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Energy minimization: virtual drug design

I Virtual drug design is to find a best position of a ligand (a small protein

molecule) interacting with a large target protein molecule. It is equivalent

to an energy minimization problem.
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Energy minimization: protein folding

I Protein folding is to find the minimal energy state of a protein molecule

from its sequence structure. It is an outstanding open problem for global

optimization in the molecular mechanics.
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Energy minimization: mathematical formulation

I Molecular force field
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i
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I Webpage for the explanation of the force field

I Energy minimization problem with respect to all the configuration of the

atoms

min Vtotal(x1, . . . , xN )
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Nonlinear least squares

I Suppose that we have a series of experimental data (ti, yi), i = 1, . . . , m.

We wish to find parameter x ∈ Rn such that the remainder

ri(x) = yi − f(ti, x), i = 1, . . . , m

minimized.

I Mathematically, define error function

φ(x) =
1

2
r(x)T r(x)

where r = (r1, . . . , rm) such that

min
x

φ(x).

I Because the function f is nonlinear, it is called a nonlinear least square

problem.
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Optimal control problem

I Classical optimal control problem:

min

∫ T

0

f(x, u)dt

such that the constraint

dx

dt
= g(x, u), x(0) = x0, x(T ) = xT

is satisfied. Here u(t) is the control function, x(t) is the output.

I It is a nonlinear optimization in function space.
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Optimal control problem

I Example: Isoparametric problem.

max
u

∫ 1

0

x1(t)dt

dx1

dt
= u,

dx2

dt
=

√
1 + u2.

x1(0) = x1(1) = 0, x2(0) = 0, x2(1) =
π

3

1 t

dt
dx =udt1

dx2

x1
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Iterations

I Iterative methods

Object: construct sequence {xk}∞k=1, such that xk converge to a fixed

vector x∗, and x∗ is the solution of the linear system.

I General iteration idea:

If we want to solve equations

g(x) = 0,

and the equation x = f(x) has the same solution as it, then construct

xk+1 = f(xk).

If xk → x∗, then x∗ = f(x∗), thus the root of g(x) is obtained.
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Convergence order

I Suppose an iterating sequence lim xn = x∗, and

|xn − x∗| ≤ εn

where εn is called error bound. If

lim
εn+1

εn
= C,

when

1. 0 < C < 1, xn is called linear convergence;

q, q2, q3, · · · , qn, · · · , (q < 1)

2. C = 1, xn is called sublinear convergence;

1,
1

2
,
1

3
, · · · ,

1

n
, · · ·

3. C = 0, xn is called superlinear convergence;

1,
1

2!
,

1

3!
, · · · ,

1

n!
, · · ·
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Convergence order

I If

lim
εn+1

εp
n

= C, C > 0, p > 1

then xn is called p-th order convergence.

q, qp, qp2
, · · · , qpn

, · · ·

I Numerical examples for different convergence orders
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Remark on p-th order convergence

I If p = 1, i.e. linear convergence, the number of significant digits is

increasing linearly, such as 2, 3, 4, 5, . . .;

I If p > 1, the number of significant digits is increasing exponentially

(O(pn)). Suppose p = 2, then the number of significant digits is increased

as 2, 4, 8, 16, . . .!! So a very accurate result will be obtained after 4− 5

iterations;
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Golden section method

I Suppose there is a triplet (a, xk, c) and f(xk) < f(a), f(xk) < f(c), we

want to find xk+1 in (a, c) to perform a section. Suppose xk+1 is in

(a, xk).

a x ckx k+1

w

z
1−w

I If f(xk+1) > f(xk), then the new search interval is (xk+1, c); If

f(xk+1) < f(xk), then the new search interval is (a, xk).
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Golden section method

I Define

w =
xk − a

c− a
, 1− w =

c− xk

c− a

and

z =
xk − xk+1

c− a
.

If we want to minimize the worst case possibility (for two cases), we must

make w = z + (1− w). (w > 1
2
)

I Pay attention that w is also obtained from the previous stage of applying

same strategy. This scale similarity implies

z

w
= 1− w

we have

w =

√
5− 1

2
≈ 0.618

This is called Golden section method.
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Golden section method

I Golden section method is a method to find the local minimum of a

function f .

I Golden section method is a linear convergence method. The contraction

coefficient is C = 0.618.

I Golden section method for Example

min ϕ(x) = 0.5− xe−x2

where a = 0, c = 2.
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One dimensional Newton’s method

I Suppose we want to minimize ϕ(x)

min
x

ϕ(x)

I Taylor expansion at current iteration point x0

ϕ(x) = ϕ(x0) + ϕ′(x0)(x− x0) +
1

2
ϕ′′(x0)(x− x0)

2 + · · ·

I Local quadratic approximation

ϕ(x) ≈ g(x) = ϕ(x0) + ϕ′(x0)(x− x0) +
1

2
ϕ′′(x0)(x− x0)

2

I Minimize g(x) at g′(x) = 0, then

x1 = x0 −
ϕ′(x0)

ϕ′′(x0)

I Newton’s method

xk+1 = xk −
ϕ′(xk)

ϕ′′(xk)
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One dimensional Newton’s method

I Graphical explanation

xkxk+1

Local parabolic approximation

I Example

min ϕ(x) = 0.5− xe−x2

where x0 = 0.5.
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One dimensional Newton’s method

Theorem

If ϕ′′(x∗) 6= 0, then Newton’s method converges with second order if x0 is

close to x∗ sufficiently.

Drawbacks of Newton’s method:

1. one needs to compute the second order derivative which is a huge cost

(especially for high dimensional case).

2. The initial state x0 must be very close to x∗.
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High dimensional Newton’s method

I Suppose we want to minimize f(x), x ∈ Rn

min
x

f(x)

I Taylor expansion at current iteration point x0

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0)

T∇2f(x0)(x− x0) + · · ·

I Local quadratic approximation

f(x) ≈ g(x) = f(x0) +∇f(x0) · (x−x0) +
1

2
(x−x0)

T Hf (x0)(x−x0)

where Hf is the Hessian matrix defined as (Hf )ij = ∂2f
∂xi∂xj

.

I Minimize g(x) at ∇g(x) = 0, then

x1 = x0 −Hf (x0)
−1 · ∇f(x0)

I Newton’s method

xk+1 = xk −Hf (xk)−1 · ∇f(xk)
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High dimensional Newton’s method

Example

min f(x1, x2) = 100(x2 − x2
1)

2 + (x1 − 1)2

Initial state x0 = (−1.2, 1).
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Steepest decent method

I Basic idea: Find a series of decent directions pk and corresponding

stepsize αk such that the iterations

xk+1 = xk + αkpk

and

f(xk+1) ≤ f(xk).

I The negative gradient direction −∇f is the “steepest” decent direction,

so choose

pk := −∇f(xk)

and choose αk such that

min
α

f(xk + αpk)
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Inexact line search

I To find α such that

min
α

f(xk + αpk)

is equivalent to perform a one dimensional minimization. But it is enough

to find an approximate α by the following inexact line search method.

I Inexact line search is to make the following type of the decent criterion

f(xk)− f(xk+1) ≥ ε0

is satisfied.
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Inexact line search

I An example of inexact line search strategy by half increment (or

decrement) method:

[a0, b0] = [0, +∞), α0 = 1; [a1, b1] = [0, 1], α1 =
1

2

[a2, b2] = [0,
1

2
], α2 =

1

4
; [a3, b3] = [

1

4
,
1

2
], α3 =

3

8

· · · · · · · · · · · ·

a=0 b=1

3/81/4 1/2
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Steepest decent method

Steepest decent method for example

min f(x1, x2) = 100(x2 − x2
1)

2 + (x1 − 1)2

Initial state x0 = (−1.2, 1).
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Dumped Newton’s method

I If the initial value of Newton’s method is not near the minimum point, a

strategy is to apply dumped Newton’s method.

I Choose the decent direction as the Newton’s direction

pk := −H−1
f (xk)∇f(xk)

and perform the inexact line search for

min
α

f(xk + αpk)



Application examples Numerical methods

Conjugate gradient method

Recalling conjugate gradient method for quadratic function

ϕ(x) =
1

2
xT Ax− bT x

1. Initial step: x0, p0 = r0 = b−Ax0

2. Suppose we have xk, rk, pk, the CGM step

2.1 Search the optimal αk along pk;

αk =
(rk)T pk

(pk)T Apk

2.2 Update xk and gradient direction rk;

xk+1 = xk + αkpk, rk+1 = b−Axk+1

2.3 According to the calculation before to form new search direction pk+1

βk = −
(rk+1)T Apk

(pk)T Apk

, pk+1 = rk+1 + βkpk
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Conjugate gradient method

I Local quadratic approximation of general nonlinear optimization

f(x) ≈ f(x0) +∇f(x0) · (x− x0) +
1

2
(x− x0)

T Hf (x0)(x− x0)

where Hf (x0) is the Hessian of f at x0.

I Apply conjugate gradient method to the quadratic function above

successively.

I The computation of βk needs the formation of Hessian matrix Hf (x0)

which is a formidable task!

I Equivalent transformation in the quadratic case

βk = − (rk+1)
T Apk

(pk)T Apk

=
‖∇ϕ(xk+1)‖2

‖∇ϕ(xk)‖2

This formula does NOT need the computation of Hessian matrix.
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Conjugate gradient method for nonlinear optimization

Formally generalize CGM to nonlinear optimization

1. Given initial x0 and ε > 0;

2. Compute g0 = ∇f(x0) and p0 = −g0, k = 0;

3. Compute λk from

min
λ

f(xk + λpk)

and

xk+1 = xk + λkpk, gk+1 = ∇f(xk+1)

4. If ‖gk+1‖ ≤ ε, the iteration is over. Otherwise compute

µk+1 =
‖gk+1‖2

‖gk‖2

pk+1 = −gk+1 + µk+1pk

Set k = k + 1, iterate until convergence.
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Conjugate gradient method

In realistic computations, because there is only n conjugate gradient directions

for n dimensional problem, it often restarts from current point after n

iterations.
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Conjugate gradient method

CGM for example

min f(x1, x2) = 100(x2 − x2
1)

2 + (x1 − 1)2

Initial state x0 = (−1.2, 1).
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Variable metric method

I A general form of iterations

xk+1 = xk − λkHk∇f(xk)

1. If Hk = I, it is steepest decent method;

2. If Hk = [∇2f(xk)]−1, it is dumped Newton’s method.

I In order to keep the fast convergence of Newton’s method, we hope to

approximate [∇2f(xk)]−1 as Hk with reduced computational efforts as

Hk+1 = Hk + Ck,

where Ck is a correction matrix which is easily computed.
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Variable metric method

I First consider quadratic function

f(x) = a + bT x +
1

2
xT Gx

we have

∇f(x) = b + Gx

I Define g(x) = ∇f(x), gk = g(xk), then

gk+1 − gk = G(xk+1 − xk).

Define

∆xk = xk+1 − xk, ∆gk = gk+1 − gk

we have

G∆xk = ∆gk.
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Variable metric method

I For general nonlinear function

f(x) ≈ f(xk+1)+∇f(xk+1)·(x−xk+1)+
1

2
(x−xk+1)

T Hf (xk+1)(x−xk+1).

Similar procedure as above we have

[Hf (xk+1)]
−1∆gk = ∆xk.

I As Hk+1 is a approximation of [Hf (xk+1)]
−1, it must satisfy

Hk+1∆gk = ∆xk.
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DFP method

I Davidon-Fletcher-Powell method:

Choose Ck as rank-2 correction matrix

Ck = αkuuT + βkvvT

where αk, βk, u, v are undetermined variables.

I From Hk+1 = Hk + Ck and Hk+1∆gk = ∆xk we have

αku(uT ∆gk) + βkv(vT ∆gk) = ∆xk −Hk∆gk

I Take u = Hk∆gk, v = ∆xk and

αk = − 1

uT ∆gk

, βk =
1

vT ∆gk

We obtain the famous DFP method

Hk+1 = Hk −
Hk∆gk∆gT

k Hk

∆gT
k Hk∆gk

+
∆xk∆xT

k

∆xT
k ∆gk
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Remark on DFP method

I If f(x) is quadratic and H0 = I, then the result will converge in n steps

theoretically;

I If f(x) is strictly convex, the DFP method is convergent globally.

I If Hk is SPD and gk 6= 0, then Hk+1 is SPD also.
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DFP method

DFP method for example

min f(x1, x2) = 100(x2 − x2
1)

2 + (x1 − 1)2

Initial state x0 = (−1.2, 1).



Application examples Numerical methods

BFGS method

I The most popular variable metric method is BFGS

(Broyden-Fletcher-Goldfarb-Shanno) method shown as below

Hk+1 = Hk −
Hk∆gk∆gT

k Hk

∆gT
k Hk∆gk

+
∆xk∆xT

k

∆xT
k ∆gk

+ (∆gT
k Hk∆gk)vkvT

k

where

vk =
∆xk

∆xT
k ∆gk

− Hk∆gk

∆gT
k Hk∆gk

I BFGS is more stable than DFP method;

I BFGS is also a rank-2 correction method for Hk.
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Nonlinear least squares

I Mathematically, nonlinear least squares is to minimize

φ(x) =
1

2
r(x)T r(x)

I We have

∇φ(x) = JT (x)r(x), Hφ(x) = JT (x)J(x) +

m∑
i=1

ri(x)Hri(x)

where J(x) is the Jacobian matrix of r(x).

I Direct Newton’s method for increment sk in nonlinear least squares

Hφ(xk)sk = −∇φ(xk)
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Gauss-Newton method

I If make the assumption that the residual ri(x) is very small, we will drop

the term
∑m

i=1 ri(x)Hri(x) in Newton’s method and we obtain

Gauss-Newton method

(JT (xk)J(xk))sk = −∇φ(xk)

I Gauss-Newton method is equivalent to solve a sequence of linear least

squares problems to approximate the nonlinear least squares.
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Levenberg-Marquardt method

I If the Jacobian J(x) is ill-conditioned, one may take the

Levenberg-Marquardt method as

(JT (xk)J(xk) + µkI)sk = −∇φ(xk)

where µk is a nonnegative parameter chosen by some strategy.

I L-M method may be viewed as a regularization method for Gauss-Newton

method.
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Homework assignment

Newton’s method and BFGS method for example

min f(x1, x2) = 100(x2 − x2
1)

2 + (x1 − 1)2

Initial state x0 = (−1.2, 1).
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