
Lecture 2 Direct methods for solving linear system

Weinan E1,2 and Tiejun Li2

1Department of Mathematics,

Princeton University,

weinan@princeton.edu

2School of Mathematical Sciences,

Peking University,

tieli@pku.edu.cn

No.1 Science Building, 1575

Outline

Linear system

I Necessity

1. Computers are good at performing high speed arithmetic operations

2. Almost all of the scientific computing problems ends with a solution

of a linear system

I Where does the linear system come from?

1. Discretization of ODEs or PDEs

2. Discretization of nonlinear systems

3. Linear programming

4. · · · · · ·

Cramer’s rule

I Cramer’s rule

A · x = b, A ∈ Rn×n, x, b ∈ Rn

Case 1. det(A) 6= 0, A is nonsingular, then xi = det(Ai)
det(A)

, where

Ai is the matrix formed by replacing the i-th column of A

with b.

Case 2. det(A) = 0, A is singular, then

I If rank(A, b) = rank(A), infinite solutions;

I If rank(A, b) 6= rank(A), no solution.

I Cramer’s rule is not suitable for computing (computational efficiency).

Upper triangular system

I Upper triangular system

U · x = b

where

U =

u11 u12 . . . u1n

u22

. . .
...

. . .
. . .

unn

 ,

and uii 6= 0, i = 1, . . . , n.

I Direct solution by backward substitution

xi = (bi −
n∑

j=i+1

uijxj)/uii, i = n, n− 1, . . . , 1

Here
∑n

j=n+1 is defined as 0 when i = n.

I Similar strategy holds for other triangular matrices, such as lower, left,

right triangular matrices etc.

A simple example

I Order n = 30, Upper triangular matrix

U =

4 1 1

4
. . .

. . .

. . .
. . . 1

4 1

4

,

I b = (1, 1, . . . , 1)T .

I What is the solution?

Computational efficiency for back substitution

I Total number of operations (addition, subtraction, multiplication, division)

1∑
i=n

[
2
(
n− (i + 1) + 1

)
− 1 + 1 + 1

]
= n2

I Computational efficiency O(n2).

Outline

Gaussian elimination method

I How to obtain the solution of a general system?

I Idea: Transform the general matrix into upper triangular matrix.

Step 1: Eliminate the first column.

aij → aij −
ai1

a11
a1j , i = 2, . . . , n; j = 1, . . . , n

bi → bi −
ai1

a11
b1, i = 2, . . . , n

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

an1 an2 · · · ann bn

 →

a
(2)
11 a

(2)
12 · · · a

(2)
1n b

(2)
1

0 a
(2)
22 · · · a

(2)
2n b

(2)
2

...
...

. . .
...

...

0 a
(2)
n2 · · · a

(2)
nn b

(2)
n

Gaussian elimination method

Step 2: Eliminate the second column.

a
(2)
ij → a

(2)
ij − a

(2)
i2

a
(2)
22

a
(2)
2j , i = 3, . . . , n; j = 2, . . . , n

b
(2)
i → b

(2)
i − a

(2)
i2

a
(2)
22

b
(2)
2 , i = 3, . . . , n

a
(2)
11 a

(2)
12 · · · a

(2)
1n b

(2)
1

0 a
(2)
22 · · · a

(2)
2n b

(2)
2

0 a
(2)
32 · · · a

(2)
3n b

(2)
3

...
...

. . .
...

...

0 a
(2)
n2 · · · a

(2)
nn b

(2)
n

 →

a
(3)
11 a

(3)
12 · · · a

(3)
1n b

(3)
1

0 a
(3)
22 · · · a

(3)
2n b

(3)
2

0 0 · · · a
(3)
3n b

(3)
3

...
...

. . .
...

...

0 0 · · · a
(3)
nn b

(3)
n

Gaussian elimination method

Step 3: Repeat until the n− 1-th column.

a
(n−1)
ij → a

(n−1)
ij −

a
(n−1)
n−1,j

a
(n−1)
n−1,n−1

a
(n−1)
i,n−1 , i = n; j = n− 1, n

a
(n−1)
11 a

(n−1)
12 · · · a

(n−1)
1n b

(n−1)
1

0 a
(n−1)
22 · · · a

(n−1)
2n b

(n−1)
1

...
...

. . .
...

...

0 0 · · · a
(n−1)
nn b

(n−1)
n

 →

u11 u12 · · · u1n y1

0 u22 · · · u2n y2

...
...

. . .
...

...

0 0 · · · unn yn

Step 4: Backward substitution to obtain x.

Ux = y

A simple example

I Linear system
x1 + x2 + x3 = 6

2x1 + 4x2 + 2x3 = 16

−x1 + 5x2 − 4x3 = −3.

I Augmented matrix

(A b) =

1 1 1 6

2 4 2 16

−1 5 −4 −3

I Gaussian elimination.

Matrix form of Gaussian elimination method

I Gaussian elimination is equivalent to the following LU decomposition

A = LU

and the solution of two triangular systems

Ly = b, Ux = y

L =

1

l21 1

...
...

. . .

ln1 ln2 · · · 1

 , U =

u11 u12 · · · u1n

u22 · · · u2n

. . .
...

unn

I The entries lij in matrix L are the same as those

a
(k)
ik

a
(k)
kk

in elimination steps,

and the upper triangular matrix U is the same as that in Gaussian

elimination.

Gaussian elimination algorithm

I Gaussian elimination algorithm:

for k = 1, . . . , n− 1

for i = k + 1, . . . , n

lik =
a
(k)
ik

a
(k)
kk

for j = k, . . . , n

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

Computational efficiency of Gaussian elimination

I Total number of triangulation

n−1∑
k=1

[
2
(
(n + 1)− k + 1

)
+ 1

]
(n− (k + 1) + 1) =

2

3
n3 + O(n2)

I Computational efficiency

O
(2

3
n3

)

Symmetric positive definite (SPD) system

I The matrix form of Gaussian elimination for symmetric positive definite

tridiagonal system has the following form

A = LU

and we have U = DLT , where D is a diagonal matrix with dii > 0.

I Cholesky factorization for symmetric positive definite tridiagonal system

A = LLT

I L can be obtained by the following algorithm

lij =
1

ljj

(
aij −

j−1∑
k=1

likljk

)
, j = 1, . . . , i− 1,

lii =

√√√√aii −
i−1∑
k=1

l2ik

Computational efficiency of Cholesky factorization

I Computational efficiency

n∑
i=1

[i−1∑
j=1

(2j − 1) + (i− 1) + (i− 1) + 1
]

= O
(1

3
n3

)
I The computational cost is a little less than direct Gaussian elimination by

symmetry.

Tridiagonal system

I Tridiagonal system

A · x = b

where

A =

d1 c1

a2 d2

. . .

. . .
. . . cn−1

an dn

 .

I LU decomposition of tridiagonal system

L =

1

β2 1

. . .
. . .

βn 1

 , U =

α1 c1

α2

. . .

. . . cn−1

αn

Tridiagonal system

I Thomas algorithm

α1 = d1, βi =
ai

αi−1
, αi = di − βici, i = 2, . . . , n

I Computational efficiency

O(n)

Numerical solution of a linear system

I Numerical solution of a BVP

u′′(x) = f(x), x ∈ [0, 1], u(0) = u(1) = 0.

I Numerical discretization

Define h = 1
N

, xj = jh, fj = f(xj), j = 0, 1, . . . , N , and

u′′(xj) ≈
uj+1 − 2uj + uj−1

h2

then the ODE is reduced to a linear system A ·X = b, where

A =

2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2

X = (u1, u2, . . . , uN−1)

T , b = −h2(f1, f2, . . . , fN−1)
T .

Numerical solution of a linear system

I Take f(x) = −π2 sin πx, we have the exact solution

u(x) = sin πx.

I Take N = 50, we have the linear system and solve it with Thomas

algorithm.

I Exact solution v.s. numerical solution

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The coordinate of discrete points

T
he

 v
al

ue
 o

f f
un

ct
io

n

Solving ODE: u’(x)=f(x) by using Thomas algorithm

Numerical solution
Precise solution

An example

I Linear system Ax = b with

A =

 1 1 1

1 1 2

1 2 2

 , b =

 1

2

1

 .

I Gaussian elimination 1 1 1

1 1 2

1 2 2

 →

 1 1 1

0 0 1

0 1 1

I Even A is nonsingular, Gaussian elimination may NOT be proceeded

directly.

Another example

I Linear system Ax = b with

A =

 1 1 1

1 1.0001 2

1 2 2

 , b =

 1

2

1

 .

I Gaussian elimination 1 1 1 1

1 1.0001 2 2

1 2 2 1

 →

 1 1 1 1

0 0.0001 1 1

0 0 9999 10000

I If the precision t = 3, we will have x̄ = (0, 0, 1.000). But the roundoff

exact solution is x = (1.000,−1.0001, 1.0001). It is totally different!

I Even direct Gaussian elimination could be applied, the result may be very

bad!

I We need pivoting technique.

Outline

Pivoting

I What is pivoting?

I Complete pivoting is to let the largest element of the submatrix lie on the

diagonal by interchanging rows or columns. A partial pivoting (or column

pivoting) is to let the largest element in one column lie on the diagonal by

interchanging two rows.

I The partial pivoting is more used.

Pivoting

I Example 1: Complete pivoting (move 3 — the largest one among the

matrix — to a11) 1 1 1

1 1 2

2 2 3

 →

 2 2 3

1 1 2

1 1 1

 →

 3 2 2

2 1 1

1 1 1

I Example 2: partial pivoting (move 2 — the largest one among the first

column — to a11) 1 1 1

1 1 2

2 2 3

 →

 2 2 3

1 1 2

1 1 1

Pivoting

I Pivoting

 1 1 1

1 1 2

1 2 2

 →

 1 1 1

0 0 1

0 1 1

→

 1 1 1

0 1 1

0 0 1

I Pivoting 1 1 1 1

1 1.0001 2 2

1 2 2 1

 →

 1 1 1 1

0 0.0001 1 1

0 1 1 0

→

 1 1 1 1

0 1 1 0

0 0.9999 1

The numerical solution will be x = (1,−1, 1).

Matrix form for pivoting

I Matrix form for pivoting by row

PA = LU

where P is a permutation matrix.

I Pivoting by row makes the computation more robust and stable.

Outline

Vector norms

Define x = (x1, x2, . . . , xn),

I Vector norms (definition of length)

2− norm ‖x‖2 = (

n∑
i=1

x2
i)

1
2 Euclidean norm

∞− norm ‖x‖∞ = max
i
|xi|

1− norm ‖x‖1 =

n∑
i=1

|xi|

p− norm ‖x‖p = (

n∑
i=1

|xi|p)
1
p

I Properties of vector norms

1. ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0,

2. ‖kx‖ = |k| · ‖x‖,
3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality).

Matrix norms

Define A = (aij)n×n

I Matrix norm

I Induced norm (subordinate norm)

‖A‖ = max
x6=0

‖Ax‖
‖x‖

From the definition of vector norms, we have

2− norm ‖A‖2 =

√
λmax(AT A) (= σmax)

∞− norm ‖A‖∞ = max
i

n∑
j=1

|aij |

1− norm ‖A‖1 = max
j

n∑
i=1

|aij |

I Frobenius norm (why is it NOT an induced norm?)

‖A‖F = (
n∑

i,j=1

a2
ij)

1
2

Properties of induced matrix norms

Properties of induced matrix norms:

1. ‖A‖ ≥ 0 and ‖A‖ = 0 iff A = 0,

2. ‖kA‖ = |k| · ‖A‖,

3. ‖A + B‖ ≤ ‖A‖+ ‖B‖ (Triangle inequality),

4. ‖AB‖ ≤ ‖A‖ · ‖B‖,

5. ‖Ax‖ ≤ ‖A‖ · ‖x‖.

Stability for the solution of linear system

I Example

A =

(
2.0002 1.9998

1.9998 2.0002

)
, b =

(
4

4

)
.

The exact solution

x = (1, 1)T

I Add perturbation δb = (0.0002,−0.0002)T to b, i.e. we have

b̃ = (4.0002, 3.9998)T

The perturbed solution

x̃ = (1.5, 0.5)T

I Relative error for solution and perturbation in ∞-norm

‖x̃− x‖∞
‖x‖∞

=
1

2
,

‖b̃− b‖∞
‖b‖∞

=
1

20000

The relative error is amplified 10000 times!!!

Condition number

I Condition number

Cond(A) = ‖A‖ · ‖A−1‖

For l2-norm we have

Cond2(A) = ‖A‖2 · ‖A−1‖2

If A is symmetric, we have

Cond2(A) =
λmax(A)

λmin(A)
.

Remark 1: Cond(A) ≥ 1.

Remark 2: If det(A) ≈ 0, Cond(A) � 1.

High condition number matrix — Hilbert Matrix

I Hilbert matrix Hn = (hij)
n
i,j=1 is defined as

hij =
1

i + j − 1

I Hilbert matrix is a Symmetric Positive Definite (SPD) matrix

I Determinant of Hn

n det(Hn)

1 1

2 8.33333× 10−2

3 4.62963× 10−4

4 1.65344× 10−7

5 3.74930× 10−12

6 5.36730× 10−18

I Cond2(H5) ∼ O(105).

Explanation of condition number

I Original problem Ax = b;

Perturbed problem A(x + δx) = b + δb;

Subtracting two equations we have

δx = A−1δb

Take norm we have

‖δx‖ ≤ ‖A−1‖‖δb‖ = ‖A−1‖‖Ax‖
‖δb‖
‖b‖

.

With condition

‖Ax‖ ≤ ‖A‖‖x‖

we have
‖δx‖
‖x‖

≤ Cond(A)
‖δb‖
‖b‖

.

Condition number

I Condition number characterize the stability

If Cond(A) � 1, stability is very bad;

If Cond(A) ∼ 1, stability is good.

I Lesson we should learn:

We should avoid handle the bad condition number problem in applications!

Stability

Loosely speaking, stability is to indicate how sensitive the solution of a problem

may be to small relative changes in the input data. It is often quantized by

condition number of a problem or an algorithm.

I Stability of the original problem (“Well-posedness”)

This means the well-posedness of the original problem. The linear system

with high condition number is a typical ill-posed example, which is called

the unstable problem.

I Stability of numerical algorithm

This means the condition of the algorithm. The Gaussian elimination

without pivoting for some linear system will be unstable.

Homework assignment 2

1. Using Thomas algorithm to solve the second order ODEs with one language

(except matlab) (n=30, 50, 100). Compare the numerical solution with exact

solution.

2. Compute 2-, 1- and ∞-condition number of n by n symmetric tridiagonal

matrix

An =

2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2

versus n with matlab and plot it as a figure.

