(\boldsymbol{x})=\left(h_{j}(\boldsymbol{x})\right)^{2}, \quad j=1,2, \ldots, p
$$

and for inequality constrain define

$$
g_{i+p}^{+}(\boldsymbol{x})=\left\{\begin{array}{cc}
0, & g_{i}(\boldsymbol{x}) \leq 0 \\
\left(g_{i}(\boldsymbol{x})\right)^{2}, & g_{i}(\boldsymbol{x})>0
\end{array}\right.
$$

for $\mathrm{i}=1,2, \ldots, \mathrm{~m}$.

- Define $L=p+m$ and the penalty function

$$
F\left(\boldsymbol{x}, M_{k}\right)=f(\boldsymbol{x})+M_{k} \sum_{i=1}^{L} g_{i}^{+}(\boldsymbol{x})
$$

where $M_{k}>0$ and

$$
M_{1}<M_{2}<\cdots<M_{k}<\cdots \rightarrow+\infty
$$

## Penalty method

- If $M_{k} \gg 1$ and if the penalty function

$$
F\left(\boldsymbol{x}, M_{k}\right)=f(\boldsymbol{x})+M_{k} p(\boldsymbol{x})
$$

is minimized, this will force the penalty term

$$
p(\boldsymbol{x}) \approx 0
$$

Otherwise $M_{k}$ will amplify many times!! That's why it is called penalty method.

- In general, take

$$
M_{k+1}=c M_{k}, \quad c \in[4,50]
$$

## Algorithm for penalty method

1. Take $M_{1}>0$, tolerance $\epsilon>0$, Initial sate $\boldsymbol{x}_{0}$, set $k=1$;
2. Solve the unconstrained optimization

$$
\min F\left(\boldsymbol{x}, M_{k}\right)=f(\boldsymbol{x})+M_{k} \sum_{i=1}^{L} g_{i}^{+}(\boldsymbol{x})
$$

with initial data $\boldsymbol{x}_{k-1}$, and the solution is $\boldsymbol{x}_{k}$;
3. Define

$$
\tau_{1}=\max \left\{\left|h_{i}\left(\boldsymbol{x}_{k}\right)\right|\right\}, \quad \tau_{2}=\max \left\{g_{i}\left(\boldsymbol{x}_{k}\right)\right\}
$$

and $\tau=\max \left\{\tau_{1}, \tau_{2}\right\} ;$
4. If $\tau<\epsilon$, over; otherwise, set $M_{k+1}=c M_{k}, k=k+1$, return to step 2 .

## Barrier method

- Barrier method is suitable for optimization as

$$
\min f(\boldsymbol{x}), \quad \text { s.t. } \boldsymbol{x} \in S
$$

where $S$ is a set characterized only by inequality constraints

$$
S=\left\{\boldsymbol{x} \mid g_{i}(\boldsymbol{x}) \leq 0, i=1,2, \ldots, m\right\}
$$

- Graphical interpretation of barrier method



## Barrier method

- Define barrier term $B(\boldsymbol{x})$ such that

$$
B(\boldsymbol{x}) \geq 0 \text { and } B(\boldsymbol{x}) \rightarrow \infty \text { as } \boldsymbol{x} \rightarrow \text { boundary of } S
$$

- Inverse barrier term

$$
B(\boldsymbol{x})=\sum_{i=1}^{m} g_{i}^{+}(\boldsymbol{x})
$$

and

$$
g_{i}^{+}(\boldsymbol{x})=-\frac{1}{g_{i}(\boldsymbol{x})}
$$

- Logarithmic barrier term

$$
g_{i}^{+}(\boldsymbol{x})=-\ln \left(-g_{i}(\boldsymbol{x})\right)
$$

- Barrier function

$$
F\left(\boldsymbol{x}, r_{k}\right)=f(\boldsymbol{x})+r_{k} B(\boldsymbol{x})
$$

where

$$
r_{k}>0, \quad r_{1}>r_{2}>\cdots>r_{k}>\cdots \rightarrow 0 .
$$

## Barrier method

- Though the formulation of barrier method

$$
F(\boldsymbol{x}, r)=f(\boldsymbol{x})+r B(\boldsymbol{x}), \boldsymbol{x} \in S
$$

is still a constrained optimization, but the property

$$
F(\boldsymbol{x}, r) \rightarrow \infty \text { as } \boldsymbol{x} \rightarrow \text { boundary of } S
$$

makes the numerical implementation an unconstrained problem.

- The implementation will be an iteration $(c \in[4,10])$

$$
r_{k+1}=r_{k} / c
$$

until some type of convergence criterion is satisfied.

## Outline

## Examples

## Constrained optimization

## Integer programming

## Discrete optimization

- Integer programming is a typical case in discrete optimization. There are large amount of discrete optimization problems in graph theory and computer science.
- Discrete optimization models are, except for some special cases, are extremely hard to solve in practice. They are NP-Hard problem. (Is $N P=P$ ? This is a million dollar problem.)
- Unfortunately there are no general widely applicable methods for solving discrete problems. But there are some common themes such as relaxation, branch-and-bound etc.
- There are some heuristic ideas such as local search methods, simulated annealing, genetic algorithms etc.


## Integer linear programming

- General form

$$
\begin{gathered}
\max z=\boldsymbol{c}^{T} \boldsymbol{x} \\
\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \quad \boldsymbol{x} \geq \mathbf{0}, x_{i} \in I, i \in J \subset\{1,2, \cdots, n\}
\end{gathered}
$$

where

$$
\begin{gathered}
\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right), \boldsymbol{c}=\left(c_{1}, c_{2}, \cdots, c_{n}\right) \\
\boldsymbol{b}=\left(b_{1}, b_{2}, \cdots, b_{m}\right), \quad \boldsymbol{A}=\left(a_{i j}\right)_{m \times n}, \quad I=\{0,1,2, \ldots\}
\end{gathered}
$$

If $J=\{1,2, \cdots, n\}$, it is a pure integer programming. If $J \neq\{1,2, \cdots, n\}$, it is a mixed integer programming problem.

## Relaxation and decomposition

- Relaxation: the problem obtained after relaxing some constrained condition is called relaxation problem of the primitive problem. For example we obtain the linear programming after relaxing the integer constraints.
- Decomposition: define $R(P)$ the feasible solution set of problem $(P)$. If

$$
\begin{gathered}
\cup_{i=1}^{m} R\left(P_{i}\right)=R(P) \\
R\left(P_{i}\right) \cap R\left(P_{j}\right)=\emptyset \quad(1 \leq i \neq j \leq m)
\end{gathered}
$$

we call the subproblems $\left(P_{1}\right),\left(P_{2}\right), \cdots,\left(P_{m}\right)$ a decomposition of $(P)$.

## Example

- Example

$$
\begin{gathered}
\max z=5 x_{1}+8 x_{2} \\
x_{1}+x_{2} \leq 6, \quad 5 x_{1}+9 x_{2} \leq 45 \\
x_{1}, x_{2} \in I=\mathbb{N} \cup\{0\}
\end{gathered}
$$

- Relaxation: let $x_{1}, x_{2} \geq 0$, it is a linear programming problem, the optimum is $\boldsymbol{x}=(2.25,3.75)$ which does NOT belong to $I$ !
- Decomposition: decompose the range of $x_{2}$ into

$$
x_{2} \geq 4 \text { or } x_{2} \leq 3 .
$$

We obtain two subproblems.

## Branch-and-bound

- The basic framework of Branch-and-bound method is as follows

1. Upper Bounds: Efficient methods for determining a good upper bound $U B(P)$;
2. Branching Rules: Methods for replacing an instance $(P)$ of the discrete optimization problem with some further "smaller" subproblems $\left(P_{l}\right)$ such that some optimal solution of $(P)$ maps to an optimal solution of a subproblem $\left(P_{l}\right)$.
3. Lower Bounds: Efficient heuristics that attempt to determine a feasible candidate solution $S$ with as low a value as is practical, yielding the lower bound $L B(P)$.

## Some definitions

- Define the floor and ceil function for any $a \in \mathbb{R}$

$$
\begin{aligned}
& \lfloor a\rfloor:=\text { The integer nearest to } a \text { but less than } a \\
& \lceil a\rceil:=\text { The integer nearest to } a \text { but bigger than } a
\end{aligned}
$$

It's clear that

$$
0 \leq a-\lfloor a\rfloor<1, \quad 0 \leq\lceil a\rceil-a<1
$$

- Examples

$$
\begin{gathered}
\left\lfloor-\frac{1}{7}\right\rfloor=-1, \quad\left\lfloor\frac{1}{28}\right\rfloor=0, \quad\left\lfloor\frac{7}{4}\right\rfloor=1 \\
\left\lceil-\frac{1}{7}\right\rceil=0, \quad\left\lceil\frac{1}{28}\right\rceil=1, \quad\left\lceil\frac{7}{4}\right\rceil=2
\end{gathered}
$$

## Branching rules

- Define the optimal solution of the linear-programming relaxation as

$$
\boldsymbol{x}^{*}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)
$$

- Branching rule: We choose a variable $x_{k}^{*} \notin \mathbb{Z}$. We branch by creating two new subproblems:

1. $\left(P^{\prime}\right)$ together with the additional inequality

$$
x_{k} \leq\left\lfloor x_{k}^{*}\right\rfloor
$$

2. $\left(P^{\prime}\right)$ together with the additional inequality

$$
x_{k} \geq\left\lceil x_{k}^{*}\right\rceil
$$

## Branch-and-bound: an example

- Example

$$
\max z=-x_{1}+x_{2}
$$

Subject to

$$
\begin{gathered}
12 x_{1}+11 x_{2} \leq 63 \\
-22 x_{1}+4 x_{2} \leq-33 \\
x_{1}, x_{2} \geq 0, \quad x_{1}, x_{2} \in \mathbb{Z}
\end{gathered}
$$



## Branch-and-bound: an example

- First solve the relaxation problem we have

| Subprogram | $z^{*}$ | $x_{1}^{*}$ | $x_{2}^{*}$ |
| :---: | :---: | :---: | :---: |
| IP | 1.29 | 2.12 | 3.41 |

Then the lower and upper bounds

$$
L B=-\infty, \quad U B=1.29
$$

- Branching $x_{1}$ we have two subprograms and solve the relaxation problems respectively

| Subprogram | $z^{*}$ | $x_{1}^{*}$ | $x_{2}^{*}$ |
| :---: | :---: | :---: | :---: |
| IP with $x_{1} \leq 2$ | 0.75 | 2.00 | 2.75 |
| IP with $x_{1} \geq 3$ | -0.55 | 3.00 | 2.45 |

## Branch-and-bound: an example



## Branch-and-bound: an example

- Branching $x_{2}$ of IP with $x_{1} \leq 2$ and solve the relaxation problem

| Subprogram | $z^{*}$ | $x_{1}^{*}$ | $x_{2}^{*}$ |
| :---: | :---: | :---: | :---: |
| IP with $x_{1} \leq 2, x_{2} \leq 2$ | 0.14 | 1.86 | 2.00 |
| IP with $x_{1} \leq 2, x_{2} \geq 3$ | - | - | - |

- Thus we have subprograms

| Subprogram | $z^{*}$ | $x_{1}^{*}$ | $x_{2}^{*}$ |
| :---: | :---: | :---: | :---: |
| IP with $x_{1} \geq 3$ | -0.55 | 3.00 | 2.45 |
| IP with $x_{1} \leq 2, x_{2} \leq 2$ | 0.14 | 1.86 | 2.00 |

and

$$
L B=-\infty, \quad U B=0.14
$$

## Branch-and-bound: an example

- Branching $x_{1}$ of IP with $x_{1} \leq 2, x_{2} \leq 2$ we have

| Subprogram | $z^{*}$ | $x_{1}^{*}$ | $x_{2}^{*}$ |
| :---: | :---: | :---: | :---: |
| IP with $x_{1} \leq 2, x_{2} \leq 2, x_{1} \leq 1$ | - | - | - |
| IP with $x_{1} \leq 2, x_{2} \leq 2, x_{1} \geq 2$ | 0.00 | 2.00 | 2.00 |

and because $\boldsymbol{x}^{*} \in \mathbb{Z}$ in the subprogram, we have

$$
L B=0.00, \quad U B=0.14
$$

- Because $-0.55<L B=0.00$, the subprogram

$$
\text { IP with } x_{1} \geq 3
$$

is deleted.

- So finally we have the optimal solution

$$
\boldsymbol{x}^{*}=(2,2), \quad z^{*}=0.00
$$

## Cutting-plane method

- A cutting-plane is a linear inequality that is generated as needed in the course of solving an integer linear program as a sequence of linear programs.
- Generic cutting-plane method

1. Initially let $L P$ be the linear programming relaxation of $I P$;
2. Let $\boldsymbol{x}^{*}$ be an optimal extreme-point solution of $L P$;
3. If $\boldsymbol{x}^{*}$ is all integer, then stop because $\boldsymbol{x}^{*}$ is optimal to $I P$;
4. If $\boldsymbol{x}^{*}$ is not all integer, then find an inequality that is satisfied by all feasible solutions of $I P$, but is violated by $\boldsymbol{x}^{*}$, append the inequality to $L P$, and go to step 2 .

## Gomory cutting-plane

- For an equality constraints

$$
x_{1}+\left(-\frac{1}{7}\right) x_{3}+\frac{1}{28} x_{4}=\frac{7}{4}
$$

Perform transformation

$$
\begin{aligned}
& \lfloor 1\rfloor x_{1}+\left\lfloor-\frac{1}{7}\right\rfloor x_{3}+\left\lfloor\frac{1}{28}\right\rfloor x_{4}-\left\lfloor\frac{7}{4}\right\rfloor=(\lfloor 1\rfloor-1) x_{1} \\
& +\left(\left\lfloor-\frac{1}{7}\right\rfloor+\frac{1}{7}\right) x_{3}+\left(\left\lfloor\frac{1}{28}\right\rfloor-\frac{1}{28}\right) x_{4}+\frac{7}{4}-\left\lfloor\frac{7}{4}\right\rfloor
\end{aligned}
$$

## Gomory cutting-plane

- We have

$$
x_{1}-x_{3}-1=-\frac{6}{7} x_{3}-\frac{1}{28} x_{4}+\frac{3}{4}
$$

- Because

1. $x_{1}, x_{3}$ are integers from the left hand side;
2. $x_{3}, x_{4} \in \mathbb{N} \cup\{0\}$ from the righthand side;
we have the cutting plane

$$
-\frac{6}{7} x_{3}-\frac{1}{28} x_{4}+\frac{3}{4} \leq 0
$$

or equivalently

$$
x_{1}-x_{3}-1 \leq 0
$$

- Generating the inequality from the lower floor decomposition technique is called Gomory cutting plane method.


## Concrete example of Gomory cutting plane method

- Example

$$
\begin{gathered}
\min z=-x_{1}-27 x_{2} \\
-x_{1}+x_{2} \leq 1 \\
24 x_{1}+4 x_{2} \leq 25 \\
x_{1}, x_{2} \geq 0, x_{1}, x_{2} \in I
\end{gathered}
$$

- Transform into standard form and make relaxation

$$
\begin{gathered}
\min z=-x_{1}-27 x_{2} \\
-x_{1}+x_{2}+x_{3} \quad=1 \\
24 x_{1}+4 x_{2} \quad+x_{4}=25 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

## Concrete example of Gomory cutting plane method

- Simplex method for optimal solution

| Basis | $\boldsymbol{a}_{1}$ | $\boldsymbol{a}_{2}$ | $\boldsymbol{a}_{3}$ | $\boldsymbol{a}_{4}$ | $\boldsymbol{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{a}_{2}$ | 0 | 1 | $\frac{6}{7}$ | $\frac{1}{28}$ | $\frac{7}{4}$ |
| $\boldsymbol{a}_{1}$ | 1 | 0 | $-\frac{1}{7}$ | $\frac{1}{28}$ | $\frac{3}{4}$ |

i.e. we have

$$
x^{*}=\left(\frac{3}{4}, \frac{7}{4}\right)
$$

- $\boldsymbol{x}^{*} \notin \mathbb{Z}$, we determine the cutting plane

$$
\frac{3}{4}-\frac{6}{7} x_{3}-\frac{1}{28} x_{4} \leq 0
$$

Transform into standard form we have

$$
-24 x_{3}-x_{4}+x_{5}=-21
$$

And supplement this constraint into the primitive constraints.

## Concrete example of Gomory cutting plane method

- Simplex method for optimal solution

| Basis | $\boldsymbol{a}_{1}$ | $\boldsymbol{a}_{2}$ | $\boldsymbol{a}_{3}$ | $\boldsymbol{a}_{4}$ | $\boldsymbol{a}_{5}$ | $\boldsymbol{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{a}_{2}$ | 0 | 1 | 0 | 0 | $\frac{1}{28}$ | 1 |
| $\boldsymbol{a}_{1}$ | 1 | 0 | 0 | $\frac{1}{24}$ | $-\frac{1}{168}$ | $\frac{7}{8}$ |
| $\boldsymbol{a}_{3}$ | 0 | 0 | 1 | $\frac{1}{24}$ | $-\frac{1}{24}$ | $\frac{7}{8}$ |

i.e. we have

$$
x^{*}=\left(\frac{7}{8}, 1\right)
$$

- $x^{*} \notin \mathbb{Z}$, we determine the cutting plane

$$
\frac{7}{8}-\frac{1}{24} x_{4}-\frac{23}{24} x_{5} \leq 0
$$

Transform into standard form we have

$$
-x_{4}-23 x_{5}+x_{6}=-21
$$

And supplement this constraint into the primitive constraints.

## Concrete example of Gomory cutting plane method

- Simplex method for optimal solution

| Basis | $\boldsymbol{a}_{1}$ | $\boldsymbol{a}_{2}$ | $\boldsymbol{a}_{3}$ | $\boldsymbol{a}_{4}$ | $\boldsymbol{a}_{5}$ | $\boldsymbol{a}_{6}$ | $\boldsymbol{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{a}_{2}$ | 0 | 1 | 0 | 0 | $\frac{1}{28}$ | 0 | 1 |
| $\boldsymbol{a}_{1}$ | 1 | 0 | 0 | 0 | $-\frac{27}{28}$ | $\frac{1}{24}$ | 0 |
| $\boldsymbol{a}_{3}$ | 0 | 0 | 1 | 0 | -1 | $\frac{1}{24}$ | 0 |
| $\boldsymbol{a}_{4}$ | 0 | 0 | 0 | 1 | 23 | -1 | 21 |

i.e. we have

$$
\boldsymbol{x}^{*}=(0,1)
$$

- $\boldsymbol{x}^{*} \in \mathbb{Z}$, so we obtain the optimal solution

$$
\boldsymbol{x}^{*}=(0,1), \quad z^{*}=-27
$$

## The geometric meaning of Gomory cutting plane

Transforming the cutting plane into planes with primitive varibales $x_{1}, x_{2}$, we have the cutiting plane equations



[^0]:    ${ }^{1}$ Department of Mathematics,
    Princeton University,
    weinan@princeton.edu
    ${ }^{2}$ School of Mathematical Sciences,
    Peking University, tieli@pku.edu.cn
    No. 1 Science Building, 1575

