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Energy minimization: virtual drug design

» Virtual drug design is to find a best position of a ligand (a small protein
molecule) interacting with a large target protein molecule. It is equivalent

to an energy minimization problem.
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Energy minimization: protein folding

» Protein folding is to find the minimal energy state of a protein molecule
from its sequence structure. It is an outstanding open problem for global

optimization in the molecular mechanics.




Application examples

Energy minimization: mathematical formulation

» Molecular force field

Viotal = Z k; (Ti—Ti0)2+Z kgi (
T () - (2)") 58

7%
> Webpage for the explanatlon of the force field

= 00)" + Y T2 (1 cos(ngi )

» Energy minimization problem with respect to all the configuration of the
atoms

min Viotar(€1,...,ZN)



Application examples

Nonlinear least squares

> Suppose that we have a series of experimental data (¢;,v:), i =1,...,m.

We wish to find parameter & € R™ such that the remainder
’I“i(:ll):yi—f(ti,él)), i:l,...,m
minimized.

> Mathematically, define error function

1

o) = 5r(@)"r(@)

where = (r1,...,7m) such that
min ¢(x).

> Because the function f is nonlinear, it is called a nonlinear least square

problem.
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Optimal control problem

> Classical optimal control problem:

gy
min/ f(z,u)dt
0
such that the constraint

dx
E = g(x,u), .’E(O) = .’Eo,ZE(T) =T
is satisfied. Here u(t) is the control function, z(t) is the output.

> |t is a nonlinear optimization in function space.
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Optimal control problem

» Example: Isoparametric problem.

1
max/ z1(t)dt
0

u

dl‘l —u, dmg _ /71+u2.

dt

dt
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Iterations

> lterative methods
Object: construct sequence {xx}72;, such that &) converge to a fixed

vector £, and x™ is the solution of the linear system.

» General iteration idea:

If we want to solve equations

and the equation @ = f(x) has the same solution as it, then construct

xpr1 = f(zr).

If £, — x*, then ™ = f(x*), thus the root of g(x) is obtained.
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Convergence order

» Suppose an iterating sequence limx,, = «*, and
|zn — 2| < en
where €, is called error bound. If

. €Ent1
i o, — C,
€n

when

1. 0< C <1, x, is called linear convergence;
q7q27q37"'7qn7"'7 (q<1)

2. C =1, x, is called sublinear convergence;

11 1
1.2 = ... =
) 27 37 ) n?
3. C =0, x, is called superlinear convergence;
1 1 1

75757...75,...
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Convergence order

q 6n«&»l_
lim 5 =C, C>0,p>1

then x,, is called p-th order convergence.

n

2
qup7qp P 7qp [

> Numerical examples for different convergence orders
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Remark on p-th order convergence

» If p=1, i.e. linear convergence, the number of significant digits is

increasing linearly, such as 2,3,4,5, .. ;

> If p > 1, the number of significant digits is increasing exponentially
(O(p™)). Suppose p = 2, then the number of significant digits is increased
as 2,4,8,16,...!1 So a very accurate result will be obtained after 4 — 5

iterations;
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Golden section method

» Suppose there is a triplet (a,zk,c) and f(zx) < f(a), f(zk) < f(c), we
want to find zx4+1 in (a,c) to perform a section. Suppose k1 is in

(a,zk).

> If f(zk+1) > f(zk), then the new search interval is (zk+1,c); If

f(xr+1) < f(zk), then the new search interval is (a,zr).
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Golden section method

> Define
T —a C— Tk
= , 1—w=
c—a c—a
and
Tk — Tkl
c—a

If we want to minimize the worst case possibility (for two cases), we must
make w = z 4+ (1 —w). (w > 1)
> Pay attention that w is also obtained from the previous stage of applying

same strategy. This scale similarity implies

we have

This is called Golden section method.
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Golden section method

» Golden section method is a method to find the local minimum of a

function f.

> Golden section method is a linear convergence method. The contraction
coefficient is C' = 0.618.

» Golden section method for Example
Q —x?
min p(z) = 0.5 — ze

where a = 0,c = 2.



v

One dimensional Newton’s method

Suppose we want to minimize o (z)
min p(x)
x
Taylor expansion at current iteration point zo

Lo wo) (@ — o) + -

p(x) = p(z0) + ¢'(z0)(z — o) + 5

Local quadratic approximation

o) = 9(x) = p(x0) + ¢/ (20)(& — 70) + 59" (20)(& — 0)°

Minimize g(z) at ¢'(z) = 0, then

o1 = g — £ @0)
©"(wo)
Newton's method ,
co =z — 2 (zx)

Numerical methods
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One dimensional Newton’s method

» Graphical explanation

Local parabolic approximation

» Example

min p(z) = 0.5 — we

where zg = 0.5.
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One dimensional Newton’s method

Theorem

If " (2*) # 0, then Newton's method converges with second order if 2° is
close to x* sufficiently.

Drawbacks of Newton’'s method:

1. one needs to compute the second order derivative which is a huge cost

(especially for high dimensional case).

2. The initial state zo must be very close to z™.
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High dimensional Newton’s method

Suppose we want to minimize f(xz), x € R"
min f(x)
Taylor expansion at current iteration point xg
1
fz) = f(zo) + Vf(@o) - (® — m0) + 5 (2 — x0)" V2 (o) (@ — o) + - - -
Local quadratic approximation
. . . 1
f(x) = g(@) = f(@o) + V f(@0) - (& —@0) + 5 (2 — x0)" H s (x0)(z — x0)

3%f

where H ; is the Hessian matrix defined as (H f)ij = 5773
0z,

Minimize g(x) at Vg(x) = 0, then
1 = Ty — Hf($0)71 . Vf(wo)
Newton's method

Thi1 =k — Hy(xp) " Vf(zk)
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High dimensional Newton’s method

Example
min f(z1,z2) = 100(z2 — 21)* + (z1 — 1)

Initial state o = (—1.2,1).
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Steepest decent method

> Basic idea: Find a series of decent directions p, and corresponding

stepsize aj such that the iterations
Tkl = Tk + QP

and
f(@p41) < fzn)-

> The negative gradient direction —V f is the “steepest” decent direction,

so choose
Py = —Vf(zK)

and choose «y such that

m(in [z + apy,)
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Inexact line search

» To find « such that
min f(@x + apy)

is equivalent to perform a one dimensional minimization. But it is enough

to find an approximate « by the following inexact line search method.

> Inexact line search is to make the following type of the decent criterion

f(@r) = f(@rt1) 2> €0

is satisfied.
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Inexact line search

» An example of inexact line search strategy by half increment (or

decrement) method:

1
[ao,bo] = [O7 -i-OO)7 ap = 1; [al,bl] = [0, 1], o] = 5
1

[a2>b2] - [07 5]7 4

U438 12

a0 \/\/b/:l
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Steepest decent method

Steepest decent method for example
min f(z1,z2) = 100(z2 — 21)* + (z1 — 1)?

Initial state xg = (—1.2,1).
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Dumped Newton’s method

> If the initial value of Newton's method is not near the minimum point, a

strategy is to apply dumped Newton's method.

» Choose the decent direction as the Newton's direction
=i
p, = —H; (xk)V f(xk)
and perform the inexact line search for

min f(zx + apy)
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Conjugate gradient method

Recalling conjugate gradient method for quadratic function

o(x) = %xTAa: — b

1. Initial step: xo,py =10 =b — Axo
2. Suppose we have zy, 7, p,, the CGM step
2.1 Search the optimal ay, along py;

("'k)TPk
(pr)" Apy,
2.2 Update x;, and gradient direction 7y;

ap =

Tpy1 = T + Py, Tht1 =b— Axpi
2.3 According to the calculation before to form new search direction py 4

("’k+1)TAP
Br = —Wa Prt+1 = Tk+1 + BrPx
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Conjugate gradient method

Local quadratic approximation of general nonlinear optimization
1
f(@) = f(@o) + Vf(zo) - (2 — @0) + 5 (2 — x0)" H ¢ (x0)(x — m0)

where H (o) is the Hessian of f at xo.

Apply conjugate gradient method to the quadratic function above
successively.

The computation of 8 needs the formation of Hessian matrix H f(xo)
which is a formidable task!

Equivalent transformation in the quadratic case
(ri+1)"Apy, _ [Vo(@in)|?
(pr)" Apy, V()|

This formula does NOT need the computation of Hessian matrix.

Br=—
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Conjugate gradient method for nonlinear optimization

Formally generalize CGM to nonlinear optimization

1.
2.

Given initial o and € > 0;
Compute g, = Vf(xo) and p, = —g,, k =0;
Compute Ay from
mAin flxr + Apy,)
and
Tpt1 = Tk + APy Gipr = V. (Tht1)
If lgs411l < e, the iteration is over. Otherwise compute
||9k-~-1||2
llgxll?
Pry1 = —Gpy1 + He+1Dy

Mi4+1 =

Set k = k + 1, iterate until convergence.
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Conjugate gradient method

In realistic computations, because there is only n conjugate gradient directions
for n dimensional problem, it often restarts from current point after n

iterations.
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Conjugate gradient method

CGM for example
min f(z1,z2) = 100(z2 — 21)* + (z1 — 1)?

Initial state xg = (—1.2,1).
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Variable metric method

> A general form of iterations
Tit1 = 2r — AMH V()

1. If Hy = I, it is steepest decent method;
2. If Hy, = [V2f(z)] 7", it is dumped Newton's method.

> In order to keep the fast convergence of Newton's method, we hope to

approximate [V2f(z)]~" as Hj, with reduced computational efforts as
Hla:+1 = Hk, + Ck7

where C'; is a correction matrix which is easily computed.
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Variable metric method

» First consider quadratic function
1
f@)y=a+b"x+ §a:TGa:

we have
Vfilx)=b+ Gz

> Define g(x) = Vf(x), g, = g(xk), then
9r+1 — 9k = G(Tri1 — ).

Define

Axy = Tpt1 — Tk, Agy = 9it+1 — 9k

we have
GAx, = Ag,,.
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Variable metric method

For general nonlinear function
f(x) = f(mk+1)+Vf($k+1)'($*33k+1)+%(mfwk+1)THf(wkH)(aB*wkH).
Similar procedure as above we have
[H (k1)) ' Agy = Ay
As H . is a approximation of [H ;(zx4+1)] ™", it must satisfy

Hk+lAg;€ = A:Bk
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DFP method

» Davidon-Fletcher-Powell method:

Choose C', as rank-2 correction matrix

Ir T5
Cir = aguu” + Brov

where oy, Ok, u,v are undetermined variables.

> From Hy11 = Hi + Cy and Hi11Ag,, = Az we have
aru(u’ Agy) + Brv(vT Ag,) = Axy, — HiAg,

> Take u = HyAg,, v = Az and

S S U
b uTAg,’ f vTAg,
We obtain the famous DFP method

HkAgkAg{Hk AackAwg
AgTHAg, AzTAg,

Hy,=Hy—
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Remark on DFP method

> If f(x) is quadratic and Ho = I, then the result will converge in n steps

theoretically;
> If f(x) is strictly convex, the DFP method is convergent globally.
> If Hy is SPD and g, # 0, then H 4 is SPD also.
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DFP method

DFP method for example
min f(z1,z2) = 100(z2 — 21)* + (z1 — 1)?

Initial state xg = (—1.2,1).
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BFGS method

> The most popular variable metric method is BFGS

(Broyden-Fletcher-Goldfarb-Shanno) method shown as below

HkAgkAg{Hk Aka:cf
AgTHAg, AzTAg,

Hyy=Hy — + (Agy HyAg,)vrvi

where
Awk Hk Agk

" AxzTAg, AgTH,Ag,
» BFGS is more stable than DFP method;

Vi

» BFGS is also a rank-2 correction method for H..
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Nonlinear least squares

> Mathematically, nonlinear least squares is to minimize

» We have

Vé(@) = I (z)r(x), Ho(x)=J"()J(x)+ Z ri(z)Hr,(x)
where J(x) is the Jacobian matrix of r(x).

> Direct Newton's method for increment sy in nonlinear least squares

H (i) = —Vo(xk)
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Gauss-Newton method

> If make the assumption that the residual 7;(x) is very small, we will drop
the term >°" | ri(x)H,, (x) in Newton's method and we obtain

Gauss-Newton method

(" (k)T (z1))88 = V(i)

» Gauss-Newton method is equivalent to solve a sequence of linear least

squares problems to approximate the nonlinear least squares.
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Levenberg-Marquardt method

> If the Jacobian J(x) is ill-conditioned, one may take the

Levenberg-Marquardt method as
(I7 (@x)J (zx) + i d) sk = =V p(a)

where iy is a nonnegative parameter chosen by some strategy.

> L-M method may be viewed as a regularization method for Gauss-Newton
method.
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Homework assignment

Newton’s method and BFGS method for example
min f(z1,z2) = 100(z2 — 21)* + (z1 — 1)?

Initial state xg = (—1.2,1).
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