Lecture 7 Unconstrained nonlinear programming

Weinan $\mathrm{E}^{1,2}$ and Tiejun Li^{2}

${ }^{1}$ Department of Mathematics,
Princeton University,
weinan@princeton.edu
${ }^{2}$ School of Mathematical Sciences,
Peking University, tieli@pku.edu.cn
No. 1 Science Building, 1575

Outline

Application examples

Numerical methods

Energy minimization: virtual drug design

- Virtual drug design is to find a best position of a ligand (a small protein molecule) interacting with a large target protein molecule. It is equivalent to an energy minimization problem.

Energy minimization: protein folding

- Protein folding is to find the minimal energy state of a protein molecule from its sequence structure. It is an outstanding open problem for global optimization in the molecular mechanics.

Energy minimization: mathematical formulation

- Molecular force field

$$
\begin{aligned}
& V_{\text {total }}=\sum_{i} \frac{k_{r_{i}}}{2}\left(r_{i}-r_{i 0}\right)^{2}+\sum_{i} \frac{k_{\theta_{i}}}{2}\left(\theta_{i}-\theta_{i 0}\right)^{2}+\sum_{i} \frac{V_{n i}}{2}\left(1+\cos \left(n \phi_{i}-\gamma_{i}\right)\right) \\
&+\sum_{i j} 4 \epsilon\left(\left(\frac{\sigma_{i j}}{r_{i j}}\right)^{6}-\left(\frac{\sigma_{i j}}{r_{i j}}\right)^{12}\right)+\sum_{i j} \frac{q_{i} q_{j}}{\epsilon r_{i j}}
\end{aligned}
$$

- Webpage for the explanation of the force field
- Energy minimization problem with respect to all the configuration of the atoms

$$
\min V_{\text {total }}\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{N}\right)
$$

Nonlinear least squares

- Suppose that we have a series of experimental data $\left(t_{i}, y_{i}\right), i=1, \ldots, m$. We wish to find parameter $\boldsymbol{x} \in \mathbb{R}^{n}$ such that the remainder

$$
r_{i}(\boldsymbol{x})=y_{i}-f\left(t_{i}, \boldsymbol{x}\right), \quad i=1, \ldots, m
$$

minimized.

- Mathematically, define error function

$$
\phi(\boldsymbol{x})=\frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^{T} \boldsymbol{r}(\boldsymbol{x})
$$

where $\boldsymbol{r}=\left(r_{1}, \ldots, r_{m}\right)$ such that

$$
\min _{\boldsymbol{x}} \phi(\boldsymbol{x}) .
$$

- Because the function f is nonlinear, it is called a nonlinear least square problem.

Optimal control problem

- Classical optimal control problem:

$$
\min \int_{0}^{T} f(x, u) d t
$$

such that the constraint

$$
\frac{d x}{d t}=g(x, u), \quad x(0)=x_{0}, x(T)=x_{T}
$$

is satisfied. Here $u(t)$ is the control function, $x(t)$ is the output.

- It is a nonlinear optimization in function space.

Optimal control problem

- Example: Isoparametric problem.

$$
\begin{gathered}
\max _{u} \int_{0}^{1} x_{1}(t) d t \\
\frac{d x_{1}}{d t}=u, \quad \frac{d x_{2}}{d t}=\sqrt{1+u^{2}} . \\
x_{1}(0)=x_{1}(1)=0, \quad x_{2}(0)=0, x_{2}(1)=\frac{\pi}{3}
\end{gathered}
$$

Outline

Application examples

Numerical methods

Iterations

- Iterative methods

Object: construct sequence $\left\{\boldsymbol{x}_{k}\right\}_{k=1}^{\infty}$, such that \boldsymbol{x}_{k} converge to a fixed vector \boldsymbol{x}^{*}, and \boldsymbol{x}^{*} is the solution of the linear system.

- General iteration idea:

If we want to solve equations

$$
\boldsymbol{g}(\boldsymbol{x})=\mathbf{0}
$$

and the equation $\boldsymbol{x}=\boldsymbol{f}(\boldsymbol{x})$ has the same solution as it, then construct

$$
\boldsymbol{x}_{k+1}=\boldsymbol{f}\left(\boldsymbol{x}_{k}\right) .
$$

If $\boldsymbol{x}_{k} \rightarrow \boldsymbol{x}^{*}$, then $\boldsymbol{x}^{*}=\boldsymbol{f}\left(\boldsymbol{x}^{*}\right)$, thus the root of $\boldsymbol{g}(\boldsymbol{x})$ is obtained.

Convergence order

- Suppose an iterating sequence $\lim \boldsymbol{x}_{n}=\boldsymbol{x}^{*}$, and

$$
\left|\boldsymbol{x}_{n}-\boldsymbol{x}^{*}\right| \leq \epsilon_{n}
$$

where ϵ_{n} is called error bound. If

$$
\lim \frac{\epsilon_{n+1}}{\epsilon_{n}}=C
$$

when

1. $0<C<1, \boldsymbol{x}_{n}$ is called linear convergence;

$$
q, q^{2}, q^{3}, \cdots, q^{n}, \cdots, \quad(q<1)
$$

2. $C=1, \boldsymbol{x}_{n}$ is called sublinear convergence;

$$
1, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots
$$

3. $C=0, \boldsymbol{x}_{n}$ is called superlinear convergence;

$$
1, \frac{1}{2!}, \frac{1}{3!}, \cdots, \frac{1}{n!}, \cdots
$$

Convergence order

- If

$$
\lim \frac{\epsilon_{n+1}}{\epsilon_{n}^{p}}=C, \quad C>0, p>1
$$

then \boldsymbol{x}_{n} is called p-th order convergence.

$$
q, q^{p}, q^{p^{2}}, \cdots, q^{p^{n}}, \cdots
$$

- Numerical examples for different convergence orders

Remark on p-th order convergence

- If $p=1$, i.e. linear convergence, the number of significant digits is increasing linearly, such as $2,3,4,5, \ldots$;
- If $p>1$, the number of significant digits is increasing exponentially $\left(O\left(p^{n}\right)\right)$. Suppose $p=2$, then the number of significant digits is increased as $2,4,8,16, \ldots!$! So a very accurate result will be obtained after $4-5$ iterations;

Golden section method

- Suppose there is a triplet $\left(a, x_{k}, c\right)$ and $f\left(x_{k}\right)<f(a), f\left(x_{k}\right)<f(c)$, we want to find x_{k+1} in (a, c) to perform a section. Suppose x_{k+1} is in $\left(a, x_{k}\right)$.

- If $f\left(x_{k+1}\right)>f\left(x_{k}\right)$, then the new search interval is $\left(x_{k+1}, c\right)$; If $f\left(x_{k+1}\right)<f\left(x_{k}\right)$, then the new search interval is $\left(a, x_{k}\right)$.

Golden section method

- Define

$$
w=\frac{x_{k}-a}{c-a}, \quad 1-w=\frac{c-x_{k}}{c-a}
$$

and

$$
z=\frac{x_{k}-x_{k+1}}{c-a} .
$$

If we want to minimize the worst case possibility (for two cases), we must make $w=z+(1-w) .\left(w>\frac{1}{2}\right)$

- Pay attention that w is also obtained from the previous stage of applying same strategy. This scale similarity implies

$$
\frac{z}{w}=1-w
$$

we have

$$
w=\frac{\sqrt{5}-1}{2} \approx 0.618
$$

This is called Golden section method.

Golden section method

- Golden section method is a method to find the local minimum of a function f.
- Golden section method is a linear convergence method. The contraction coefficient is $C=0.618$.
- Golden section method for Example

$$
\min \varphi(x)=0.5-x e^{-x^{2}}
$$

where $a=0, c=2$.

One dimensional Newton's method

- Suppose we want to minimize $\varphi(x)$

$$
\min _{x} \varphi(x)
$$

- Taylor expansion at current iteration point x_{0}

$$
\varphi(x)=\varphi\left(x_{0}\right)+\varphi^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} \varphi^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots
$$

- Local quadratic approximation

$$
\varphi(x) \approx g(x)=\varphi\left(x_{0}\right)+\varphi^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} \varphi^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

- Minimize $g(x)$ at $g^{\prime}(x)=0$, then

$$
x_{1}=x_{0}-\frac{\varphi^{\prime}\left(x_{0}\right)}{\varphi^{\prime \prime}\left(x_{0}\right)}
$$

- Newton's method

$$
x_{k+1}=x_{k}-\frac{\varphi^{\prime}\left(x_{k}\right)}{\varphi^{\prime \prime}\left(x_{k}\right)}
$$

One dimensional Newton's method

- Graphical explanation

- Example

$$
\min \varphi(x)=0.5-x e^{-x^{2}}
$$

where $x_{0}=0.5$.

One dimensional Newton's method

Theorem

If $\varphi^{\prime \prime}\left(x^{*}\right) \neq 0$, then Newton's method converges with second order if x^{0} is close to x^{*} sufficiently.

Drawbacks of Newton's method:

1. one needs to compute the second order derivative which is a huge cost (especially for high dimensional case).
2. The initial state x_{0} must be very close to x^{*}.

High dimensional Newton's method

- Suppose we want to minimize $f(\boldsymbol{x}), \boldsymbol{x} \in \mathbb{R}^{n}$

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

- Taylor expansion at current iteration point \boldsymbol{x}_{0}

$$
f(\boldsymbol{x})=f\left(\boldsymbol{x}_{0}\right)+\nabla f\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} \nabla^{2} f\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\cdots
$$

- Local quadratic approximation
$f(\boldsymbol{x}) \approx g(\boldsymbol{x})=f\left(\boldsymbol{x}_{0}\right)+\nabla f\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} \boldsymbol{H}_{f}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)$
where \boldsymbol{H}_{f} is the Hessian matrix defined as $\left(\boldsymbol{H}_{f}\right)_{i j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$.
- Minimize $g(\boldsymbol{x})$ at $\nabla g(\boldsymbol{x})=0$, then

$$
\boldsymbol{x}_{1}=\boldsymbol{x}_{0}-\boldsymbol{H}_{f}\left(\boldsymbol{x}_{0}\right)^{-1} \cdot \nabla f\left(\boldsymbol{x}_{0}\right)
$$

- Newton's method

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\boldsymbol{H}_{f}\left(\boldsymbol{x}_{k}\right)^{-1} \cdot \nabla f\left(\boldsymbol{x}_{k}\right)
$$

High dimensional Newton's method

Example

$$
\min f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(x_{1}-1\right)^{2}
$$

Initial state $\boldsymbol{x}_{0}=(-1.2,1)$.

Steepest decent method

- Basic idea: Find a series of decent directions \boldsymbol{p}_{k} and corresponding stepsize α_{k} such that the iterations

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}
$$

and

$$
f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)
$$

- The negative gradient direction $-\nabla f$ is the "steepest" decent direction, so choose

$$
\boldsymbol{p}_{k}:=-\nabla f\left(\boldsymbol{x}_{k}\right)
$$

and choose α_{k} such that

$$
\min _{\alpha} f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k}\right)
$$

Inexact line search

- To find α such that

$$
\min _{\alpha} f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k}\right)
$$

is equivalent to perform a one dimensional minimization. But it is enough
to find an approximate α by the following inexact line search method.

- Inexact line search is to make the following type of the decent criterion

$$
f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \epsilon_{0}
$$

is satisfied.

Inexact line search

- An example of inexact line search strategy by half increment (or decrement) method:

$$
\begin{array}{cc}
{\left[a_{0}, b_{0}\right]=[0,+\infty), \quad \alpha_{0}=1 ;} & {\left[a_{1}, b_{1}\right]=[0,1], \quad \alpha_{1}=\frac{1}{2}} \\
{\left[a_{2}, b_{2}\right]=\left[0, \frac{1}{2}\right], \quad \alpha_{2}=\frac{1}{4} ;} & {\left[a_{3}, b_{3}\right]=\left[\frac{1}{4}, \frac{1}{2}\right], \quad \alpha_{3}=\frac{3}{8}}
\end{array}
$$

Steepest decent method

Steepest decent method for example

$$
\min f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(x_{1}-1\right)^{2}
$$

Initial state $\boldsymbol{x}_{0}=(-1.2,1)$.

Dumped Newton's method

- If the initial value of Newton's method is not near the minimum point, a strategy is to apply dumped Newton's method.
- Choose the decent direction as the Newton's direction

$$
\boldsymbol{p}_{k}:=-\boldsymbol{H}_{f}^{-1}\left(\boldsymbol{x}_{k}\right) \nabla f\left(\boldsymbol{x}_{k}\right)
$$

and perform the inexact line search for

$$
\min _{\alpha} f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{p}_{k}\right)
$$

Conjugate gradient method

Recalling conjugate gradient method for quadratic function

$$
\varphi(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}-b^{T} \boldsymbol{x}
$$

1. Initial step: $\boldsymbol{x}_{0}, \boldsymbol{p}_{0}=\boldsymbol{r}_{0}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{0}$
2. Suppose we have $\boldsymbol{x}_{k}, \boldsymbol{r}_{k}, \boldsymbol{p}_{k}$, the CGM step
2.1 Search the optimal α_{k} along \boldsymbol{p}_{k};

$$
\alpha_{k}=\frac{\left(\boldsymbol{r}_{k}\right)^{T} \boldsymbol{p}_{k}}{\left(\boldsymbol{p}_{k}\right)^{T} \boldsymbol{A} \boldsymbol{p}_{k}}
$$

2.2 Update \boldsymbol{x}_{k} and gradient direction \boldsymbol{r}_{k};

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{p}_{k}, \quad \boldsymbol{r}_{k+1}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{k+1}
$$

2.3 According to the calculation before to form new search direction \boldsymbol{p}_{k+1}

$$
\beta_{k}=-\frac{\left(\boldsymbol{r}_{k+1}\right)^{T} \boldsymbol{A} \boldsymbol{p}_{k}}{\left(\boldsymbol{p}_{k}\right)^{T} \boldsymbol{A} \boldsymbol{p}_{k}}, \quad \boldsymbol{p}_{k+1}=\boldsymbol{r}_{k+1}+\beta_{k} \boldsymbol{p}_{k}
$$

Conjugate gradient method

- Local quadratic approximation of general nonlinear optimization

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{0}\right)+\nabla f\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} \boldsymbol{H}_{f}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
$$

where $\boldsymbol{H}_{f}\left(\boldsymbol{x}_{0}\right)$ is the Hessian of f at \boldsymbol{x}_{0}.

- Apply conjugate gradient method to the quadratic function above successively.
- The computation of β_{k} needs the formation of Hessian matrix $\boldsymbol{H}_{f}\left(\boldsymbol{x}_{0}\right)$ which is a formidable task!
- Equivalent transformation in the quadratic case

$$
\beta_{k}=-\frac{\left(\boldsymbol{r}_{k+1}\right)^{T} \boldsymbol{A} \boldsymbol{p}_{k}}{\left(\boldsymbol{p}_{k}\right)^{T} \boldsymbol{A} \boldsymbol{p}_{k}}=\frac{\left\|\nabla \varphi\left(\boldsymbol{x}_{k+1}\right)\right\|^{2}}{\left\|\nabla \varphi\left(\boldsymbol{x}_{k}\right)\right\|^{2}}
$$

This formula does NOT need the computation of Hessian matrix.

Conjugate gradient method for nonlinear optimization

Formally generalize CGM to nonlinear optimization

1. Given initial \boldsymbol{x}_{0} and $\epsilon>0$;
2. Compute $\boldsymbol{g}_{0}=\nabla f\left(\boldsymbol{x}_{0}\right)$ and $\boldsymbol{p}_{0}=-\boldsymbol{g}_{0}, k=0$;
3. Compute λ_{k} from

$$
\min _{\lambda} f\left(\boldsymbol{x}_{k}+\lambda \boldsymbol{p}_{k}\right)
$$

and

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\lambda_{k} \boldsymbol{p}_{k}, \quad \boldsymbol{g}_{k+1}=\nabla f\left(\boldsymbol{x}_{k+1}\right)
$$

4. If $\left\|\boldsymbol{g}_{k+1}\right\| \leq \epsilon$, the iteration is over. Otherwise compute

$$
\begin{gathered}
\mu_{k+1}=\frac{\left\|\boldsymbol{g}_{k+1}\right\|^{2}}{\left\|\boldsymbol{g}_{k}\right\|^{2}} \\
\boldsymbol{p}_{k+1}=-\boldsymbol{g}_{k+1}+\mu_{k+1} \boldsymbol{p}_{k}
\end{gathered}
$$

Set $k=k+1$, iterate until convergence.

Conjugate gradient method

In realistic computations, because there is only n conjugate gradient directions for n dimensional problem, it often restarts from current point after n iterations.

Conjugate gradient method

CGM for example

$$
\min f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(x_{1}-1\right)^{2}
$$

Initial state $\boldsymbol{x}_{0}=(-1.2,1)$.

Variable metric method

- A general form of iterations

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\lambda_{k} \boldsymbol{H}_{k} \nabla f\left(\boldsymbol{x}_{k}\right)
$$

1. If $\boldsymbol{H}_{k}=\boldsymbol{I}$, it is steepest decent method;
2. If $\boldsymbol{H}_{k}=\left[\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\right]^{-1}$, it is dumped Newton's method.

- In order to keep the fast convergence of Newton's method, we hope to approximate $\left[\nabla^{2} f\left(\boldsymbol{x}_{k}\right)\right]^{-1}$ as \boldsymbol{H}_{k} with reduced computational efforts as

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\boldsymbol{C}_{k},
$$

where \boldsymbol{C}_{k} is a correction matrix which is easily computed.

Variable metric method

- First consider quadratic function

$$
f(\boldsymbol{x})=a+\boldsymbol{b}^{T} \boldsymbol{x}+\frac{1}{2} \boldsymbol{x}^{T} \boldsymbol{G} \boldsymbol{x}
$$

we have

$$
\nabla f(\boldsymbol{x})=\boldsymbol{b}+\boldsymbol{G} \boldsymbol{x}
$$

- Define $\boldsymbol{g}(\boldsymbol{x})=\nabla f(\boldsymbol{x}), \boldsymbol{g}_{k}=\boldsymbol{g}\left(\boldsymbol{x}_{k}\right)$, then

$$
\boldsymbol{g}_{k+1}-\boldsymbol{g}_{k}=\boldsymbol{G}\left(\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}\right) .
$$

Define

$$
\Delta \boldsymbol{x}_{k}=\boldsymbol{x}_{k+1}-\boldsymbol{x}_{k}, \quad \Delta \boldsymbol{g}_{k}=\boldsymbol{g}_{k+1}-\boldsymbol{g}_{k}
$$

we have

$$
\boldsymbol{G} \Delta \boldsymbol{x}_{k}=\Delta \boldsymbol{g}_{k} .
$$

Variable metric method

- For general nonlinear function

$$
f(\boldsymbol{x}) \approx f\left(\boldsymbol{x}_{k+1}\right)+\nabla f\left(\boldsymbol{x}_{k+1}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{k+1}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{k+1}\right)^{T} \boldsymbol{H}_{f}\left(\boldsymbol{x}_{k+1}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{k+1}\right) .
$$

Similar procedure as above we have

$$
\left[\boldsymbol{H}_{f}\left(\boldsymbol{x}_{k+1}\right)\right]^{-1} \Delta \boldsymbol{g}_{k}=\Delta \boldsymbol{x}_{k} .
$$

- As \boldsymbol{H}_{k+1} is a approximation of $\left[\boldsymbol{H}_{f}\left(\boldsymbol{x}_{k+1}\right)\right]^{-1}$, it must satisfy

$$
\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}_{k}=\Delta \boldsymbol{x}_{k} .
$$

DFP method

- Davidon-Fletcher-Powell method:

Choose \boldsymbol{C}_{k} as rank-2 correction matrix

$$
\boldsymbol{C}_{k}=\alpha_{k} \boldsymbol{u} \boldsymbol{u}^{T}+\beta_{k} \boldsymbol{v} \boldsymbol{v}^{T}
$$

where $\alpha_{k}, \beta_{k}, \boldsymbol{u}, \boldsymbol{v}$ are undetermined variables.

- From $\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}+\boldsymbol{C}_{k}$ and $\boldsymbol{H}_{k+1} \Delta \boldsymbol{g}_{k}=\Delta \boldsymbol{x}_{k}$ we have

$$
\alpha_{k} \boldsymbol{u}\left(\boldsymbol{u}^{T} \Delta \boldsymbol{g}_{k}\right)+\beta_{k} \boldsymbol{v}\left(\boldsymbol{v}^{T} \Delta \boldsymbol{g}_{k}\right)=\Delta \boldsymbol{x}_{k}-\boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k}
$$

- Take $\boldsymbol{u}=\boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k}, \quad \boldsymbol{v}=\Delta \boldsymbol{x}_{k}$ and

$$
\alpha_{k}=-\frac{1}{\boldsymbol{u}^{T} \Delta \boldsymbol{g}_{k}}, \quad \beta_{k}=\frac{1}{\boldsymbol{v}^{T} \Delta \boldsymbol{g}_{k}}
$$

We obtain the famous DFP method

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}-\frac{\boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k} \Delta \boldsymbol{g}_{k}^{T} \boldsymbol{H}_{k}}{\Delta \boldsymbol{g}_{k}^{T} \boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k}}+\frac{\Delta \boldsymbol{x}_{k} \Delta \boldsymbol{x}_{k}^{T}}{\Delta \boldsymbol{x}_{k}^{T} \Delta \boldsymbol{g}_{k}}
$$

Remark on DFP method

- If $f(\boldsymbol{x})$ is quadratic and $\boldsymbol{H}_{0}=\boldsymbol{I}$, then the result will converge in n steps theoretically;
- If $f(\boldsymbol{x})$ is strictly convex, the DFP method is convergent globally.
- If \boldsymbol{H}_{k} is SPD and $\boldsymbol{g}_{k} \neq 0$, then \boldsymbol{H}_{k+1} is SPD also.

DFP method

DFP method for example

$$
\min f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(x_{1}-1\right)^{2}
$$

Initial state $\boldsymbol{x}_{0}=(-1.2,1)$.

BFGS method

- The most popular variable metric method is BFGS (Broyden-Fletcher-Goldfarb-Shanno) method shown as below

$$
\boldsymbol{H}_{k+1}=\boldsymbol{H}_{k}-\frac{\boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k} \Delta \boldsymbol{g}_{k}^{T} \boldsymbol{H}_{k}}{\Delta \boldsymbol{g}_{k}^{T} \boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k}}+\frac{\Delta \boldsymbol{x}_{k} \Delta \boldsymbol{x}_{k}^{T}}{\Delta \boldsymbol{x}_{k}^{T} \Delta \boldsymbol{g}_{k}}+\left(\Delta \boldsymbol{g}_{k}^{T} \boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k}\right) \boldsymbol{v}_{k} \boldsymbol{v}_{k}^{T}
$$

where

$$
\boldsymbol{v}_{k}=\frac{\Delta \boldsymbol{x}_{k}}{\Delta \boldsymbol{x}_{k}^{T} \Delta \boldsymbol{g}_{k}}-\frac{\boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k}}{\Delta \boldsymbol{g}_{k}^{T} \boldsymbol{H}_{k} \Delta \boldsymbol{g}_{k}}
$$

- BFGS is more stable than DFP method;
- BFGS is also a rank-2 correction method for \boldsymbol{H}_{k}.

Nonlinear least squares

- Mathematically, nonlinear least squares is to minimize

$$
\phi(\boldsymbol{x})=\frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^{T} \boldsymbol{r}(\boldsymbol{x})
$$

- We have

$$
\nabla \phi(\boldsymbol{x})=\boldsymbol{J}^{T}(\boldsymbol{x}) \boldsymbol{r}(\boldsymbol{x}), \quad \boldsymbol{H}_{\phi}(\boldsymbol{x})=\boldsymbol{J}^{T}(\boldsymbol{x}) \boldsymbol{J}(\boldsymbol{x})+\sum_{i=1}^{m} r_{i}(\boldsymbol{x}) \boldsymbol{H}_{r_{i}}(\boldsymbol{x})
$$

where $\boldsymbol{J}(\boldsymbol{x})$ is the Jacobian matrix of $\boldsymbol{r}(\boldsymbol{x})$.

- Direct Newton's method for increment s_{k} in nonlinear least squares

$$
\boldsymbol{H}_{\phi}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=-\nabla \phi\left(\boldsymbol{x}_{k}\right)
$$

Gauss-Newton method

- If make the assumption that the residual $r_{i}(\boldsymbol{x})$ is very small, we will drop the term $\sum_{i=1}^{m} r_{i}(\boldsymbol{x}) \boldsymbol{H}_{r_{i}}(\boldsymbol{x})$ in Newton's method and we obtain Gauss-Newton method

$$
\left(\boldsymbol{J}^{T}\left(\boldsymbol{x}_{k}\right) \boldsymbol{J}\left(\boldsymbol{x}_{k}\right)\right) \boldsymbol{s}_{k}=-\nabla \phi\left(\boldsymbol{x}_{k}\right)
$$

- Gauss-Newton method is equivalent to solve a sequence of linear least squares problems to approximate the nonlinear least squares.

Levenberg-Marquardt method

- If the Jacobian $\boldsymbol{J}(\boldsymbol{x})$ is ill-conditioned, one may take the Levenberg-Marquardt method as

$$
\left(\boldsymbol{J}^{T}\left(\boldsymbol{x}_{k}\right) \boldsymbol{J}\left(\boldsymbol{x}_{k}\right)+\mu_{k} \boldsymbol{I}\right) \boldsymbol{s}_{k}=-\nabla \phi\left(\boldsymbol{x}_{k}\right)
$$

where μ_{k} is a nonnegative parameter chosen by some strategy.

- L-M method may be viewed as a regularization method for Gauss-Newton method.

Homework assignment

Newton's method and BFGS method for example

$$
\min f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(x_{1}-1\right)^{2}
$$

Initial state $\boldsymbol{x}_{0}=(-1.2,1)$.

References

1．唐焕文，秦学志，实用最优化方法，大连理工大学出版社，第三版，2004。

2．J．F．Bonnans et al．，Numerical optimization：Theoretical and practical aspects，Universitext，Springer，Berlin， 2003.

