Lecture 2 Direct methods for solving linear system

Weinan E'2 and Tiejun Li?

1Department of Mathematics,
Princeton University,

weinan@princeton.edu

2School of Mathematical Sciences,
Peking University,
tieli@pku.edu.cn
No.1 Science Building, 1575



Outline



Linear system

> Necessity
1. Computers are good at performing high speed arithmetic operations
2. Almost all of the scientific computing problems ends with a solution

of a linear system

» Where does the linear system come from?

1. Discretization of ODEs or PDEs
2. Discretization of nonlinear systems

3. Linear programming



Cramer’s rule

» Cramer's rule
A-xz=b AcR"™, zb cR"

Case 1. det(A) # 0, A is nonsingular, then z; = C};:t(&i)), where

A, is the matrix formed by replacing the i-th column of A
with b.
Case 2. det(A) =0, A is singular, then
> If rank(A, b) = rank(A), infinite solutions;
> If rank(A, b) # rank(A), no solution.

» Cramer’s rule is not suitable for computing (computational efficiency).



Upper triangular system
> Upper triangular system

where
Ul w12 ... Ul

Unn

and uii#o,i:L...,n.

» Direct solution by backward substitution

n

z; = (b — Z wi;x;) /ui, t=n,n—1...,1
j=itl

Here Z?:n_,_l is defined as 0 when ¢ = n.

> Similar strategy holds for other triangular matrices, such as lower, left,

right triangular matrices etc.



A simple example

> Order n = 30, Upper triangular matrix

4 1 1

» b=(1,1,...,1)T.

» What is the solution?



Computational efficiency for back substitution

> Total number of operations (addition, subtraction, multiplication, division)
1
-G+ +1) —1+14+1) =n?

» Computational efficiency O(n?).
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Gaussian elimination method

> How to obtain the solution of a general system?

> |dea: Transform the general matrix into upper triangular matrix.

Step 1: Eliminate the first column.
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Gaussian elimination method

Step 2: Eliminate the second column.

(2)
agy

2
(2) az(‘z) (2)

ag)ﬂaij — —(ay%2j 1=3,...

5P

2 2 a(-2) 2

Qg9

(2) (2) (2)
A
BB

asg 3n b3 —
2 2 2
CRNSENC R

,ny J=2,...
=3,...,n
(3) (3)
aj;’ Qg
0 aég)
0 0
0 0

b
3

AN

b



Gaussian elimination method

Step 3: Repeat until the n — 1-th column.

(n—1)

1 1 Gp—1,5 -1 ;
aff V=TV - el i=mj=n—1n
n—1l,n—1
R R L A ull w12 ccc Ul
0 (" DI gfl D bgn_l) 0  wzz -+ u2p
—
0 R U Unn

Step 4: Backward substitution to obtain x.

Uzx =y

Y1
Y2



» Linear system

> Augmented matrix

A simple example

Ty + T2 + T3
2x1 + 4xo + 223

—x1 + 5xo — 43

1 1 1
(Ab)=| 2 4 2
-1 5 -4

» Gaussian elimination.



Matrix form of Gaussian elimination method

» Gaussian elimination is equivalent to the following LU decomposition
A=LU
and the solution of two triangular systems

Ly=b, Ux=y

1 U1l ul2 ottt Ulp
lo1 1 u22 U2n

L= , U=
In1 ln2 t 1 Unn

(k)
> The entries [;; in matrix L are the same as those az’ﬁ) in elimination steps,
a
and the upper triangular matrix U is the same as that in Gaussian

elimination.



Gaussian elimination algorithm

> Gaussian elimination algorithm:

fork=1,...,n—1
fori=k+1,...,n

(k)
lik = aflﬁ)
. %kk
forj=k,...,n
(k+1) _ (k) (k)
i = %y ke



Computational efficiency of Gaussian elimination

> Total number of triangulation

1

[2((n+1)fk+1)+1](nf(k+1)+1):§n3+0(n2)

n

ES
Il

» Computational efficiency

of3)



Symmetric positive definite (SPD) system

> The matrix form of Gaussian elimination for symmetric positive definite

tridiagonal system has the following form
A=LU

and we have U = DL”, where D is a diagonal matrix with d;; > 0.

» Cholesky factorization for symmetric positive definite tridiagonal system
A=LL"

» L can be obtained by the following algorithm

by = — (au lekljk> j=1,...,i—1,




Computational efficiency of Cholesky factorization

» Computational efficiency

i[i (27 —1) +(i—1)+(i—1)+1]:0(%n3>

» The computational cost is a little less than direct Gaussian elimination by

symmetry.



Tridiagonal system

> Tridiagonal system

A-x=0b
where
di <
A— az do
Cn—1
an dn,

» LU decomposition of tridiagonal system

1
B2 1

Cn—1

Qn



» Thomas algorithm

Tridiagonal system

a;

ar=di, Bi= 3

» Computational efficiency

Qj—1

o = di — fBici,

O(n)

1=2,...



Numerical solution of a linear system

» Numerical solution of a BVP
u’(z) = f(z), =€[0,1], u(0)=u(l)=0.

» Numerical discretization
Define h = %, z; = jh, f; = f(x;),5=0,1,...,N, and

Uj+1 — 2u5 +Uuj—1
h2

u(z;) =

then the ODE is reduced to a linear system A - X = b, where

X = (ul,uQ, 000 ,UN_l)T, b= 7h2(f1,f2, 0o .,fN_l)T.



Numerical solution of a linear system

» Take f(z) = —7n?sinmz, we have the exact solution
u(z) = sinmz.

» Take N = 50, we have the linear system and solve it with Thomas
algorithm.

» Exact solution v.s. numerical solution

Solving ODE: u'(x)=(x) by using Thomas algorithm
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An example

> Linear system Ax = b with

—_
—_
—
—

A= 1

—
(O
SN
=)
Il
—

» Gaussian elimination

,_.
—
—
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—
—

» Even A is nonsingular, Gaussian elimination may NOT be proceeded

directly.



Another example

Linear system Ax = b with

1 1 1
A= 1 1.0001 2 , b= 2
1 2 2
Gaussian elimination
1 1 1 1 1 1 1 1
1 1.0001 2 2 — 0 0.0001 1 1
1 2 2 1 0 0 9999 10000

If the precision ¢ = 3, we will have & = (0, 0,1.000). But the roundoff
exact solution is = (1.000, —1.0001, 1.0001). It is totally different!

Even direct Gaussian elimination could be applied, the result may be very
bad!

We need pivoting technique.
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Pivoting

» What is pivoting?

» Complete pivoting is to let the largest element of the submatrix lie on the
diagonal by interchanging rows or columns. A partial pivoting (or column
pivoting) is to let the largest element in one column lie on the diagonal by

interchanging two rows.

» The partial pivoting is more used.



Pivoting

» Example 1: Complete pivoting (move 3 — the largest one among the
matrix — to a11)

1 1 1 2 2 3 3 2 2
1 1 2 — 1 1 2 — 2 1 1
2 2 3 1 1 1 1 1 1

> Example 2: partial pivoting (move 2 — the largest one among the first
column — to ai1)



Pivoting

» Pivoting
1 1 1 1 1 1
1 1 2 — 0 0 1
1 2 2 0o 1 1
» Pivoting
1 1 1 1 1 1 1

1 1.0001 2 2 — 0 0.0001 1
1 2 2 1

[e=]
—_
—

The numerical solution will be & = (1,—1,1).



Matrix form for pivoting

» Matrix form for pivoting by row
PA=LU

where P is a permutation matrix.

» Pivoting by row makes the computation more robust and stable.
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Vector norms

Define © = (z1,2,...,Tn),

» Vector norms (definition of length)

n
2 — norm lz|l2 = (Z mf)% Euclidean norm
i=1
00 — norm |z]|co = max |z;]
T
n
1 — norm HwH1=Z\wl|
i=1
n 1
p—norm |zl = (D |zil”)>
=1

> Properties of vector norms
1. |z|| > 0 and ||z| =0 iff z = 0,
2. |lkal = |kl llz]l,
3. lze+yll < llz||+ |ly|l| (Triangle inequality).



Matrix norms

Define A = (aij)nxn
» Matrix norm

> Induced norm (subordinate norm)

A
@70 |||

From the definition of vector norms, we have

2—norm Az = \/ Amax(AT A) (= imax)
n
00 — norm || Al oo :m?XZ laj|
j=1
n
1 — norm All1 = max ;s
Al i ;l i1

> Frobenius norm (why is it NOT an induced norm?)

n

lAlIF = (Y a2)?

ij=1



Properties of induced matrix norms

Properties of induced matrix norms:

. [JA]] > 0and ||A]| =0iff A =0,
- kA = [K] - [|All,
. JA+ B|| < ||A|l+ ||B|| (Triangle inequality),
- lAB|| < [[A]l - [|B]],

- [[Az| < LA [|f]-

[y

ca B W N



Stability for the solution of linear system

» Example
2.0002 1.9998 4
A= , b= .
1.9998 2.0002 4
The exact solution
x=(1,1)T
> Add perturbation §b = (0.0002, —0.0002)T to b, i.e. we have
b = (4.0002, 3.9998)T

The perturbed solution
& = (1.5,0.5)T
> Relative error for solution and perturbation in co-norm
|8 —@lo _ 1 BBl _ 1

lzlo 2 [bll.e 20000

The relative error is amplified 10000 times!!!



Condition number

» Condition number

Cond(A) = ||A| - ]|A7]
For I*-norm we have
Conda(A) = ||All2 - ||A71H2
If A is symmetric, we have
Condz(A) = ——=

Remark 1: Cond(A) > 1.
Remark 2: If det(A) = 0, Cond(A) > 1.



High condition number matrix — Hilbert Matrix

> Hilbert matrix Hy, = (hij)i =1 is defined as

ij =

1
itj—1

» Hilbert matrix is a Symmetric Positive Definite (SPD) matrix

» Determinant of H,,

> CO?’Ld2(H5) ~ 0(105).

o oA W N~ 3

det(H,)

1

8.33333 x 1072
4.62963 x 10~*
1.65344 x 1077
3.74930 x 10~ 2
5.36730 x 10718



Explanation of condition number

> Original problem Az = b;
Perturbed problem A(x + dx) = b+ db;

Subtracting two equations we have

dx=A"16b
Take norm we have
- - l|3b]|
l[6e|| < [|A[|[|6b]| = || A lHllAwHW~
With condition
| Az| < ||All[=|
e have 6z 15
Lol < Cond(A)——-—.
ll|| lIbll



Condition number

Condition number characterize the stability
If Cond(A) > 1, stability is very bad;
If Cond(A) ~ 1, stability is good.

Lesson we should learn:

|We should avoid handle the bad condition number problem in applications!




Stability

Loosely speaking, stability is to indicate how sensitive the solution of a problem
may be to small relative changes in the input data. It is often quantized by

condition number of a problem or an algorithm.

» Stability of the original problem (“Well-posedness”)
This means the well-posedness of the original problem. The linear system
with high condition number is a typical ill-posed example, which is called

the unstable problem.

» Stability of numerical algorithm
This means the condition of the algorithm. The Gaussian elimination

without pivoting for some linear system will be unstable.



Homework assignment 2

1. Using Thomas algorithm to solve the second order ODEs with one language

(except matlab) (n=30, 50, 100). Compare the numerical solution with exact

solution.

2. Compute 2-, 1- and oco-condition number of n by n symmetric tridiagonal

matrix

versus n with matlab and plot it as a figure.



