Lecture 5 Singular value decomposition

Weinan $\mathrm{E}^{1,2}$ and Tiejun Li^{2}

${ }^{1}$ Department of Mathematics,
Princeton University,
weinan@princeton.edu
${ }^{2}$ School of Mathematical Sciences,
Peking University, tieli@pku.edu.cn
No. 1 Science Building, 1575

Outline

Review and applications

QR for symmetric matrix

Numerical SVD

Singular value decomposition

Theorem (Singular value decomposition)
Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, then there exist $\boldsymbol{U} \in \mathbb{R}^{m \times m}, \boldsymbol{V} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{\Sigma} \in \mathbb{R}^{m \times n}$ such that

$$
A=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}
$$

where $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{m \times n}$. r is the rank of $\boldsymbol{A}, \sigma_{i}>0$ are called singular values of $\boldsymbol{A}, \boldsymbol{U}^{T} \boldsymbol{U}=\boldsymbol{I}, \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}$ are orthogonal matrices.

It is straightforward that

$$
\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{V}^{T} \boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma} \boldsymbol{V}=\boldsymbol{V}^{T} \operatorname{diag}\left(\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}, 0, \ldots, 0\right) \boldsymbol{V}
$$

i.e. the singular value $\sigma_{i}=\sqrt{\lambda_{i}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)}$. Similarly we have $\sigma_{i}=\sqrt{\lambda_{i}\left(\boldsymbol{A} \boldsymbol{A}^{T}\right)}$.

About singular values

- To find the orthogonal matrices \boldsymbol{U} and \boldsymbol{V} is equivalent to find the eigenvectors of matrices $\boldsymbol{A}^{T} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{T}$.
- If \boldsymbol{A} is symmetric, the singular value matrix $\boldsymbol{\Sigma}=\boldsymbol{D}$, where $\boldsymbol{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}, 0, \ldots, 0\right) . \lambda_{i}$ is the eigenvalues of \boldsymbol{A}, and $\boldsymbol{V}=\boldsymbol{U}^{T}$.
- The 2-norm of a matrix

$$
\|\boldsymbol{A}\|_{2}=\sqrt{\lambda_{\max }\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)}=\sigma_{\max }
$$

- The 2-condition number

$$
\operatorname{Cond}_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{-1}\right\|_{2}=\frac{\sigma_{\mathrm{max}}}{\sigma_{\min }}
$$

Generalized inverse of a matrix

- In general, if \boldsymbol{A} is singular, \boldsymbol{A}^{-1} doesn't exist! If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$, there is no definition for \boldsymbol{A}^{-1}.
- We define the Moore-Penrose generalized inverse of \boldsymbol{A} as

$$
\boldsymbol{A}^{+}=\boldsymbol{V}^{T} \operatorname{diag}\left(\sigma_{1}^{-1}, \ldots, \sigma_{r}^{-1}, 0, \ldots, 0\right) \boldsymbol{U}^{T}
$$

for arbitrary matrix A !

Least square problems

- Least square problem 1: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ may have more than one solution. If it has more than one solution we wish to pick one with $\|x\|_{2}$ is the smallest, i.e., to find $\boldsymbol{x} \in \mathcal{S}=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\}$ such that

$$
\min _{\boldsymbol{x}}\|\boldsymbol{x}\|_{2}
$$

- Least square problem 2: if it has no solution we wish to pick one which is the solution of the following minimization problem

$$
\min _{\boldsymbol{x}}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}\|_{2}
$$

- In any case we have the following solution by generalized inverse

$$
\boldsymbol{x}=\boldsymbol{A}^{+} \boldsymbol{b} .
$$

Multivariate linear regression

- Formulation

Suppose we have a list of experimental data for a multi-variate function $Y=f\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, after taking the zero-th and first order terms, we approximate Y as

$$
Y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{m} x_{m}
$$

The problem is how to recover β_{i} from the data?

- Naively consider the linear system

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{m} x_{i m}
$$

and $i=1, \ldots, n$. It may have no solution or have infinite solutions. This is reduced to the least square problem for

$$
\boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{Y}
$$

Multivariate linear regression

- We have

$$
\boldsymbol{X}=\left(\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 m} \\
1 & x_{21} & x_{22} & \cdots & x_{2 m} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n m}
\end{array}\right), \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{m}
\end{array}\right)
$$

- Least square solution

$$
\boldsymbol{\beta}=\boldsymbol{X}^{+} \boldsymbol{Y}
$$

Principal component analysis (PCA)

- Object: For a multi-component problem, is it possible to catch very few but very important characters to reduce the scale or dimension of the problem?
- Answer: Yes! PCA can do this job!

Principal component analysis（PCA）

－PCA
Suppose we have experimental data to n characters（特征）of t units（单元） for a biological species，which can be proposed a matrix under experiments or investigations as

$$
\boldsymbol{Y}=\left(\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 n} \\
y_{21} & y_{22} & \cdots & y_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
y_{t 1} & y_{t 2} & \cdots & y_{t n}
\end{array}\right)
$$

－Object：Intuitively，PCA is to find vectors $\boldsymbol{a}_{i}=\left(a_{1 i}, a_{2 i}, a_{n i}\right)(i=1, \ldots, n)$ such that

$$
\boldsymbol{F}_{i}=a_{1 i} \boldsymbol{y}_{1}+a_{2 i} \boldsymbol{y}_{2}+\cdots+a_{n i} \boldsymbol{y}_{n}, \quad i=1, \ldots, n
$$

are perpendicular each other，and pick up some large components among $\left\|\boldsymbol{F}_{i}\right\|_{2}$ ．The analysis of \boldsymbol{a}_{i} will give the main components of the problem．

Principal component analysis (PCA)

A geometrical interpretation of PCA for 2D coordinates analysis

- A mathematical rigorous interpretation (Projection maximization)

$$
\max _{\|\boldsymbol{a}\|_{2}=1} \sum_{i=1}^{N}\left(\boldsymbol{x}_{i} \cdot \boldsymbol{a}\right)^{2}=\boldsymbol{a}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{a}
$$

- Courant-Fisher's theorem gives PCA.

Principal component analysis (PCA)

- Step 1: non-dimensionalization

Calculate the mean $\bar{y}_{j}=\frac{1}{t} \sum_{k=1}^{t} y_{k j}, \quad j=1,2 \ldots, n$
Calculate variance $d_{j}=\sqrt{\sum_{k=1}^{t}\left(y_{k j}-\bar{y}_{j}\right)^{2}}, \quad j=1,2 \ldots, n$
Transformation $x_{i j}=\frac{y_{i j}-\bar{y}_{j}}{d_{j}}, \quad i=1,2 \ldots, t ; \quad j=1,2 \ldots, n$

Non-dimensionalization is used to eliminate the effect of choice of unit (单位).

Principal component analysis (PCA)

- Step 2: Define principal component vector as

$$
\boldsymbol{F}_{i}=a_{1 i} \boldsymbol{x}_{1}+a_{2 i} \boldsymbol{x}_{2}+\cdots+a_{n i} \boldsymbol{x}_{n}, \quad i=1, \ldots, n
$$

where $\boldsymbol{x}_{i}=\left(x_{1 i}, x_{2 i}, \ldots, x_{t i}\right)$. In order the vectors are independent each other, we need

$$
\boldsymbol{F}_{i}^{T} \boldsymbol{F}_{j}=0, \quad i \neq j
$$

i.e.

$$
\boldsymbol{F}_{i}^{T} \boldsymbol{F}_{j}=\left(\begin{array}{llll}
a_{1 i} & a_{2 i} & \ldots & a_{n i}
\end{array}\right) \boldsymbol{X}^{T} \boldsymbol{X}\left(\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
\vdots \\
a_{n j}
\end{array}\right)=0
$$

Principal component analysis (PCA)

- Step 3: There exists orthogonal matrix \boldsymbol{A} such that

$$
\boldsymbol{A}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{A}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

and $\lambda_{k} \geq 0(k=1, \ldots, n)$. We have if $i \neq j$, the vectors $\boldsymbol{a}_{i}, \boldsymbol{a}_{j}$ in the i-th and j-th column will satisfy the independent condition, and

$$
\left\|\boldsymbol{F}_{i}\right\|_{2}=\lambda_{i}
$$

- Step 4: Take the eigenvectors \boldsymbol{a}_{i} corresponding to the first m biggest eigenvalues $\left(\lambda_{1}>\lambda_{2}>\cdots>\lambda_{m}>\cdots\right)$, and make linear combination

$$
\boldsymbol{F}_{i}=a_{1 i} \boldsymbol{x}_{1}+a_{2 i} \boldsymbol{x}_{2}+\cdots+a_{n i} \boldsymbol{x}_{n}, \quad i=1,2, \ldots, m
$$

We will obtain the first m principal component vectors.

PCA and SVD

- If \boldsymbol{X} has SVD

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}
$$

then we have $\boldsymbol{A}=\boldsymbol{V}^{T}$, and

$$
\boldsymbol{V} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{V}^{T}=\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}
$$

- To find the first m principal component vectors is equivalent to find the first m principal (biggest) singular value and corresponding right singular vectors.

Outline

Review and applications

QR for symmetric matrix

Numerical SVD

Tri-diagonalization of symmetric matrix

- First transform symmetric \boldsymbol{A} into tri-diagonal matrix \boldsymbol{T}

$$
\boldsymbol{T}=\left(\begin{array}{cccc}
\alpha_{1} & \beta_{1} & & \\
\beta_{1} & \alpha_{2} & \ddots & \\
& \ddots & \ddots & \beta_{n-1} \\
& & \beta_{n-1} & \alpha_{n}
\end{array}\right)
$$

by a sequence of Householder transformations.

- The transformation procedure is the same as that for upper Hessenburg form with symmetry argument.

Tri-diagonalization of symmetric matrix

- The approach is to apply Householder transformation to \boldsymbol{A} column by column.

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

- Suitably choose Householder matrix \boldsymbol{H}_{1} such that

$$
\boldsymbol{H}_{1} \cdot\left(\begin{array}{c}
a_{11} \\
a_{21} \\
a_{31} \\
\vdots \\
a_{n 1}
\end{array}\right)=\left(\begin{array}{c}
a_{11}^{\prime} \\
a_{21}^{\prime} \\
0 \\
\vdots \\
0
\end{array}\right), \boldsymbol{H}_{1}=\left(\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0} & \boldsymbol{H}_{1}^{\prime}
\end{array}\right)
$$

Tri-diagonalization of symmetric matrix

- Now we have

$$
\boldsymbol{A}_{1}=\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}=\left(\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & 0 \\
a_{21}^{\prime} & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
\cdots & \cdots & \cdots & \cdots \\
0 & a_{n 2}^{\prime} & \cdots & a_{n n}^{\prime}
\end{array}\right)
$$

by symmetry of \boldsymbol{A} and \boldsymbol{A}_{1}.

- The next step is the same for upper Hesseburg form. Finally we have tridiagonal form \boldsymbol{T} and \boldsymbol{T} has the same eigenvalues as \boldsymbol{A}.

Implicit shifted QR for symmetric tridiagonal matrix

- Now we have symmetric tridiagonal \boldsymbol{T} with diagonal entries $\alpha_{i}(i=1, \ldots, n)$ and off-diagonal entries $\beta_{i}(i=1, \ldots, n-1)$, one shifted QR step is

$$
\begin{aligned}
& \boldsymbol{T}-\mu \boldsymbol{I}=\boldsymbol{Q} \boldsymbol{R} \\
& \hat{\boldsymbol{T}}=\boldsymbol{R} \boldsymbol{Q}+\mu \boldsymbol{I}
\end{aligned}
$$

In fact

$$
\hat{\boldsymbol{T}}=\boldsymbol{Q}^{T} \boldsymbol{T} \boldsymbol{Q}
$$

If we can find $Q, \hat{\boldsymbol{T}}$ directly, we doesn't need the intermediate steps.

- In fact

$$
\boldsymbol{Q}^{T} \boldsymbol{T} \boldsymbol{Q}=\boldsymbol{Q}^{T}(\boldsymbol{Q} \boldsymbol{R}+\mu \boldsymbol{I}) \boldsymbol{Q}=\boldsymbol{R} \boldsymbol{Q}+\mu \boldsymbol{I}=\hat{\boldsymbol{T}} .
$$

Implicit shifted QR for symmetric tridiagonal matrix

- Find Givens matrix $\boldsymbol{G}_{1}=\boldsymbol{G}\left(1,2 ; \theta_{1}\right)$ such that

$$
\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)^{T} \cdot\binom{\alpha_{1}-\mu}{\beta_{1}}=\binom{*}{0}
$$

- Define

$$
\boldsymbol{T}_{1}=\boldsymbol{G}_{1}^{T} \boldsymbol{T} \boldsymbol{G}_{1}
$$

We have

$$
\boldsymbol{T}_{1}=\left(\begin{array}{ccccc}
* & * & * & & \\
* & * & * & & \\
* & * & * & \ddots & \\
& & \ddots & \ddots & * \\
& & & * & *
\end{array}\right)
$$

- We should zero out the term *. That only needs another Givens matrix \boldsymbol{G}_{2} multiplication.

Implicit shifted QR for symmetric tridiagonal matrix

- We can find Givens matrix $\boldsymbol{G}_{2}=\boldsymbol{G}\left(2,3 ; \theta_{2}\right)$ such that the term * would be zero out.
- Define

$$
\boldsymbol{T}_{2}=\boldsymbol{G}_{2}^{T} \boldsymbol{G}_{1}^{T} \boldsymbol{T} \boldsymbol{G}_{1} \boldsymbol{G}_{2}
$$

We have

$$
\boldsymbol{T}_{2}=\left(\begin{array}{ccccc}
* & * & & & \\
* & * & * & * & \\
& * & * & \ddots & \\
& * & \ddots & \ddots & * \\
& & & * & *
\end{array}\right)
$$

- We should zero out the term * again. That needs a Givens matrix multiplication again.

Implicit shifted QR for symmetric tridiagonal matrix

- Sequentially we have

$$
\boldsymbol{T}_{n-2}=\left(\begin{array}{ccccc}
* & * & & & \\
* & * & * & & \\
& * & * & \ddots & * \\
& & \ddots & \ddots & * \\
& & * & * & *
\end{array}\right)
$$

- Finally we obtain

$$
\hat{\boldsymbol{T}}=\left(\begin{array}{ccccc}
* & * & & & \\
* & * & * & & \\
& * & * & \ddots & \\
& & \ddots & \ddots & * \\
& & & * & *
\end{array}\right)
$$

Implicit shifted QR for symmetric tridiagonal matrix

- Iterating for $\hat{\boldsymbol{T}}$ to obtain the next QR step!
- In general the shift is chosen as the famous Wilkinson's shift: If the submatrix of \boldsymbol{T}

$$
\boldsymbol{S}=\left(\begin{array}{cc}
\alpha_{n-1} & \beta_{n-1} \\
\beta_{n-1} & \alpha_{n}
\end{array}\right)
$$

then choose μ one of the eigenvalues of S which is more closer to α_{n}.

$$
\mu=\alpha_{n}+\delta-\operatorname{sign}(\delta) \sqrt{\delta^{2}+\beta_{n-1}^{2}}
$$

and $\delta=\frac{\alpha_{n}+\alpha_{n-1}}{2}$.

- The convergence will be very fast with this shift.

Outline

Review and applications

QR for symmetric matrix

Numerical SVD

Implicit QR method for singular value computation

- First transform \boldsymbol{A} into upper bidiagonal matrix \boldsymbol{B}

$$
\boldsymbol{B}=\left(\begin{array}{llll}
d_{1} & f_{2} & & \\
& d_{2} & \ddots & \\
& & \ddots & f_{n} \\
& & & d_{n}
\end{array}\right)
$$

by a sequence of Householder transformations
$A \xrightarrow{U_{1}}$ eliminate the first column $\xrightarrow{V_{1}}$ eliminate the first row $\xrightarrow{\cdots}$

$$
\xrightarrow{\boldsymbol{U}_{n}} \text { eliminate the } n \text {-th column }=\binom{\boldsymbol{B}}{\mathbf{0}}
$$

- \boldsymbol{A} has the same singular values as \boldsymbol{B}.

Implicit QR method for singular value computation

- First transform \boldsymbol{A} into upper bidiagonal matrix \boldsymbol{B}

$$
\boldsymbol{B}=\left(\begin{array}{llll}
d_{1} & f_{2} & & \\
& d_{2} & \ddots & \\
& & \ddots & f_{n} \\
& & & d_{n}
\end{array}\right)
$$

by a sequence of Householder transformations
$A \xrightarrow{U_{1}}$ eliminate the first column $\xrightarrow{V_{1}}$ eliminate the first row $\xrightarrow{\cdots}$

$$
\xrightarrow{\boldsymbol{U}_{n}} \text { eliminate the } n \text {-th column }=\binom{\boldsymbol{B}}{\mathbf{0}}
$$

- Now we have

$$
\boldsymbol{U}_{n} \cdots \boldsymbol{U}_{1} \boldsymbol{A} \boldsymbol{V}_{1} \cdots \boldsymbol{V}_{n-1}=\binom{\boldsymbol{B}}{\mathbf{0}}
$$

Implicit shifted QR method for singular value computation

- Basic idea: Implicitly apply shifted QR method to symmetric tridiagonal matrix $\boldsymbol{B}^{T} \boldsymbol{B}$ but without forming it.
- Steps:
- Determine the shift μ. This is equivalent to the shift step for $\boldsymbol{B}^{T} \boldsymbol{B}$. Wilkinson shift: set μ is the eigenvalue of

$$
\left(\begin{array}{cc}
d_{n-1}^{2}+f_{n-1}^{2} & d_{n-1} f_{n} \\
d_{n-1} f_{n} & d_{n}^{2}+f_{n}^{2}
\end{array}\right)
$$

closer to $d_{n}^{2}+f_{n}^{2}$ to make the convergence faster.

- Find Givens matrix $\boldsymbol{G}_{1}=\boldsymbol{G}(1,2 ; \theta)$ such that

$$
\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)^{T} \cdot\binom{d_{1}^{2}-\mu}{d_{1} f_{2}}=\binom{*}{0}
$$

and compute $B G_{1}$.
This is equivalent to apply \boldsymbol{G}_{1} step for $\boldsymbol{B}^{T} \boldsymbol{B}$.

Implicit shifted QR method for singular value computation

- We have

$$
\boldsymbol{B G}{ }_{1}=\left(\begin{array}{ccccc}
* & * & & & \\
* & * & * & & \\
& & * & \ddots & \\
& & & \ddots & *
\end{array}\right)
$$

so we should zero out the term ${ }^{*}$. We want to find \boldsymbol{P}_{2} and \boldsymbol{G}_{2} such that $\boldsymbol{P}_{2}\left(\boldsymbol{B} \boldsymbol{G}_{1}\right) \boldsymbol{G}_{2}$ is bidiagonal and $\boldsymbol{G}_{2} \boldsymbol{e}_{1}=\boldsymbol{e}_{1}$.
This is equivalent to apply \boldsymbol{G}_{2} step for $\boldsymbol{G}_{1}^{T} \boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{G}_{1}$.

Implicit shifted QR method for singular value computation

- It is not difficult to find \boldsymbol{P}_{2} and \boldsymbol{G}_{2} by Givens transformation and we have

$$
\boldsymbol{P}_{2} \boldsymbol{B} \boldsymbol{G}_{1} \boldsymbol{G}_{2}=\left(\begin{array}{ccccc}
* & * & & & \\
& * & * & & \\
& * & * & \ddots & \\
& & & \ddots & * \\
& & & & *
\end{array}\right)
$$

so we should zero out the term ${ }^{*}$. We want to find \boldsymbol{P}_{3} and \boldsymbol{G}_{3} such that $\boldsymbol{P}_{3} \boldsymbol{P}_{2} \boldsymbol{B} \boldsymbol{G}_{1} \boldsymbol{G}_{2} \boldsymbol{G}_{3}$ is bidiagonal and $\boldsymbol{G}_{3} \boldsymbol{e}_{i}=\boldsymbol{e}_{i}, i=1,2$.

These steps should be repeated until $B G_{1}$ becomes bidiagonal! It is equivalent to find G_{i} steps for symmetric tridiagonal matrix.

Implicit shifted QR method for singular value computation

- Finally we have

$$
\boldsymbol{P}_{n-1} \cdots \boldsymbol{P}_{2} \boldsymbol{B} \boldsymbol{G}_{1} \cdots \boldsymbol{G}_{n-1}=\left(\begin{array}{ccccc}
* & * & & & \\
& * & * & & \\
& & * & \ddots & \\
& & & \ddots & * \\
& & & & *
\end{array}\right)
$$

- Iterate until the off-diagonal entries converge to 0 , and the diagonal entries converge to singular values!

