Lecture 2 Direct methods for solving linear system

Weinan $\mathrm{E}^{1,2}$ and Tiejun Li^{2}

${ }^{1}$ Department of Mathematics,
Princeton University,
weinan@princeton.edu
${ }^{2}$ School of Mathematical Sciences,
Peking University, tieli@pku.edu.cn
No. 1 Science Building, 1575

Outline

Linear system

- Necessity

1. Computers are good at performing high speed arithmetic operations
2. Almost all of the scientific computing problems ends with a solution of a linear system

- Where does the linear system come from?

1. Discretization of ODEs or PDEs
2. Discretization of nonlinear systems
3. Linear programming
4.

Cramer's rule

- Cramer's rule

$$
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}, \quad \boldsymbol{A} \in \mathbb{R}^{n \times n}, \boldsymbol{x}, \boldsymbol{b} \in \mathbb{R}^{n}
$$

Case 1. $\operatorname{det}(\boldsymbol{A}) \neq 0, \boldsymbol{A}$ is nonsingular, then $x_{i}=\frac{\operatorname{det}\left(\boldsymbol{A}_{i}\right)}{\operatorname{det}(\boldsymbol{A})}$, where \boldsymbol{A}_{i} is the matrix formed by replacing the i-th column of \boldsymbol{A} with b.
Case 2. $\operatorname{det}(\boldsymbol{A})=0, \boldsymbol{A}$ is singular, then

- If $\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=\operatorname{rank}(\boldsymbol{A})$, infinite solutions;
- If $\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b}) \neq \operatorname{rank}(\boldsymbol{A})$, no solution.
- Cramer's rule is not suitable for computing (computational efficiency).

Upper triangular system

- Upper triangular system

$$
U \cdot x=b
$$

where

$$
\boldsymbol{U}=\left(\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 n} \\
& u_{22} & \ddots & \vdots \\
& & \ddots & \ddots \\
& & & u_{n n}
\end{array}\right)
$$

and $u_{i i} \neq 0, i=1, \ldots, n$.

- Direct solution by backward substitution

$$
x_{i}=\left(b_{i}-\sum_{j=i+1}^{n} u_{i j} x_{j}\right) / u_{i i}, \quad i=n, n-1, \ldots, 1
$$

Here $\sum_{j=n+1}^{n}$ is defined as 0 when $i=n$.

- Similar strategy holds for other triangular matrices, such as lower, left, right triangular matrices etc.

A simple example

- Order $n=30$, Upper triangular matrix

$$
\boldsymbol{U}=\left(\begin{array}{ccccc}
4 & 1 & 1 & & \\
& 4 & \ddots & \ddots & \\
& & \ddots & \ddots & 1 \\
& & & 4 & 1 \\
& & & & 4
\end{array}\right)
$$

- $\boldsymbol{b}=(1,1, \ldots, 1)^{T}$.
- What is the solution?

Computational efficiency for back substitution

- Total number of operations (addition, subtraction, multiplication, division)

$$
\sum_{i=n}^{1}[2(n-(i+1)+1)-1+1+1]=n^{2}
$$

- Computational efficiency $O\left(n^{2}\right)$.

Outline

Gaussian elimination method

- How to obtain the solution of a general system?
- Idea: Transform the general matrix into upper triangular matrix. Step 1: Eliminate the first column.

$$
\begin{gathered}
a_{i j} \rightarrow a_{i j}-\frac{a_{i 1}}{a_{11}} a_{1 j}, \quad i=2, \ldots, n ; j=1, \ldots, n \\
b_{i} \rightarrow b_{i}-\frac{a_{i 1}}{a_{11}} b_{1}, \quad i=2, \ldots, n \\
\left(\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
a_{11}^{(2)} & a_{12}^{(2)} & \cdots & a_{1 n}^{(2)} & b_{1}^{(2)} \\
0 & a_{22}^{(2)} & \cdots & a_{2 n}^{(2)} & b_{2}^{(2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & a_{n 2}^{(2)} & \cdots & a_{n n}^{(2)} & b_{n}^{(2)}
\end{array}\right)
\end{gathered}
$$

Gaussian elimination method

Step 2: Eliminate the second column.

$$
\begin{aligned}
& a_{i j}^{(2)} \rightarrow a_{i j}^{(2)}-\frac{a_{i 2}^{(2)}}{a_{22}^{(2)}} a_{2 j}^{(2)}, \quad i=3, \ldots, n ; j=2, \ldots, n \\
& b_{i}^{(2)} \rightarrow b_{i}^{(2)}-\frac{a_{i 2}^{(2)}}{a_{22}^{(2)}} b_{2}^{(2)}, \quad i=3, \ldots, n \\
& \left(\begin{array}{ccccc}
a_{11}^{(2)} & a_{12}^{(2)} & \cdots & a_{1 n}^{(2)} & b_{1}^{(2)} \\
0 & a_{22}^{(2)} & \cdots & a_{2 n}^{(2)} & b_{2}^{(2)} \\
0 & a_{32}^{(2)} & \cdots & a_{3 n}^{(2)} & b_{3}^{(2)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & a_{n 2}^{(2)} & \cdots & a_{n n}^{(2)} & b_{n}^{(2)}
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
a_{11}^{(3)} & a_{12}^{(3)} & \cdots & a_{1 n}^{(3)} & b_{1}^{(3)} \\
0 & a_{22}^{(3)} & \cdots & a_{2 n}^{(3)} & b_{2}^{(3)} \\
0 & 0 & \cdots & a_{3 n}^{(3)} & b_{3}^{(3)} \\
\vdots \\
0 & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}^{(3)} & b_{n}^{(3)}
\end{array}\right)
\end{aligned}
$$

Gaussian elimination method

Step 3: Repeat until the $n-1$-th column.

$$
\begin{gathered}
a_{i j}^{(n-1)} \rightarrow a_{i j}^{(n-1)}-\frac{a_{n-1, j}^{(n-1)}}{a_{n-1, n-1}^{(n-1)}} a_{i, n-1}^{(n-1)}, \quad i=n ; j=n-1, n \\
\left(\begin{array}{ccccc}
a_{11}^{(n-1)} & a_{12}^{(n-1)} & \ldots & a_{1 n}^{(n-1)} & b_{1}^{(n-1)} \\
0 & a_{22}^{(n-1)} & \ldots & a_{2 n}^{(n-1)} & b_{1}^{(n-1)} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & a_{n n}^{(n-1)} & b_{n}^{(n-1)}
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
u_{11} & u_{12} & \cdots & u_{1 n} & y_{1} \\
0 & u_{22} & \cdots & u_{2 n} & y_{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & u_{n n} & y_{n}
\end{array}\right)
\end{gathered}
$$

Step 4: Backward substitution to obtain \boldsymbol{x}.

$$
U x=y
$$

A simple example

- Linear system

$$
\left\{\begin{array}{ccc}
x_{1}+x_{2}+x_{3} & = & 6 \\
2 x_{1}+4 x_{2}+2 x_{3} & = & 16 \\
-x_{1}+5 x_{2}-4 x_{3} & = & -3
\end{array}\right.
$$

- Augmented matrix

$$
(\boldsymbol{A} \boldsymbol{b})=\left(\begin{array}{cccc}
1 & 1 & 1 & 6 \\
2 & 4 & 2 & 16 \\
-1 & 5 & -4 & -3
\end{array}\right)
$$

- Gaussian elimination.

Matrix form of Gaussian elimination method

- Gaussian elimination is equivalent to the following $L U$ decomposition

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}
$$

and the solution of two triangular systems

$$
\begin{gathered}
\boldsymbol{L y}=\boldsymbol{b}, \quad \boldsymbol{U} \boldsymbol{x}=\boldsymbol{y} \\
\boldsymbol{L}=\left(\begin{array}{cccc}
1 & & & \\
l_{21} & 1 & & \\
\vdots & \vdots & \ddots & \\
l_{n 1} & l_{n 2} & \cdots & 1
\end{array}\right), \quad \boldsymbol{U}=\left(\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
& u_{22} & \cdots & u_{2 n} \\
& & \ddots & \vdots \\
& & & u_{n n}
\end{array}\right)
\end{gathered}
$$

- The entries $l_{i j}$ in matrix L are the same as those $\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}}$ in elimination steps, and the upper triangular matrix \boldsymbol{U} is the same as that in Gaussian elimination.

Gaussian elimination algorithm

- Gaussian elimination algorithm:

$$
\begin{aligned}
& \text { for } k=1, \ldots, n-1 \\
& \qquad \begin{array}{l}
\text { for } i=k+1, \ldots, n \\
\qquad l_{i k}=\frac{a_{i k}^{(k)}}{a_{k k}^{(k)}} \\
\qquad \text { for } j=k, \ldots, n \\
a_{i j}^{(k+1)}=a_{i j}^{(k)}-l_{i k} a_{k j}^{(k)}
\end{array}
\end{aligned}
$$

Computational efficiency of Gaussian elimination

- Total number of triangulation

$$
\sum_{k=1}^{n-1}[2((n+1)-k+1)+1](n-(k+1)+1)=\frac{2}{3} n^{3}+O\left(n^{2}\right)
$$

- Computational efficiency

$$
O\left(\frac{2}{3} n^{3}\right)
$$

- The matrix form of Gaussian elimination for symmetric positive definite tridiagonal system has the following form

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}
$$

and we have $\boldsymbol{U}=\boldsymbol{D} \boldsymbol{L}^{T}$, where \boldsymbol{D} is a diagonal matrix with $d_{i i}>0$.

- Cholesky factorization for symmetric positive definite tridiagonal system

$$
\boldsymbol{A}=\boldsymbol{L} \boldsymbol{L}^{T}
$$

- L can be obtained by the following algorithm

$$
\begin{gathered}
l_{i j}=\frac{1}{l_{j j}}\left(a_{i j}-\sum_{k=1}^{j-1} l_{i k} l_{j k}\right), \quad j=1, \ldots, i-1, \\
l_{i i}=\sqrt{a_{i i}-\sum_{k=1}^{i-1} l_{i k}^{2}}
\end{gathered}
$$

Computational efficiency of Cholesky factorization

- Computational efficiency

$$
\sum_{i=1}^{n}\left[\sum_{j=1}^{i-1}(2 j-1)+(i-1)+(i-1)+1\right]=O\left(\frac{1}{3} n^{3}\right)
$$

- The computational cost is a little less than direct Gaussian elimination by symmetry.

Tridiagonal system

- Tridiagonal system

$$
\boldsymbol{A} \cdot \boldsymbol{x}=\boldsymbol{b}
$$

where

$$
\boldsymbol{A}=\left(\begin{array}{cccc}
d_{1} & c_{1} & & \\
a_{2} & d_{2} & \ddots & \\
& \ddots & \ddots & c_{n-1} \\
& & a_{n} & d_{n}
\end{array}\right)
$$

- $L U$ decomposition of tridiagonal system

$$
\boldsymbol{L}=\left(\begin{array}{cccc}
1 & & & \\
\beta_{2} & 1 & & \\
& \ddots & \ddots & \\
& & \beta_{n} & 1
\end{array}\right), \quad \boldsymbol{U}=\left(\begin{array}{cccc}
\alpha_{1} & c_{1} & & \\
& \alpha_{2} & \ddots & \\
& & \ddots & c_{n-1} \\
& & & \alpha_{n}
\end{array}\right)
$$

Tridiagonal system

- Thomas algorithm

$$
\alpha_{1}=d_{1}, \quad \beta_{i}=\frac{a_{i}}{\alpha_{i-1}}, \quad \alpha_{i}=d_{i}-\beta_{i} c_{i}, \quad i=2, \ldots, n
$$

- Computational efficiency

$$
O(n)
$$

Numerical solution of a linear system

- Numerical solution of a BVP

$$
u^{\prime \prime}(x)=f(x), \quad x \in[0,1], \quad u(0)=u(1)=0
$$

- Numerical discretization Define $h=\frac{1}{N}, \quad x_{j}=j h, f_{j}=f\left(x_{j}\right), j=0,1, \ldots, N$, and

$$
u^{\prime \prime}\left(x_{j}\right) \approx \frac{u_{j+1}-2 u_{j}+u_{j-1}}{h^{2}}
$$

then the ODE is reduced to a linear system $A \cdot X=b$, where

$$
A=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)
$$

$$
X=\left(u_{1}, u_{2}, \ldots, u_{N-1}\right)^{T}, b=-h^{2}\left(f_{1}, f_{2}, \ldots, f_{N-1}\right)^{T}
$$

Numerical solution of a linear system

- Take $f(x)=-\pi^{2} \sin \pi x$, we have the exact solution

$$
u(x)=\sin \pi x .
$$

- Take $N=50$, we have the linear system and solve it with Thomas algorithm.
- Exact solution v.s. numerical solution

An example

- Linear system $\boldsymbol{A x}=\boldsymbol{b}$ with

$$
\boldsymbol{A}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 2
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

- Gaussian elimination

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

- Even \boldsymbol{A} is nonsingular, Gaussian elimination may NOT be proceeded directly.

Another example

- Linear system $\boldsymbol{A x}=\boldsymbol{b}$ with

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1.0001 & 2 \\
1 & 2 & 2
\end{array}\right), \quad \boldsymbol{b}=\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)
$$

- Gaussian elimination

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1.0001 & 2 & 2 \\
1 & 2 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 0.0001 & 1 & 1 \\
0 & 0 & 9999 & 10000
\end{array}\right)
$$

- If the precision $t=3$, we will have $\overline{\boldsymbol{x}}=(0,0,1.000)$. But the roundoff exact solution is $\boldsymbol{x}=(1.000,-1.0001,1.0001)$. It is totally different!
- Even direct Gaussian elimination could be applied, the result may be very bad!
- We need pivoting technique.

Outline

Pivoting

- What is pivoting?
- Complete pivoting is to let the largest element of the submatrix lie on the diagonal by interchanging rows or columns. A partial pivoting (or column pivoting) is to let the largest element in one column lie on the diagonal by interchanging two rows.
- The partial pivoting is more used.

Pivoting

- Example 1: Complete pivoting (move 3 - the largest one among the matrix - to a_{11})

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 2 & 3 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
3 & 2 & 2 \\
2 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

- Example 2: partial pivoting (move 2 - the largest one among the first column - to a_{11})

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
2 & 2 & 3
\end{array}\right) \rightarrow\left(\begin{array}{lll}
2 & 2 & 3 \\
1 & 1 & 2 \\
1 & 1 & 1
\end{array}\right)
$$

Pivoting

- Pivoting

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
1 & 2 & 2
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

- Pivoting

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1.0001 & 2 & 2 \\
1 & 2 & 2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 0.0001 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & & 0.9999 & 1
\end{array}\right)
$$

The numerical solution will be $\boldsymbol{x}=(1,-1,1)$.

Matrix form for pivoting

- Matrix form for pivoting by row

$$
P A=L U
$$

where \boldsymbol{P} is a permutation matrix.

- Pivoting by row makes the computation more robust and stable.

Outline

Vector norms

Define $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$,

- Vector norms (definition of length)

$$
\begin{array}{ll}
2-\operatorname{norm} & \|\boldsymbol{x}\|_{2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}} \quad \text { Euclidean norm } \\
\infty-\operatorname{norm} & \|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right| \\
1-\text { norm } & \|\boldsymbol{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| \\
p-\operatorname{norm} & \|\boldsymbol{x}\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}
\end{array}
$$

- Properties of vector norms

1. $\|\boldsymbol{x}\| \geq 0$ and $\|\boldsymbol{x}\|=0$ iff $\boldsymbol{x}=0$,
2. $\|k \boldsymbol{x}\|=|k| \cdot\|\boldsymbol{x}\|$,
3. $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$ (Triangle inequality).

Matrix norms

Define $\boldsymbol{A}=\left(a_{i j}\right)_{n \times n}$

- Matrix norm
- Induced norm (subordinate norm)

$$
\|\boldsymbol{A}\|=\max _{\boldsymbol{x} \neq 0} \frac{\|\boldsymbol{A} \boldsymbol{x}\|}{\|\boldsymbol{x}\|}
$$

From the definition of vector norms, we have

$$
\begin{array}{ll}
2-\text { norm } & \|\boldsymbol{A}\|_{2}=\sqrt{\lambda_{\max }\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)}\left(=\sigma_{\max }\right) \\
\infty-\text { norm } & \|\boldsymbol{A}\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|a_{i j}\right| \\
1-\text { norm } & \|\boldsymbol{A}\|_{1}=\max _{j} \sum_{i=1}^{n}\left|a_{i j}\right|
\end{array}
$$

- Frobenius norm (why is it NOT an induced norm?)

$$
\|\boldsymbol{A}\|_{F}=\left(\sum_{i, j=1}^{n} a_{i j}^{2}\right)^{\frac{1}{2}}
$$

Properties of induced matrix norms

Properties of induced matrix norms:

1. $\|\boldsymbol{A}\| \geq 0$ and $\|\boldsymbol{A}\|=0$ iff $\boldsymbol{A}=0$,
2. $\|k \boldsymbol{A}\|=|k| \cdot\|\boldsymbol{A}\|$,
3. $\|\boldsymbol{A}+\boldsymbol{B}\| \leq\|\boldsymbol{A}\|+\|\boldsymbol{B}\|$ (Triangle inequality),
4. $\|\boldsymbol{A B}\| \leq\|\boldsymbol{A}\| \cdot\|\boldsymbol{B}\|$,
5. $\|\boldsymbol{A} \boldsymbol{x}\| \leq\|\boldsymbol{A}\| \cdot\|\boldsymbol{x}\|$.

Stability for the solution of linear system

- Example

$$
\boldsymbol{A}=\left(\begin{array}{ll}
2.0002 & 1.9998 \\
1.9998 & 2.0002
\end{array}\right), \quad \boldsymbol{b}=\binom{4}{4} .
$$

The exact solution

$$
\boldsymbol{x}=(1,1)^{T}
$$

- Add perturbation $\delta \boldsymbol{b}=(0.0002,-0.0002)^{T}$ to \boldsymbol{b}, i.e. we have

$$
\tilde{\boldsymbol{b}}=(4.0002,3.9998)^{T}
$$

The perturbed solution

$$
\tilde{\boldsymbol{x}}=(1.5,0.5)^{T}
$$

- Relative error for solution and perturbation in ∞-norm

$$
\frac{\|\tilde{\boldsymbol{x}}-\boldsymbol{x}\|_{\infty}}{\|\boldsymbol{x}\|_{\infty}}=\frac{1}{2}, \quad \frac{\|\tilde{\boldsymbol{b}}-\boldsymbol{b}\|_{\infty}}{\|\boldsymbol{b}\|_{\infty}}=\frac{1}{20000}
$$

The relative error is amplified 10000 times!!!

Condition number

- Condition number

$$
\operatorname{Cond}(A)=\|\boldsymbol{A}\| \cdot\left\|\boldsymbol{A}^{-1}\right\|
$$

For l^{2}-norm we have

$$
\operatorname{Cond}_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2} \cdot\left\|\boldsymbol{A}^{-1}\right\|_{2}
$$

If \boldsymbol{A} is symmetric, we have

$$
\operatorname{Cond}_{2}(\boldsymbol{A})=\frac{\lambda_{\max }(\boldsymbol{A})}{\lambda_{\min }(\boldsymbol{A})}
$$

Remark 1: $\operatorname{Cond}(\boldsymbol{A}) \geq 1$.
Remark 2: If $\operatorname{det}(\boldsymbol{A}) \approx 0, \operatorname{Cond}(\boldsymbol{A}) \gg 1$.

High condition number matrix - Hilbert Matrix

- Hilbert matrix $H_{n}=\left(h_{i j}\right)_{i, j=1}^{n}$ is defined as

$$
h_{i j}=\frac{1}{i+j-1}
$$

- Hilbert matrix is a Symmetric Positive Definite (SPD) matrix
- Determinant of H_{n}

$$
\begin{array}{cl}
n & \operatorname{det}\left(H_{n}\right) \\
1 & 1 \\
2 & 8.33333 \times 10^{-2} \\
3 & 4.62963 \times 10^{-4} \\
4 & 1.65344 \times 10^{-7} \\
5 & 3.74930 \times 10^{-12} \\
6 & 5.36730 \times 10^{-18}
\end{array}
$$

- $\operatorname{Cond}_{2}\left(H_{5}\right) \sim O\left(10^{5}\right)$.

Explanation of condition number

- Original problem $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$;

Perturbed problem $\boldsymbol{A}(\boldsymbol{x}+\delta \boldsymbol{x})=\boldsymbol{b}+\delta \boldsymbol{b}$;
Subtracting two equations we have

$$
\delta \boldsymbol{x}=\boldsymbol{A}^{-1} \delta \boldsymbol{b}
$$

Take norm we have

$$
\|\delta \boldsymbol{x}\| \leq\left\|\boldsymbol{A}^{-1}\right\|\|\delta \boldsymbol{b}\|=\left\|\boldsymbol{A}^{-1}\right\|\|\boldsymbol{A} \boldsymbol{x}\| \frac{\|\delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|} .
$$

With condition

$$
\|\boldsymbol{A} \boldsymbol{x}\| \leq\|\boldsymbol{A}\|\|\boldsymbol{x}\|
$$

we have

$$
\frac{\|\delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \operatorname{Cond}(A) \frac{\|\delta \boldsymbol{b}\|}{\|\boldsymbol{b}\|} .
$$

Condition number

- Condition number characterize the stability If $\operatorname{Cond}(\boldsymbol{A}) \gg 1$, stability is very bad; If $\operatorname{Cond}(\boldsymbol{A}) \sim 1$, stability is good.
- Lesson we should learn:

We should avoid handle the bad condition number problem in applications!

Stability

Loosely speaking, stability is to indicate how sensitive the solution of a problem may be to small relative changes in the input data. It is often quantized by condition number of a problem or an algorithm.

- Stability of the original problem ("Well-posedness")

This means the well-posedness of the original problem. The linear system with high condition number is a typical ill-posed example, which is called the unstable problem.

- Stability of numerical algorithm

This means the condition of the algorithm. The Gaussian elimination without pivoting for some linear system will be unstable.

Homework assignment 2

1. Using Thomas algorithm to solve the second order ODEs with one language (except matlab) ($\mathrm{n}=30,50,100$). Compare the numerical solution with exact solution.
2. Compute 2-, 1- and ∞-condition number of n by n symmetric tridiagonal matrix

$$
A_{n}=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)
$$

versus n with matlab and plot it as a figure.

