Lecture 7 Unconstrained nonlinear programming

Weinan $\mathsf{E}^{1,2}$ and Tiejun Li^2

¹Department of Mathematics, Princeton University, weinan@princeton.edu

²School of Mathematical Sciences, Peking University, *tieli@pku.edu.cn* No.1 Science Building, 1575

Outline

Application examples

Numerical methods

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のQ@

Energy minimization: virtual drug design

Virtual drug design is to find a best position of a ligand (a small protein molecule) interacting with a large target protein molecule. It is equivalent to an energy minimization problem.

Energy minimization: protein folding

Protein folding is to find the minimal energy state of a protein molecule from its sequence structure. It is an outstanding open problem for global optimization in the molecular mechanics.

イロト 不得下 イヨト イヨト 三臣 うらの

Energy minimization: mathematical formulation

Molecular force field

$$\begin{aligned} V_{\mathsf{total}} &= \sum_{i} \frac{k_{r_i}}{2} (r_i - r_{i0})^2 + \sum_{i} \frac{k_{\theta_i}}{2} (\theta_i - \theta_{i0})^2 + \sum_{i} \frac{V_{ni}}{2} (1 + \cos(n\phi_i - \gamma_i)) \\ &+ \sum_{ij} 4\epsilon \left(\left(\frac{\sigma_{ij}}{r_{ij}}\right)^6 - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} \right) + \sum_{ij} \frac{q_i q_j}{\epsilon r_{ij}} \end{aligned}$$

- Webpage for the explanation of the force field
- Energy minimization problem with respect to all the configuration of the atoms

$$\min V_{total}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_N)$$

Nonlinear least squares

Suppose that we have a series of experimental data (t_i, y_i) , i = 1, ..., m. We wish to find parameter $x \in \mathbb{R}^n$ such that the remainder

$$r_i(\boldsymbol{x}) = y_i - f(t_i, \boldsymbol{x}), \quad i = 1, \dots, m$$

minimized.

Mathematically, define error function

$$\phi(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^T \boldsymbol{r}(\boldsymbol{x})$$

where $\boldsymbol{r} = (r_1, \ldots, r_m)$ such that

 $\min_{\boldsymbol{x}} \phi(\boldsymbol{x}).$

Because the function f is nonlinear, it is called a nonlinear least square problem.

Optimal control problem

Classical optimal control problem:

$$\min \int_0^T f(x, u) dt$$

such that the constraint

$$\frac{dx}{dt} = g(x, u), \ x(0) = x_0, x(T) = x_T$$

is satisfied. Here u(t) is the control function, x(t) is the output.

It is a nonlinear optimization in function space.

Optimal control problem

• Example: Isoparametric problem.

$$\max_{u} \int_{0}^{1} x_{1}(t) dt$$
$$\frac{dx_{1}}{dt} = u, \quad \frac{dx_{2}}{dt} = \sqrt{1+u^{2}}.$$
$$x_{1}(0) = x_{1}(1) = 0, \quad x_{2}(0) = 0, x_{2}(1) = \frac{\pi}{3}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

Application examples

Numerical methods

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - のへ⊙

Iterations

Iterative methods

Object: construct sequence $\{x_k\}_{k=1}^{\infty}$, such that x_k converge to a fixed vector x^* , and x^* is the solution of the linear system.

General iteration idea:

If we want to solve equations

 $\boldsymbol{g}(\boldsymbol{x}) = \boldsymbol{0},$

and the equation x = f(x) has the same solution as it, then construct

$$\boldsymbol{x}_{k+1} = \boldsymbol{f}(\boldsymbol{x}_k).$$

If $oldsymbol{x}_k o oldsymbol{x}^*$, then $oldsymbol{x}^* = oldsymbol{f}(oldsymbol{x}^*)$, thus the root of $oldsymbol{g}(oldsymbol{x})$ is obtained.

Convergence order

▶ Suppose an iterating sequence $\lim x_n = x^*$, and

$$|m{x}_n - m{x}^*| \leq \epsilon_n$$

where ϵ_n is called error bound. If

$$\lim \frac{\epsilon_{n+1}}{\epsilon_n} = C,$$

when

1. 0 < C < 1, x_n is called linear convergence;

$$q, q^2, q^3, \cdots, q^n, \cdots, \quad (q < 1)$$

2. C = 1, x_n is called sublinear convergence;

$$1,\frac{1}{2},\frac{1}{3},\cdots,\frac{1}{n},\cdots$$

3. C = 0, x_n is called superlinear convergence;

$$1, \frac{1}{2!}, \frac{1}{3!}, \cdots, \frac{1}{n!}, \cdots$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへぐ

Convergence order

► If

$$\lim \frac{\epsilon_{n+1}}{\epsilon_n^p}=C, \quad C>0, \ p>1$$

then x_n is called *p*-th order convergence.

$$q, q^p, q^{p^2}, \cdots, q^{p^n}, \cdots$$

Numerical examples for different convergence orders

Remark on *p*-th order convergence

- ▶ If p = 1, i.e. linear convergence, the number of significant digits is increasing linearly, such as 2, 3, 4, 5, . . .;
- If p > 1, the number of significant digits is increasing exponentially (O(pⁿ)). Suppose p = 2, then the number of significant digits is increased as 2, 4, 8, 16, ...!! So a very accurate result will be obtained after 4 − 5 iterations;

シック・ 川田 ・ 川田・ 川田・ ・ 日・

Golden section method

► Suppose there is a triplet (a, x_k, c) and f(x_k) < f(a), f(x_k) < f(c), we want to find x_{k+1} in (a, c) to perform a section. Suppose x_{k+1} is in (a, x_k).

• If $f(x_{k+1}) > f(x_k)$, then the new search interval is (x_{k+1}, c) ; If $f(x_{k+1}) < f(x_k)$, then the new search interval is (a, x_k) .

イロト 不得下 イヨト イヨト 三臣 うらの

Golden section method

Define

$$w = \frac{x_k - a}{c - a}, \quad 1 - w = \frac{c - x_k}{c - a}$$

and

$$z = \frac{x_k - x_{k+1}}{c - a}.$$

If we want to minimize the worst case possibility (for two cases), we must make w=z+(1-w). $(w>\frac{1}{2})$

Pay attention that w is also obtained from the previous stage of applying same strategy. This scale similarity implies

$$\frac{z}{w} = 1 - w$$

we have

$$w = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

This is called Golden section method.

Golden section method

- ▶ Golden section method is a method to find the local minimum of a function *f*.
- ▶ Golden section method is a linear convergence method. The contraction coefficient is C = 0.618.
- Golden section method for Example

$$\min\varphi(x) = 0.5 - xe^{-x^2}$$

where a = 0, c = 2.

One dimensional Newton's method

• Suppose we want to minimize $\varphi(x)$

 $\min_{x}\varphi(x)$

Taylor expansion at current iteration point x₀

$$\varphi(x) = \varphi(x_0) + \varphi'(x_0)(x - x_0) + \frac{1}{2}\varphi''(x_0)(x - x_0)^2 + \cdots$$

Local quadratic approximation

$$\varphi(x) \approx g(x) = \varphi(x_0) + \varphi'(x_0)(x - x_0) + \frac{1}{2}\varphi''(x_0)(x - x_0)^2$$

• Minimize g(x) at g'(x) = 0, then

$$x_1 = x_0 - \frac{\varphi'(x_0)}{\varphi''(x_0)}$$

Newton's method

$$x_{k+1} = x_k - \frac{\varphi'(x_k)}{\varphi''(x_k)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

One dimensional Newton's method

Graphical explanation

Example

$$\min\varphi(x) = 0.5 - xe^{-x^2}$$

where $x_0 = 0.5$.

イロト 不得下 イヨト イヨト 三臣 うらの

One dimensional Newton's method

Theorem

If $\varphi''(x^*) \neq 0$, then Newton's method converges with second order if x^0 is close to x^* sufficiently.

Drawbacks of Newton's method:

- 1. one needs to compute the second order derivative which is a huge cost (especially for high dimensional case).
- 2. The initial state x_0 must be very close to x^* .

High dimensional Newton's method

▶ Suppose we want to minimize $f({m x})$, ${m x} \in \mathbb{R}^n$

 $\min_{\boldsymbol{x}} f(\boldsymbol{x})$

Taylor expansion at current iteration point x_0

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_0) +
abla f(\boldsymbol{x}_0) \cdot (\boldsymbol{x} - \boldsymbol{x}_0) + rac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^T
abla^2 f(\boldsymbol{x}_0) (\boldsymbol{x} - \boldsymbol{x}_0) + \cdots$$

Local quadratic approximation

 $f(x) \approx g(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + \frac{1}{2} (x - x_0)^T H_f(x_0) (x - x_0)$

where H_f is the Hessian matrix defined as $(H_f)_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.

• Minimize $g(\boldsymbol{x})$ at $\nabla g(\boldsymbol{x}) = 0$, then

$$\boldsymbol{x}_1 = \boldsymbol{x}_0 - \boldsymbol{H}_f(\boldsymbol{x}_0)^{-1} \cdot
abla f(\boldsymbol{x}_0)$$

Newton's method

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k - oldsymbol{H}_f(oldsymbol{x}_k)^{-1} \cdot
abla f(oldsymbol{x}_k)$$

High dimensional Newton's method

Example

$$\min f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (x_1 - 1)^2$$

Initial state $x_0 = (-1.2, 1)$.

イロト 不得下 イヨト イヨト ニヨー つくや

Steepest decent method

Basic idea: Find a series of decent directions p_k and corresponding stepsize α_k such that the iterations

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k$$

and

$$f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k).$$

► The negative gradient direction -∇f is the "steepest" decent direction, so choose

$$\boldsymbol{p}_k := -\nabla f(\boldsymbol{x}_k)$$

and choose α_k such that

$$\min_{\alpha} f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$$

イロト 不得下 イヨト イヨト ニヨー つくや

Inexact line search

• To find α such that

$$\min_{\alpha} f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$$

is equivalent to perform a one dimensional minimization. But it is enough to find an approximate α by the following inexact line search method.

Inexact line search is to make the following type of the decent criterion

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{k+1}) \ge \epsilon_0$$

is satisfied.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Inexact line search

 An example of inexact line search strategy by half increment (or decrement) method:

$$[a_{0}, b_{0}] = [0, +\infty), \quad \alpha_{0} = 1; \qquad [a_{1}, b_{1}] = [0, 1], \quad \alpha_{1} = \frac{1}{2}$$
$$[a_{2}, b_{2}] = [0, \frac{1}{2}], \quad \alpha_{2} = \frac{1}{4}; \qquad [a_{3}, b_{3}] = [\frac{1}{4}, \frac{1}{2}], \quad \alpha_{3} = \frac{3}{8}$$
$$\dots \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Steepest decent method

Steepest decent method for example

$$\min f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (x_1 - 1)^2$$

Initial state $x_0 = (-1.2, 1)$.

イロト 不得下 イヨト イヨト ニヨー つくや

Dumped Newton's method

- If the initial value of Newton's method is not near the minimum point, a strategy is to apply dumped Newton's method.
- Choose the decent direction as the Newton's direction

$$\boldsymbol{p}_k := -\boldsymbol{H}_f^{-1}(\boldsymbol{x}_k) \nabla f(\boldsymbol{x}_k)$$

and perform the inexact line search for

$$\min_{\alpha} f(\boldsymbol{x}_k + \alpha \boldsymbol{p}_k)$$

Conjugate gradient method

Recalling conjugate gradient method for quadratic function

$$\varphi(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

- 1. Initial step: $\boldsymbol{x}_0, \boldsymbol{p}_0 = \boldsymbol{r}_0 = \boldsymbol{b} \boldsymbol{A} \boldsymbol{x}_0$
- 2. Suppose we have $\boldsymbol{x}_k, \boldsymbol{r}_k, \boldsymbol{p}_k$, the CGM step
 - 2.1 Search the optimal α_k along p_k ;

$$\alpha_k = \frac{(\boldsymbol{r}_k)^T \boldsymbol{p}_k}{(\boldsymbol{p}_k)^T \boldsymbol{A} \boldsymbol{p}_k}$$

2.2 Update \boldsymbol{x}_k and gradient direction \boldsymbol{r}_k ;

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + lpha_k oldsymbol{p}_k, \ oldsymbol{r}_{k+1} = oldsymbol{b} - oldsymbol{A} oldsymbol{x}_{k+1}$$

2.3 According to the calculation before to form new search direction $m{p}_{k+1}$

$$\beta_k = -\frac{(\boldsymbol{r}_{k+1})^T \boldsymbol{A} \boldsymbol{p}_k}{(\boldsymbol{p}_k)^T \boldsymbol{A} \boldsymbol{p}_k}, \quad \boldsymbol{p}_{k+1} = \boldsymbol{r}_{k+1} + \beta_k \boldsymbol{p}_k$$

Conjugate gradient method

Local quadratic approximation of general nonlinear optimization

$$f(x) pprox f(x_0) +
abla f(x_0) \cdot (x - x_0) + rac{1}{2} (x - x_0)^T H_f(x_0) (x - x_0)$$

where $H_f(x_0)$ is the Hessian of f at x_0 .

- Apply conjugate gradient method to the quadratic function above successively.
- ► The computation of β_k needs the formation of Hessian matrix H_f(x₀) which is a formidable task!
- Equivalent transformation in the quadratic case

$$\beta_k = -\frac{(\boldsymbol{r}_{k+1})^T \boldsymbol{A} \boldsymbol{p}_k}{(\boldsymbol{p}_k)^T \boldsymbol{A} \boldsymbol{p}_k} = \frac{\|\nabla \varphi(\boldsymbol{x}_{k+1})\|^2}{\|\nabla \varphi(\boldsymbol{x}_k)\|^2}$$

This formula does NOT need the computation of Hessian matrix.

イロト 不得下 イヨト イヨト ニヨー つくや

Conjugate gradient method for nonlinear optimization

Formally generalize CGM to nonlinear optimization

- 1. Given initial \boldsymbol{x}_0 and $\epsilon > 0$;
- 2. Compute $\boldsymbol{g}_0 =
 abla f(\boldsymbol{x}_0)$ and $\boldsymbol{p}_0 = -\boldsymbol{g}_0, \ k=0;$
- 3. Compute λ_k from

$$\min_{\lambda} f(\boldsymbol{x}_k + \lambda \boldsymbol{p}_k)$$

and

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \lambda_k \boldsymbol{p}_k, \quad \boldsymbol{g}_{k+1} = \nabla f(\boldsymbol{x}_{k+1})$$

4. If $\| \boldsymbol{g}_{k+1} \| \leq \epsilon$, the iteration is over. Otherwise compute

$$\mu_{k+1} = \frac{\|\boldsymbol{g}_{k+1}\|^2}{\|\boldsymbol{g}_k\|^2}$$

$$p_{k+1} = -g_{k+1} + \mu_{k+1}p_k$$

Set k = k + 1, iterate until convergence.

Conjugate gradient method

In realistic computations, because there is only n conjugate gradient directions for n dimensional problem, it often restarts from current point after n iterations.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Conjugate gradient method

CGM for example

$$\min f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (x_1 - 1)^2$$

Initial state $x_0 = (-1.2, 1)$.

Variable metric method

A general form of iterations

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \lambda_k \boldsymbol{H}_k \nabla f(\boldsymbol{x}_k)$$

1. If $H_k = I$, it is steepest decent method;

2. If $H_k = [\nabla^2 f(x_k)]^{-1}$, it is dumped Newton's method.

In order to keep the fast convergence of Newton's method, we hope to approximate [∇² f(x_k)]⁻¹ as H_k with reduced computational efforts as

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_k + \boldsymbol{C}_k,$$

where C_k is a correction matrix which is easily computed.

Variable metric method

First consider quadratic function

$$f(\boldsymbol{x}) = a + \boldsymbol{b}^T \boldsymbol{x} + \frac{1}{2} \boldsymbol{x}^T \boldsymbol{G} \boldsymbol{x}$$

we have

$$\nabla f(\boldsymbol{x}) = \boldsymbol{b} + \boldsymbol{G}\boldsymbol{x}$$

▶ Define
$$oldsymbol{g}(oldsymbol{x}) =
abla f(oldsymbol{x}), \ oldsymbol{g}_k = oldsymbol{g}(oldsymbol{x}_k)$$
, then

$$\boldsymbol{g}_{k+1} - \boldsymbol{g}_k = \boldsymbol{G}(\boldsymbol{x}_{k+1} - \boldsymbol{x}_k).$$

Define

$$\Delta \boldsymbol{x}_k = \boldsymbol{x}_{k+1} - \boldsymbol{x}_k, \ \ \Delta \boldsymbol{g}_k = \boldsymbol{g}_{k+1} - \boldsymbol{g}_k$$

we have

$$G\Delta x_k = \Delta g_k.$$

◆□▶
◆□▶
●●

Variable metric method

For general nonlinear function

$$f(\boldsymbol{x}) \approx f(\boldsymbol{x}_{k+1}) + \nabla f(\boldsymbol{x}_{k+1}) \cdot (\boldsymbol{x} - \boldsymbol{x}_{k+1}) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_{k+1})^T \boldsymbol{H}_f(\boldsymbol{x}_{k+1}) (\boldsymbol{x} - \boldsymbol{x}_{k+1}).$$

Similar procedure as above we have

$$\left[\boldsymbol{H}_{f}(\boldsymbol{x}_{k+1})\right]^{-1}\Delta\boldsymbol{g}_{k}=\Delta\boldsymbol{x}_{k}.$$

▶ As $oldsymbol{H}_{k+1}$ is a approximation of $[oldsymbol{H}_f(oldsymbol{x}_{k+1})]^{-1}$, it must satisfy

$$\boldsymbol{H}_{k+1}\Delta\boldsymbol{g}_k = \Delta\boldsymbol{x}_k.$$

DFP method

Davidon-Fletcher-Powell method:

Choose C_k as rank-2 correction matrix

$$\boldsymbol{C}_k = \alpha_k \boldsymbol{u} \boldsymbol{u}^T + \beta_k \boldsymbol{v} \boldsymbol{v}^T$$

where $\alpha_k, \beta_k, \boldsymbol{u}, \boldsymbol{v}$ are undetermined variables.

▶ From $m{H}_{k+1} = m{H}_k + m{C}_k$ and $m{H}_{k+1} \Delta m{g}_k = \Delta m{x}_k$ we have

$$\alpha_k \boldsymbol{u}(\boldsymbol{u}^T \Delta \boldsymbol{g}_k) + \beta_k \boldsymbol{v}(\boldsymbol{v}^T \Delta \boldsymbol{g}_k) = \Delta \boldsymbol{x}_k - \boldsymbol{H}_k \Delta \boldsymbol{g}_k$$

• Take $oldsymbol{u} = oldsymbol{H}_k \Delta oldsymbol{g}_k, \hspace{0.2cm} oldsymbol{v} = \Delta oldsymbol{x}_k$ and

$$\alpha_k = -\frac{1}{\boldsymbol{u}^T \Delta \boldsymbol{g}_k}, \ \ \beta_k = \frac{1}{\boldsymbol{v}^T \Delta \boldsymbol{g}_k}$$

We obtain the famous DFP method

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_k - \frac{\boldsymbol{H}_k \Delta \boldsymbol{g}_k \Delta \boldsymbol{g}_k^T \boldsymbol{H}_k}{\Delta \boldsymbol{g}_k^T \boldsymbol{H}_k \Delta \boldsymbol{g}_k} + \frac{\Delta \boldsymbol{x}_k \Delta \boldsymbol{x}_k^T}{\Delta \boldsymbol{x}_k^T \Delta \boldsymbol{g}_k}$$

◆□▶ ◆□▶ ◆ = ▶ ◆ = ● ○ Q ○

Remark on DFP method

- ▶ If f(x) is quadratic and H₀ = I, then the result will converge in n steps theoretically;
- If f(x) is strictly convex, the DFP method is convergent globally.
- If H_k is SPD and $g_k \neq 0$, then H_{k+1} is SPD also.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

DFP method

DFP method for example

$$\min f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (x_1 - 1)^2$$

Initial state $x_0 = (-1.2, 1)$.

イロト 不得下 イヨト イヨト ニヨー つくや

BFGS method

 The most popular variable metric method is BFGS (Broyden-Fletcher-Goldfarb-Shanno) method shown as below

$$\boldsymbol{H}_{k+1} = \boldsymbol{H}_k - \frac{\boldsymbol{H}_k \Delta \boldsymbol{g}_k \Delta \boldsymbol{g}_k^T \boldsymbol{H}_k}{\Delta \boldsymbol{g}_k^T \boldsymbol{H}_k \Delta \boldsymbol{g}_k} + \frac{\Delta \boldsymbol{x}_k \Delta \boldsymbol{x}_k^T}{\Delta \boldsymbol{x}_k^T \Delta \boldsymbol{g}_k} + (\Delta \boldsymbol{g}_k^T \boldsymbol{H}_k \Delta \boldsymbol{g}_k) \boldsymbol{v}_k \boldsymbol{v}_k^T$$

where

$$oldsymbol{v}_k = rac{\Deltaoldsymbol{x}_k}{\Deltaoldsymbol{x}_k^T\Deltaoldsymbol{g}_k} - rac{oldsymbol{H}_k\Deltaoldsymbol{g}_k}{\Deltaoldsymbol{g}_k^Toldsymbol{H}_k\Deltaoldsymbol{g}_k}$$

- BFGS is more stable than DFP method;
- BFGS is also a rank-2 correction method for H_k.

Nonlinear least squares

Mathematically, nonlinear least squares is to minimize

$$\phi(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^T \boldsymbol{r}(\boldsymbol{x})$$

We have

$$abla \phi({m{x}}) = {m{J}}^T({m{x}}) {m{r}}({m{x}}), \ \ {m{H}}_\phi({m{x}}) = {m{J}}^T({m{x}}) {m{J}}({m{x}}) + \sum_{i=1}^m r_i({m{x}}) {m{H}}_{r_i}({m{x}})$$

where $\boldsymbol{J}(\boldsymbol{x})$ is the Jacobian matrix of $\boldsymbol{r}(\boldsymbol{x}).$

• Direct Newton's method for increment s_k in nonlinear least squares

$$oldsymbol{H}_{\phi}(oldsymbol{x}_k)oldsymbol{s}_k = -
abla \phi(oldsymbol{x}_k)$$

Gauss-Newton method

• If make the assumption that the residual $r_i(x)$ is very small, we will drop the term $\sum_{i=1}^{m} r_i(x) H_{r_i}(x)$ in Newton's method and we obtain Gauss-Newton method

$$(\boldsymbol{J}^T(\boldsymbol{x}_k)\boldsymbol{J}(\boldsymbol{x}_k))\boldsymbol{s}_k = -\nabla\phi(\boldsymbol{x}_k)$$

 Gauss-Newton method is equivalent to solve a sequence of linear least squares problems to approximate the nonlinear least squares.

イロト 不得下 イヨト イヨト 三臣 うらの

Levenberg-Marquardt method

▶ If the Jacobian J(x) is ill-conditioned, one may take the Levenberg-Marquardt method as

$$(\boldsymbol{J}^T(\boldsymbol{x}_k)\boldsymbol{J}(\boldsymbol{x}_k) + \mu_k \boldsymbol{I})\boldsymbol{s}_k = -\nabla\phi(\boldsymbol{x}_k)$$

where μ_k is a nonnegative parameter chosen by some strategy.

 L-M method may be viewed as a regularization method for Gauss-Newton method.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Homework assignment

Newton's method and BFGS method for example

$$\min f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (x_1 - 1)^2$$

Initial state $x_0 = (-1.2, 1)$.

References

- 唐焕文,秦学志,实用最优化方法,大连理工大学出版社,第三版,2004。
- 2. J.F. Bonnans et al., Numerical optimization: Theoretical and practical aspects, Universitext, Springer, Berlin, 2003.