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Iterations

I Iterative methods

Object: construct sequence {xk}∞k=1, such that xk converge to a fixed

vector x∗, and x∗ is the solution of the linear system.

I General iteration idea:

If we want to solve equations

g(x) = 0,

and the equation x = f(x) has the same solution as it, then construct

xk+1 = f(xk).

If xk → x∗, then x∗ = f(x∗), thus the root of g(x) is obtained.



Matrix form for Jacobi iterations

I Decompose A = D −L−U , where

L =


0

−a21 0

...
...

. . .

−an1 −an2 · · · 0

 , U =


0 −a12 · · · −a1n

0 · · · −a2n

. . .
...

0


and D = diag(a11, a22, . . . , ann).

Transformation: Dx = b + (L + U)x, thus

x = D−1(b + (L + U)x) := Bx + g.

Here B = D−1(L + U) and g = D−1b.

I Define the iterations

xk+1 = Bxk + g

This is Jacobi iteration.



Component form of Jacobi iterations

I Jacobi iterations

xk+1
1 =

(
b1 −

∑
j 6=1

a1jx
k
j

)
/a11

xk+1
2 =

(
b2 −

∑
j 6=2

a2jx
k
j

)
/a22

· · · · · · · · ·

xk+1
n =

(
bn −

∑
j 6=n

anjx
k
j

)
/ann

I Update each component of xk according to each equation simultaneously

and independently by freezing the other variables at former step.

I Parallel in nature!



Jacobi iterations

I Example 1: Solving the linear system Ax = b with

A =


1 2 −2

1 1 1

2 2 1

 , b =


1

1

2

 .

I Example 2: Solving the linear system Ax = b with

A =


2 −1 1

1 1 1

1 1 −2

 , b =


1

1

2

 .



Jacobi iterations

I Example 3: Solving the system Ax = b (n = 30)

A =



2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2


and b is discretized from −π2 sinπx, x ∈ [0, 1].



Jacobi iterations

I Convergence rate for example 3: (error vs. iteration times)
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Solving ODE u’(x)=f(x) by using Jacobi and Gauss−Seidel iterations

Jacobi



Gauss-Seidel iterations

I Idea: Update each component of x(k) sequentially with the most updated

information and freeze the left components.

xk+1
1 =

(
b1 −

∑
j>1

a1jx
k
j

)
/a11

xk+1
2 =

(
b2 −

∑
j<2

a2jx
k+1
j −

∑
j>2

a2jx
k
j

)
/a22

· · · · · · · · ·

xk+1
n =

(
bn −

∑
j<n

anjx
k+1
j

)
/ann

I NOT parallel directly.



Matrix form for Gauss-Seidel iteration

I Decompose A = D −L−U , and perform transformation

(D −L)x = b + Ux, thus

x = (D −L)−1(b + Ux) := Bx + g

Here B = (D −L)−1U and g = (D −L)−1b.

I Define the iterations

xk+1 = D−1Lxk+1 + D−1Uxk + D−1b

This is Gauss-Seidel iteration.



Gauss-Seidel iterations

I Example 1: Solving the linear system Ax = b with

A =


1 2 −2

1 1 1

2 2 1

 , b =


1

1

2

 .

I Example 2: Solving the linear system Ax = b with

A =


2 −1 1

1 1 1

1 1 −2

 , b =


1

1

2

 .



Gauss-Seidel iterations

I Example 3: Solving the system Ax = b (n = 30)

A =



2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2


and b is discretized from −π2 sinπx, x ∈ [0, 1].



Gauss-Seidel iterations

I Convergence rate for example 3: (error vs. iteration times)
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Successive relaxation and SOR

I Gauss-Seidel

xk+1 = D−1Lxk+1 + D−1Uxk + D−1b.

Define

∆x = xk+1 − xk

then xk+1 = xk + ∆x.

I Successive relaxation is to add a weight ω

xk+1 = xk + ω∆x

= (1− ω)xk + ω(D−1Lxk+1 + D−1Uxk + D−1b).

If 0 < ω < 1, it is called under-relaxation; if 1 < ω < 2, it is called

over-relaxation;



Convergence theorem

Theorem (Necessary condition)

The necessary condition for the convergence of SR method is

0 < ω < 2

Theorem (SPD matrix)

If A is symmetric positive definite, then

0 < ω < 2

is the sufficient condition for convergence.



Examples

SOR method for the ODE problem (n=30).

I ω = 2

1+
√

1−(ρ(J))2
, x0 = 0

I ω = another one, x0 = 0
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Puzzle?

I Arbitrary decomposition (F is invertible)

A = F −G

then the linear system is transformed into

x = F−1Gx + F−1b.

and construct the iteration

xk+1 = F−1Gxk + F−1b.

How about the result?

I A simpler case (1D case) ax = b, a = f − g then construct

xk+1 = f−1gxk + f−1b.

How about the convergence?



Analysis for simple case

I Linear system ax = b

Exact solution x∗ = f−1gx∗ + f−1b

Iteration xk+1 = f−1gxk + f−1b.

I Subtract two expressions and define error ek = xk − x∗ thus

ek+1 = f−1gek

Then |ek| = |f−1g|k|e0|. In order |ek| → 0, we must have

|f−1g| < 1

That’s the convergence condition for 1D case.



A fundamental theorem

I Spectral radius

The spectral radius of a matrix A is defined as

ρ(A) = max
λ
|λ(A)|

Theorem (Spectral radius and iterative convergence)

If A ∈ Rn, then

lim
k→0

Ak = 0 ⇐⇒ ρ(A) < 1



Analysis for general case

I Linear system Ax = b

Exact solution x∗ = Bx∗ + g

Iteration xk+1 = Bxk + g

I Subtract two expressions and define error ek = xk − x∗ thus

ek+1 = Bek

By induction we have

ek = Bke0.

Thus we have

ek → 0 ⇐⇒ Bk → 0 ⇐⇒ ρ(B) < 1

That’s the convergence criterion for general iterations.



Examples

I Analysis for example 1.

Spectral radius for Jacobi:

Spectral radius for Gauss-Seidel:

I Analysis for example 2.

Spectral radius for Jacobi:

Spectral radius for Gauss-Seidel:



Rate of convergence

Theorem (Rate of convergence)

If ‖B‖ = q < 1, then the iterated solution has the following convergence rate:

‖ek‖ ≤ qk

1− q
‖x1 − x0‖

Loosely speaking, if we ask a tolerance εtol and ‖ek‖ ≤ εtol, we need the

number of iterations

k ≥ ln(εtol/C)

ln q
.

where C = ‖x1−x0‖
1−q

.

Remark (Linear convergence)

This type of convergence is called linear convergence, which means

lim
k→∞

‖ek+1‖
‖ek‖ = C 6= 0.



Examples

I Convergence rate for example 3

Spectral radius for Jacobi:

Spectral radius for Gauss-Seidel:

I Comparison of numerical convergence rate:
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Diagonally dominant matrix and its properties

Definition (Diagonally dominant matrix (DDM))

Suppose A ∈ Rn×n, if

|aii| >
n∑

j=1,j 6=i

|aij |, i = 1, . . . , n

A is called a DDM.

I DDM Example

A =


3 −1 1

1 3 1

0 1 −4


I Example 3 does NOT belong to this class.



Diagonally dominant matrix and its properties

Theorem (Convergence for DDM)

If A is a DDM, A is nonsingular and the Jacobi and Gauss-Seidel method for

Ax = b is convergent.
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Symmetric positive definite (SPD) matrix and Quadratic function

I Linear system

Ax = b

where A is a SPD matrix.

I Quadratic function

ϕ(x) =
1

2
xT Ax− bT x

I Connection

Solving Ax = b ⇐⇒ minϕ(x)



Symmetric positive definite (SPD) matrix and Quadratic function

I Basic observation
∂ϕ

∂xi
=

n∑
j=1

aijxj − xibi

Define gradient vector

gradϕ =
( ∂ϕ
∂xi

)n

i=1
= Ax− b

The minimizer x∗ of ϕ satisfies

gradϕ = 0, i.e. Ax∗ = b

I The necessity is skipped.



Symmetric positive definite (SPD) matrix and Quadratic function

The connection between linear system and quadratic function minimization

tells us if we have an algorithm to deal with quadratic function minimization

we have an algorithm for solving the linear system.



Steepest decent for quadratic minimization

I Basic idea: Find a series of decent directions pk and corresponding

stepsize αk such that the iterations

xk+1 = xk + αkpk

and

ϕ(xk+1) ≤ ϕ(xk).

I Schematics for Steepest decent

xmin

I How to find pk and αk?



Steepest decent method (SDM) for quadratic minimization

I The negative gradient direction −gradϕ is the “steepest” decent direction,

so choose

pk = rk := −gradϕ(xk)

and choose αk such that

min
α
ϕ(xk + αpk)

I Define f(α) = ϕ(xk + αpk) then

∂f(α)

∂α
= 0.

We obtain

αk =
(rk)T pk

(pk)T Apk

where rk = −gradϕ(xk) = b−Axk.

I This is the so called steepest decent method.



Example

I Example 1:

A =


4 1 1 0

1 4 1 1

1 1 4 1

0 1 1 4

 b =


6

7

7

6


I The ODE example (n=30):

Convergence rate.



Convergence of steepest decent method

Theorem (Convergence of steepest decent method)

Suppose the eigenvalues of A are 0 < λ1 ≤ · · · ≤ λn, then the iterating

sequence {xk}∞k=1 by steepest decent method has the following convergence

property

‖xk − x∗‖A ≤
(λn − λ1

λn + λ1

)k

‖x0 − x∗‖A

where x∗ = A−1b, ‖x‖A :=
√

xT Ax.



Remarks on steepest decent method

Remark

1. Consider pk = −gradϕ(xk),pk+1 = −gradϕ(xk+1),xk+1 = xk + αkpk,

we have
d

dα
ϕ(xk + αpk)

∣∣∣
α=αk

= 0

i.e.

(pk+1)T pk = 0

the decent directions are orthogonal for two neighboring steps. This means

steepest decent is locally steepest decent, not globally steepest decent!

This effect becomes quite severe when xk approaches x∗.

2. If λn � λ1, then λn−λ1
λn+λ1

≈ 1, the convergence rate will be very slow!

3. Though the steepest decent method is easily implemented, it is very rarely

used for the drawback stated above.

4. It can be slightly modified to obtain the famous conjugate gradient

method.



Conjugate gradient method (CGM)

I Only modify SDM a little bit to obtain CGM.

I Suppose we have xk,pk−1, rk. The strategy of CGM is not to choose

pk = rk, but choose pk in 2D plane

π2 := {ξrk + ηpk−1, ξ, η ∈ R}

Define ψ(ξ, η) = ϕ(xk + ξrk + ηpk−1), then take

∂ψ

∂ξ
= 0,

∂ψ

∂η
= 0

then {
ξ0(r

k)T Ark + η0(r
k)T Apk−1 = (rk)T rk

ξ0(r
k)T Apk−1 + η0(p

k−1)T Apk−1 = 0

i.e. we can take

pk = rk +
η0
ξ0

pk−1

I Same as SDM to obtain αk and xk+1.



Conjugate gradient method (CGM)

Final formulation of CGM:

1. Initial step: x0,p0 = r0 = b−Ax0

2. Suppose we have xk, rk,pk, the CGM step

2.1 Search the optimal αk along pk;

αk =
(rk)T pk

(pk)T Apk

2.2 Update xk and gradient direction rk;

xk+1 = xk + αkpk, rk+1 = b − Axk+1

2.3 According to the calculation before to form new search direction pk+1

βk = −
(rk+1)T Apk

(pk)T Apk
, pk+1 = rk+1 + βkpk



Example

I Example 1:

A =


4 1 1 0

1 4 1 1

1 1 4 1

0 1 1 4

 b =


6

7

7

6


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Example

I The ODE example (n=30):
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Properties of CGM

Theorem

The vectors generated by CGM have the properties

1. (ri)T rj = 0, i 6= j, 0 ≤ i < j ≤ k;

2. (pi)T Apj = 0, i 6= j, 0 ≤ i < j ≤ k;

I The property (pi)T Apj = 0 makes {pj}j=1,2,... are called conjugate

directions of A. From property 1, we have

Theoretically, CGM will find the minimum (or solution) within n steps.

This is not the case in real computations. CGM is applied as an iteration.

I Virtue of CGM: Suitable for sparse matrix A, without adjustable

parameters as SOR.



Convergence of CGM

Theorem

The sequence {xk} has the error estimate

‖xk − x∗‖A ≤ 2
(√κ2 − 1
√
κ2 + 1

)
‖x0 − x∗‖A

where κ2 := Cond2(A) = ‖A‖2‖A−1‖2.

This theorem tells us if the matrix in good condition (Cond2(A) ≈ 1), the

convergence is very fast. The real computations are even faster than the

estimate.



Preconditioning conjugate gradient method (PCG)

I If the conditioning of A is bad, we need the so-called preconditioning

technique.

I Formally transform Ax = b into

Âx̂ = b̂

where Â = P−1AP−1, x̂ = Px, b̂ = P−1b, P is a SPD matrix.

I Apply CGM to the modified system to obtain x̂k, r̂k, p̂k.

I The matrix M := P 2 is called preconditioner. Usually M is chosen a

sparse SPD matrix, and the eigenvalues of M−1A concentrate on some

value, and the equation My = r is easy to be solved.



Extension to general linear system

I Technique 1: Regularization. Transform the linear system

AT Ax = Ab

If the conditioning of A is bad, the convergence is very slow.

I Generalized Minimum RESidual method (GMRES):

Compute the minimal residual problem

min{‖b−Ax‖2,x ∈ x0 + some subspace}

This formulation is well-posed for non-symmetric matrix.

I References:

Y. Saad, Iterative methods for sparse linear systems, PWS Publishing

Company, 1996.



Homework assignment 3

1. Using Gauss-Seidel and conjugate gradient method to solve the second order

ODEs(n=30, 50, 100). Plot the figure for the convergence rate.


