Lecture 4 Eigenvalue problems

Weinan $\mathrm{E}^{1,2}$ and Tiejun Li^{2}

${ }^{1}$ Department of Mathematics,
Princeton University,
weinan@princeton.edu
${ }^{2}$ School of Mathematical Sciences,
Peking University, tieli@pku.edu.cn
No. 1 Science Building, 1575

Outline

Review

Power method

QR method

Eigenvalue problem

- Eigenvalue problem

Find λ and \boldsymbol{x} such that

$$
\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}, \quad \boldsymbol{x} \neq \mathbf{0} .
$$

λ is called the eigenvalues of \boldsymbol{A} which satisfies the eigenpolynomial

$$
\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A})=0
$$

\boldsymbol{x} is called the eigenvector corresponds to λ.

- The are n complex eigenvalues according to Fundamental Theorem of Algebra.

Eigenvalue problem for symmetric matrix

Theorem (For symmetric matrix)
The eigenvalue problem for real symmetric matrix has the properties

1. The eigenvalues are real, i.e. $\lambda_{i} \in \mathbb{R}, i=1, \ldots, n$.
2. The multiplicity of a eigenvalue to the eigenpolynomial $=$ the number of linearly independent eigenvectors corresponding to this eigenvalue.
3. The linearly independent eigenvectors are orthogonal each other.
4. A has the following spectral decomposition

$$
\boldsymbol{A}=\boldsymbol{Q} \Lambda \boldsymbol{Q}^{T}
$$

where

$$
\boldsymbol{Q}=\left(\boldsymbol{x}_{1}^{T}, \cdots, \boldsymbol{x}_{n}^{T}\right), \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right) .
$$

Variational form for symmetric matrix

Theorem (Courant-Fisher Theorem)
Suppose \boldsymbol{A} is symmetric, and the eigenvalues $\lambda_{1} \geq \cdots \geq \lambda_{n}$, if we define the Rayleigh quotient as

$$
R_{\boldsymbol{A}}(\boldsymbol{u})=\frac{\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u}}{\boldsymbol{u}^{T} \boldsymbol{u}}
$$

then we have,

$$
\lambda_{1}=\max R_{\boldsymbol{A}}(\boldsymbol{u}), \quad \lambda_{n}=\min R_{\boldsymbol{A}}(\boldsymbol{u})
$$

Jordan form for non-symmetric matrix

Theorem (Jordan form)
Suppose $\boldsymbol{A} \in \mathbb{C}^{n \times n}$, if \boldsymbol{A} has r different eigenvalues $\lambda_{1}, \ldots, \lambda_{r}$ with multiplicity n_{1}, \ldots, n_{r}, then there exists nonsingular \boldsymbol{P} such that \boldsymbol{A} has the following decomposition

$$
\boldsymbol{A}=\boldsymbol{P} \boldsymbol{J} \boldsymbol{P}^{-1}
$$

where $\boldsymbol{J}=\operatorname{diag}\left(\boldsymbol{J}_{1}, \ldots, \boldsymbol{J}_{r}\right)$, and

$$
\boldsymbol{J}_{k}=\left(\begin{array}{cccc}
\lambda_{k} & 1 & & \\
& \lambda_{k} & \ddots & \\
& & \ddots & 1 \\
& & & \lambda_{k}
\end{array}\right), \quad k=1, \ldots, r
$$

Gershgorin's disks theorem

Definition

Suppose that $n \geq 2$ and $\boldsymbol{A} \in \mathbb{C}^{n \times n}$. The Gershgorin discs $D_{i}, i=1,2, \ldots, n$, of the matrix \boldsymbol{A} are defined as the closed circular regions

$$
D_{i}=\left\{z \in \mathbb{C}:\left|z-a_{i i}\right| \leq R_{i}\right\}
$$

in the complex plane, where

$$
R_{i}=\sum_{j=1, j \neq i}^{n}\left|a_{i j}\right|
$$

is the radius of D_{i}.

Theorem (Gershgorin theorem)
All eigenvalues of the matrix \boldsymbol{A} lie in the region $D=\cup_{i=1}^{n} D_{i}$, where D_{i} are the Gershgorin discs of \boldsymbol{A}.

Gershgorin's disks theorem

Geometrical interpretation of Gershgorin's disks theorem for

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
30 & 1 & 2 \\
4 & 15 & -4 \\
-1 & 0 & 3
\end{array}\right)
$$

Outline

Review

Power method

QR method

Basic idea of power method

- First suppose \boldsymbol{A} is diagonizable, i.e.

$$
\boldsymbol{A}=\boldsymbol{P} \Lambda \boldsymbol{P}^{-1}
$$

and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. We will assume

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|
$$

in the follows and assume \boldsymbol{x}_{i} are the eigenvectors corresponding to λ_{i}.

- For any initial $\boldsymbol{u}_{0}=\alpha_{1} \boldsymbol{x}_{1}+\cdots+\alpha_{n} \boldsymbol{x}_{n}$, where $\alpha_{k} \in \mathbb{C}$. We have

$$
\begin{aligned}
\boldsymbol{A}^{k} \boldsymbol{u}_{0} & =\sum_{j=1}^{n} \alpha_{j} \boldsymbol{A}^{k} \boldsymbol{x}_{j}=\sum_{j=1}^{n} \alpha_{j} \lambda_{j}^{k} \boldsymbol{x}_{j} \\
& =\lambda_{1}^{k}\left(\alpha_{1} \boldsymbol{x}_{1}+\sum_{j=2}^{n} \alpha_{j}\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \boldsymbol{x}_{j}\right)
\end{aligned}
$$

Power method

- We have

$$
\lim _{k \rightarrow \infty} \frac{\boldsymbol{A}^{k} \boldsymbol{u}_{0}}{\lambda_{1}^{k}}=\alpha_{1} \boldsymbol{x}_{1}
$$

- Though λ_{1} and α_{1} is not known, the direction of \boldsymbol{x}_{1} is enough!
- Power method

1. Set up initial $\boldsymbol{u}_{0}, k=1$;
2. Perform a power step $\boldsymbol{y}_{k}=\boldsymbol{A} \boldsymbol{u}_{k-1}$;
3. Find the maximal component for the absolute value of $\mu_{k}=\left\|\boldsymbol{y}_{k}\right\|_{\infty}$;
4. Normalize $\boldsymbol{u}_{k}=\frac{1}{\mu_{k}} \boldsymbol{y}_{k}$ and repeat.

- We will have $\boldsymbol{u}_{k} \rightarrow \boldsymbol{x}_{1}, \mu_{k} \rightarrow \lambda_{1}$.

Power method: example

- Example 1: compute the eigenvalue with largest modulus for

$$
A=\left(\begin{array}{cccc}
30 & 2 & 3 & 13 \\
5 & 11 & 10 & 8 \\
9 & 7 & 6 & 12 \\
4 & 14 & 15 & 1
\end{array}\right)
$$

- Example 2: compute the eigenvalue with largest modulus for the second order ODE example $(\mathrm{n}=30)$

Power method

Theorem (Convergence of power method)
If the eigenvalues of \boldsymbol{A} has the order $\left|\lambda_{1}\right|>\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{p}\right|$ (counting multiplicity), and the algebraic multiplicity of λ_{1} is equal to the geometric multiplicity. Suppose the projection of u_{0} to the eigenspace of λ_{1} is not 0 , then the iterating sequence is convergent

$$
\boldsymbol{u}_{k} \rightarrow \boldsymbol{x}_{1}, \quad \mu_{k} \rightarrow \lambda_{1},
$$

and the convergence rate is decided by $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$.

Shifted power method

- Shifted power method:

Since the convergence rate is decided by $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|}$, if $\frac{\left|\lambda_{2}\right|}{\left|\lambda_{1}\right|} \lesssim 1$, the convergence will be slow. An idea to overcome this issue is to "shift" the eigenvalues, i.e. to apply power method to $B=A-\mu I$ (μ is suitably chosen) such that

$$
\frac{\left|\lambda_{2}(\boldsymbol{B})\right|}{\left|\lambda_{1}(\boldsymbol{B})\right|}=\frac{\left|\lambda_{2}-\mu\right|}{\left|\lambda_{1}-\mu\right|} \ll 1
$$

the eigenvalue with largest modulus keeps invariant.

- Shifted Power method

1. Set up initial $\boldsymbol{u}_{0}, k=1$;
2. Perform a power step $\boldsymbol{y}_{k}=(\boldsymbol{A}-\mu \boldsymbol{I}) \boldsymbol{u}_{k-1}$;
3. Find the maximal component for the absolute value of $a_{k}=\left\|\boldsymbol{y}_{k}\right\|_{\infty}$;
4. Normalize $\boldsymbol{u}_{k}=\frac{1}{a_{k}} \boldsymbol{y}_{k}$ and repeat.
5. $\lambda_{\max }(\boldsymbol{A})=\lambda_{\max }(\boldsymbol{A}-\mu \boldsymbol{I})+\mu$ (under suitable shift).

- Example 1: Shifted power method $\mu=$?

Inverse power method

- How to obtain the smallest eigenvalue of \boldsymbol{A} ?

This is closely related to computing the ground state energy E_{0} for Schrödinger operator in quantum mechanics:

$$
\left(-\frac{\hbar^{2}}{2 \mu} \nabla^{2}+U(\boldsymbol{r})\right) \psi=E_{0} \psi
$$

where ψ is the wave function.

- Inverse power method: applying power method to \boldsymbol{A}^{-1}.

The inverse of the largest eigenvalue (modulus) of \boldsymbol{A}^{-1} corresponds to the smallest eigenvalue of \boldsymbol{A}.

- Just change the step $\boldsymbol{y}_{k}=\boldsymbol{A} \boldsymbol{u}_{k-1}$ in power method into $\boldsymbol{A} \boldsymbol{y}_{k}=\boldsymbol{u}_{k-1}$
- Compute the smallest eigenvalue of Example 2 ($\mathrm{n}=30$).

Inverse power method

- Sometimes inverse power method is cooperated with shifting to obtain the eigenvalue and eigenvector corresponding to some λ^{*} if we already have an approximate $\tilde{\lambda} \approx \lambda^{*}$, then the power step

$$
(\boldsymbol{A}-\tilde{\lambda} \boldsymbol{I}) \boldsymbol{y}_{k}=\boldsymbol{u}_{k-1}
$$

Notice since $\tilde{\lambda} \approx \lambda^{*}$, we have

$$
\lambda_{\max }(\boldsymbol{A}-\tilde{\lambda} \boldsymbol{I})=\frac{1}{\left|\tilde{\lambda}-\lambda^{*}\right|} \gg 1
$$

The convergence will be very fast.

- Compute the eigenvalue closest to 0.000 for Example $2(\mathrm{n}=30)$.

Rayleigh quotient accelerating

- When do we need Rayleigh quotient accelerating?

If \boldsymbol{A} is symmetric and we already have an approximate eigenvector \boldsymbol{u}_{0}, we want to refine this eigenvector and corresponding eigenvalue λ.

- Rayleigh quotient iteration: (Inverse power method + shift)

1. Choose initial $\boldsymbol{u}_{0}, k=1$;
2. Compute Rayleigh quotient $\mu_{k}=\boldsymbol{R}_{\boldsymbol{A}}\left(\boldsymbol{u}_{k-1}\right)$;
3. Solve equation for $\boldsymbol{u}_{k},\left(\boldsymbol{A}-\mu_{k} \boldsymbol{I}\right) \boldsymbol{y}_{k}=\boldsymbol{u}_{k-1}$;
4. Normalize $\boldsymbol{u}_{k}=\frac{1}{\left\|\boldsymbol{y}_{k}\right\|_{\infty}} \boldsymbol{y}_{k}$ and repeat.

- Remark on Rayleigh quotient iteration and inverse power method.

Outline

Review

Power method

QR method

QR method

- Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, then QR method is to apply iterations as follows

$$
\begin{gathered}
\boldsymbol{A}_{m-1}=\boldsymbol{Q}_{m} \boldsymbol{R}_{m} \\
\boldsymbol{A}_{m}=\boldsymbol{R}_{m} \boldsymbol{Q}_{m}
\end{gathered}
$$

where \boldsymbol{Q}_{m} is a orthogonal matrix, \boldsymbol{R}_{m} is an upper triangular matrix.

- Finally \boldsymbol{R}_{m} will tend to

$$
\left(\begin{array}{cccc}
\lambda_{1} & * & \cdots & * \\
& \lambda_{2} & \ddots & * \\
& & \ddots & * \\
& & & \lambda_{n}
\end{array}\right)
$$

We find all of the eigenvalues of \boldsymbol{A} !

- How to find matrix Q and \boldsymbol{R} efficiently to perform QR factorization?

Simplest example

- Vector

$$
\boldsymbol{x}=\binom{3}{4}
$$

Try to eliminate the second component of \boldsymbol{x} to 0 .

- Define $\boldsymbol{y}=\boldsymbol{Q} \boldsymbol{x}$,

$$
\boldsymbol{Q}=\left(\begin{array}{cc}
0.6 & -0.8 \\
0.8 & 0.6
\end{array}\right), \quad \boldsymbol{y}=\binom{5}{0}
$$

Givens transformation

- Suppose

$$
\boldsymbol{x}=\binom{a}{b}
$$

- Define rotation matrix

$$
\boldsymbol{G}=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)
$$

where $c=\frac{a}{\sqrt{a^{2}+b^{2}}}=\cos \theta, s=\frac{b}{\sqrt{a^{2}+b^{2}}}=\sin \theta$. It's quite clear that G is
a orthogonal matrix.

- We have

$$
\boldsymbol{G} \boldsymbol{x}=\boldsymbol{y}=\binom{\sqrt{a^{2}+b^{2}}}{0}
$$

- This rotation is called Givens transformation.

Givens transformation

- Geometrical interpretation of Givens transformation

General Givens transformation

- Define Givens matrix

where $c=\cos \theta, s=\sin \theta$.
- Geometrical interpretation:

Rotation with θ angle in $i-k$ plane.

Properties of Givens transformation

- Suppose the vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and we want to eliminate x_{k} to 0 with x_{i}.
- Define

$$
c=\frac{x_{i}}{\sqrt{x_{i}^{2}+x_{k}^{2}}}, \quad s=\frac{x_{k}}{\sqrt{x_{i}^{2}+x_{k}^{2}}}
$$

and $\boldsymbol{y}=\boldsymbol{G}(i, k ; \theta) \boldsymbol{x}$, then we have

$$
y_{i}=\sqrt{x_{i}^{2}+x_{k}^{2}}, \quad y_{k}=0
$$

Householder transformation

- Definition. Suppose $\boldsymbol{w} \in \mathbb{R}^{n}$ and $\|\boldsymbol{w}\|_{2}=1$, define $\boldsymbol{H} \in \mathbb{R}^{n \times n}$ as

$$
\boldsymbol{H}=\boldsymbol{I}-2 \boldsymbol{w} \boldsymbol{w}^{T}
$$

\boldsymbol{H} is called a Householder transformation.

- Properties of Householder transformation

1. Symmetric $\boldsymbol{H}^{T}=\boldsymbol{H}$;
2. Orthogonal $\boldsymbol{H}^{T} \boldsymbol{H}=\boldsymbol{I}$;
3. Reflection (Go on to the next page! :-))

Householder transformation

- For any $\boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\boldsymbol{H} \boldsymbol{x}=\boldsymbol{x}-2\left(\boldsymbol{w}^{T} \boldsymbol{x}\right) \boldsymbol{w}
$$

which is the mirror image of \boldsymbol{x} w.r.t. the plane perpendicular to \boldsymbol{w}.

- Geometrical interpretation

Application of Householder transformation

- For arbitrary $\boldsymbol{x} \in \mathbb{R}^{n}$, there exists \boldsymbol{w} such that

$$
\boldsymbol{H} \boldsymbol{x}=\alpha \boldsymbol{e}_{1}
$$

where $\alpha= \pm\|\boldsymbol{x}\|_{2}$. Taking

$$
\boldsymbol{w}=\frac{\boldsymbol{x}-\alpha \boldsymbol{e}_{1}}{\left\|\boldsymbol{x}-\alpha \boldsymbol{e}_{1}\right\|_{2}}
$$

is OK.

- Proof: Define $\beta=\left\|\boldsymbol{x}-\alpha \boldsymbol{e}_{1}\right\|_{2}$, then

$$
\begin{aligned}
\boldsymbol{H} \boldsymbol{x} & =\boldsymbol{x}-2\left(\boldsymbol{w}^{T} \boldsymbol{x}\right) \boldsymbol{w} \\
& =\boldsymbol{x}-\frac{2}{\beta^{2}}\left(\alpha^{2}-\alpha \boldsymbol{e}_{1}^{T} \cdot \boldsymbol{x}\right)\left(\boldsymbol{x}-\alpha \boldsymbol{e}_{1}\right) \\
& =\boldsymbol{x}-\frac{2}{2 \alpha^{2}-2 \alpha \boldsymbol{e}_{1}^{T} \cdot \boldsymbol{x}}\left(\alpha^{2}-\alpha \boldsymbol{e}_{1}^{T} \cdot \boldsymbol{x}\right)\left(\boldsymbol{x}-\alpha \boldsymbol{e}_{1}\right) \\
& =\boldsymbol{x}-\left(\boldsymbol{x}-\alpha \boldsymbol{e}_{1}\right) \\
& =\alpha \boldsymbol{e}_{1}
\end{aligned}
$$

Application of Householder transformation

- If define $\boldsymbol{x}^{\prime}=\left(x_{2}, \ldots, x_{n}\right)^{T}$, there exists $\boldsymbol{H}^{\prime} \in \mathbb{R}^{(n-1) \times(n-1)}$ such that

$$
\boldsymbol{H}^{\prime} \boldsymbol{x}^{\prime}=\alpha \boldsymbol{e}_{1}^{\prime}
$$

Define

$$
\boldsymbol{H}=\left(\begin{array}{cc}
1 & 0 \\
0 & \boldsymbol{H}^{\prime}
\end{array}\right)
$$

Then we have the last $n-2$ entries of $\boldsymbol{H} \boldsymbol{x}$ will be 0 . i.e.

$$
\boldsymbol{H} \boldsymbol{x}=\left(x_{1}, \sqrt{x_{2}^{2}+\ldots+x_{n}^{2}}, 0, \ldots, 0\right)
$$

Upper Hessenberg form and QR method

- Upper Hessenberg form

Upper Hessenberg matrix \boldsymbol{A} with entry $a_{i j}=0, j \leq i-2$, i.e. with the following form

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
& \ddots & \ddots & \vdots \\
& & a_{n-1, n} & a_{n n}
\end{array}\right)
$$

Why upper Hessenberg form

- Why take upper Hessenberg form?

It can be proved that if \boldsymbol{A}_{m-1} is in upper Hessenberg form then

$$
\boldsymbol{A}_{m-1}=\boldsymbol{Q}_{m} \boldsymbol{R}_{m}, \quad \boldsymbol{A}_{m}=\boldsymbol{R}_{m} \boldsymbol{Q}_{m}
$$

\boldsymbol{A}_{m} will be in upper Hessenberg form, too.

- The computational effort for QR factorization of upper Hessenberg form will be small.
- Example 3: A QR-factorization step for matrix

$$
\left(\begin{array}{lll}
3 & 1 & 4 \\
2 & 4 & 3 \\
0 & 3 & 5
\end{array}\right)
$$

QR method for upper Hessenberg form

- How to transform upper Hessenberg form into QR form?

The approach is to apply Givens transformation to \boldsymbol{A} column by column to eliminate the sub-diagonal entries.

- Suppose

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
d_{1} & * & \cdots & * \\
b_{1} & d_{2} & \cdots & * \\
& \ddots & \ddots & \vdots \\
& & b_{n-1} & d_{n}
\end{array}\right)
$$

Apply Givens transformation $\boldsymbol{G}\left(1,2 ; \theta_{1}\right)$, where $\cos \theta_{1}=\frac{d_{1}}{\sqrt{d_{1}^{2}+b_{1}^{2}}}$, $\sin \theta_{1}=\frac{b_{1}}{\sqrt{d_{1}^{2}+b_{1}^{2}}}$, then we have

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
d_{1} & * & \cdots & * \\
0 & d_{2}^{\prime} & \cdots & * \\
& \ddots & \ddots & \vdots \\
& & b_{n-1} & d_{n}
\end{array}\right)
$$

QR method for upper Hessenberg form

- Now

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
d_{1} & * & \cdots & * \\
0 & d_{2}^{\prime} & \cdots & * \\
& \ddots & \ddots & \vdots \\
& & b_{n-1} & d_{n}
\end{array}\right)
$$

Apply Givens transformation $\boldsymbol{G}\left(2,3 ; \theta_{2}\right)$, where $\cos \theta_{2}=\frac{d_{2}^{\prime}}{\sqrt{d_{2}^{\prime 2}+b_{2}^{2}}}$, $\sin \theta_{2}=\frac{b_{2}}{\sqrt{d_{2}^{\prime 2}+b_{2}^{2}}}$. We would zero out the entry a_{32}.

- Applying this procedure successively, we obtain

$$
\boldsymbol{A}=\boldsymbol{R}=\left(\begin{array}{cccc}
d_{1} & * & \cdots & * \\
0 & d_{2}^{\prime} & \cdots & * \\
& \ddots & \ddots & \vdots \\
& & 0 & d_{n}^{\prime}
\end{array}\right)
$$

Transformation to upper Hessenberg form

- How to transform a matrix into upper Hessenberg form?

The approach is to apply Householder transformation to \boldsymbol{A} column by column.

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & \cdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

- Suitably choose Householder matrix \boldsymbol{H}_{1} such that

$$
\boldsymbol{H}_{1} \cdot\left(\begin{array}{c}
a_{11} \\
a_{21} \\
a_{31} \\
\vdots \\
a_{n 1}
\end{array}\right)=\left(\begin{array}{c}
a_{11}^{\prime} \\
a_{21}^{\prime} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Transformation to upper Hessenberg form

- Now we have

$$
\boldsymbol{A}_{1}=\boldsymbol{H}_{1} \boldsymbol{A} \boldsymbol{H}_{1}=\left(\begin{array}{cccc}
a_{11}^{\prime} & a_{12}^{\prime} & \cdots & a_{1 n}^{\prime} \\
a_{21}^{\prime} & a_{22}^{\prime} & \cdots & a_{2 n}^{\prime} \\
\cdots & \cdots & \cdots & \cdots \\
0 & a_{n 2}^{\prime} & \cdots & a_{n n}^{\prime}
\end{array}\right)
$$

- Suitably choose Householder matrix \boldsymbol{H}_{2} such that

$$
\boldsymbol{H}_{2} \cdot\left(\begin{array}{c}
a_{12}^{\prime} \\
a_{22}^{\prime} \\
a_{32}^{\prime} \\
a_{42}^{\prime} \\
\vdots \\
a_{n 2}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
a_{12}^{\prime} \\
a_{22}^{\prime} \\
a_{32}^{\prime} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Transformation to upper Hessenberg form

- Apply the Householder transformation $\boldsymbol{A}_{2}=\boldsymbol{H}_{2} \boldsymbol{A}_{1} \boldsymbol{H}_{2}, \ldots$ successively, we will have the upper Hessenberg form

$$
\boldsymbol{B}=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
& \ddots & \ddots & \vdots \\
& & a_{n-1, n} & a_{n n}
\end{array}\right)
$$

- \boldsymbol{B} has the same eigenvalues as \boldsymbol{A} because of similarity transformation.

Transformation to upper Hessenberg form

Compute all the eigenvalues of Example 2 (second order ODE, $n=5$) with QR method.

Homework assignment 4

1. Compute all the eigenvalues of Example 2 (second order ODE, $n=20$) with QR method.
