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1 Swendsen-Wang algorithm

For the numerical computation of the Ising model, a commonly used approach is the Gibbs sampling to

flip single site at each step. However, this single-site update algorithm slows down rapidly once the tem-

perature is approaching or below the critical value T0, the so-called “critical slowing down”. Swendsen and

Wang [6] introduced a powerful clustering algorithm which together with an implementation modification

by Wolff [8], amost completely eliminates the critical slowing down. Below explanation to Swendsen-Wang

algorithm is from data augmentation viewpoint by Higdon [7].

We have the Gibbs distribution for Ising model

π(x) ∝ exp
{
βJ

∑
<i,j>

xixj

}
∝

∏
<i,j>

exp
{
βJ(1 + xixj)

}
.

Note that 1 +xixj is equal to either 0 or 2. Hence if we introduce an auxiliary variable u on each edge such

that

π(x,u) ∝
∏
<i,j>

I
[
0 ≤ uij ≤ exp{βJ(1 + xixj)}

]
.

Then the marginal distribution of x is the Gibbs distribution. And under this joint distribution, the

conditional distribution u|x is a product of uniform distributions with ranges depending on two neighboring

spins. Conversely, the conditional distribution x|u is: if uij > 1, then xi = xj ; otherwise there is no

constraint on xi’s. Thus u affects x only through the event I[uij > 1]. Based on the configuration u,

we cluster those lattice sites according to whether they have a mutual bond (uij > 1). We formulate the

following algorithm

Algorithm 1. Swendsen-Wang algorithm:

• Step 1. For a given configuration of the spins, form the bond variable by giving every edge of the lattice

< i, j >, between two “like spins” (xi = xj) a bond value of 1 with probability 1− exp(−2βJ), and a

bond value of 0 otherwise.
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• Step 2. Conditional on the bond variable u, update the spin variable x by drawing from π(x|u),

which is uniform on all compatible spin configurations; that is, clusters are produced by connecting

neighboring sites with bond value 1. Each cluster is the flipped with probability 0.5.

2 The modification by Wolff

Wolff introduced a modification for the Swendsen-Wang algorithm, which, although both conceptually

and operationally simple, significantly outperforms the SW algorithm.

Algorithm 2. Wolff’s algorithm:

• Step 1. For a given configuration x, one randomly picks a site, say xi, and grow recursively from it a

“bonded set” C as follows:

– Check all the unchecked neighboring sites of a current set C(old); add a bond between a neighboring

site and C(old) the same way as in the Swendsen-Wang algorithm.

– Add those newly bonded neighboring sites to C(old) so as to form a new set C(new).

– Stop the recursion when there is no unchecked neighbor to add; name the final set C.

• Flip all the spins corresponding to the sites in set C to their opposites.

The only difference between Wolff’s algorithm and SW is that in each iteration, only one cluster is

constructed and all spins in that cluster are changed to their opposite value. This algorithm actually offers

a new insight which is different from the one based on the data augmentation. Suppose all of the states in

cluster C has spin +1 and it has m + n neighboring links among which m are linked with +1 spins and n

with −1 spins. We have the acceptance probability

Aold→new = min

{
1,
Qnew→oldπnew

Qold→newπold

}
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and
πnew

πold
=
eβJ(n−m)

eβJ(m−n)
= e2βJ(n−m),

Qnew→old

Qold→new
=
e−2βJn

e−2βJm
= e2βJ(m−n)

Thus these two probability cancel each other and the proposed change is accepted with probability one.

3 Simulated tempering

To sample the distribution

p(x) ∝ exp
(
− U(x)

T

)
or compute the ensemble average with the type

〈H〉 =

∫
H(x)

1

Z
exp

(
− U(x)

T

)
dx,

one usually apply the Metropolis-Hastings MCMC algorithm. But when the temperature T is very low,

that is, we have many high peaks in the pdf p(x), which may cause the acceptance probability small thus

decrease the mixing.
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Figure 1: Sketch of the Gibbs distribution at low and high temperature.

In order to let a MCMC scheme move more freely in the sate space, Marinari and Parasi [4] and Geyer

and Thompson [3] proposed a data augmentation strategy to increase the mixing, which is called simulated

tempering. Algorithmically, their basic idea is to extend the state space x ∈ X into (x, i) ∈ X × I and

perform conditional sampling in this extended space. Physically, to approach the low temperature case,

they consider the pdf at the heated temperature, which can give high acceptance ratio for traversing the

state space X , and then jump in the different ensembles.

Mathematically, they let

I = {1, 2, . . . , L}, T1 < T2 < . . . < TL

and T1 = T , TL = Thigh. Then they ask the stationary distribution in the extended space as

πst(x, i) ∝ πi exp
(
− U(x)

Ti

)
,
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where πi is called pseudopriors which is set up a priori.

From this form, we know the conditional distribution

f(x|i) ∝ exp
(
− U(x)

Ti

)
which is the standard Gibbs distribution. The marginal distribution

f(i) ∝
∫
πi exp

(
− U(x)

Ti

)
dx = πiZi.

To make the transition in different ensembles more uniformly, the best choice for the parameter πi ∝ 1/Zi.

But in the computations, it is not feasible and only updated with the time.

To do the conditional sampling in the extended space, we list a mixture-type transition kernel here.

Algorithm 3 (Simulated tempering). Mixture type of the simulated tempering.

• Step 1. With the current state (xn, in) = (x, i), we draw u ∼ U [0, 1].

• Step 2. If u < α0, we let in+1 = i and let xn+1 be drawn from a MCMC transition Ti(x, xn+1) that

leaves f(x|i) invariant (this is also Metropolis-Hastings strategy).

• Step 3. If u > α0, we let xn+1 = x and propose a level transtion i → j, from a transition function

α(i, j), and let in+1 = j with probability

min
(

1,
πst(x, j)α(j, i)

πst(x, i)α(i, j)

)
.

Otherwise let in+1 = i.

A commonly used strategy for α(i, j) is the random walk proposal with reflecting barrier, that is,

α(i, i± 1) = 1/2, i = 2, . . . , L− 1

and α(1, 2) = α(L,L− 1) = 1.

The idea of simulated tempering is further generalized by Liu and Sabatti [5] into the so called “simulated

sintering” scheme.

4 Parallel tempering

The pararellel tempering is first proposed by Geyer [2] in 1991. Instead of augmenting X into X × I,

Geyer suggested directly dealing with the product space X1 × · · · ×XL, where the Xi are identical copies of

X , suppose

(x1, . . . , xL) ∈ X1 × · · · × XL,

we define the stationary distribution

πst(x1, . . . , xL) =
∏
i∈I

πi(xi)
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where πi(xi) = 1/Zi exp(−U(xi)/Ti) the Gibbs distribution at T = Ti. The parallel tempering is run on

all of the Xi. An “index swapping” operation is conducted in place of the temperature transition. The

algorithm is defined as follows:

Algorithm 4 (Parallel tempering algorithm). Mixture type transition kernel.

• Step 1: Let the current state be (x
(n)
1 , . . . , x

(n)
L ). Draw u ∼ U [0, 1].

• Step 2: If u ≤ α0, we conduct the parallel step. That is, we update each x
(n)
i to x

(n+1)
i via their

respective MCMCM scheme.

• Step 3: If u > α0, we conduct the swapping setp. That is, we randomly choose a neighboring pair, say

i and i+ 1, and propose “swapping” x
(n)
i and x

(n)
i+1. Accept this swap with probability

min

{
1,
πi(x

(n)
i+1)πi+1(x

(n)
i )

πi(x
(n)
i )πi+1(x

(n)
i+1)

}
.

In computations, T1 < T2 < . . . < TL, and it is very important to choose a proper number of temper-

ature levels. A rough guideline is to choose Ti such that( 1

Ti
− 1

Ti+1

)
|∆U | ≈ − log pa,

where |∆U | is the typical energy difference (e.g., the mean energy change under the target distribution)

and pa is the lower bound for the acceptance rate.

Remark 1. The rationale behind the choice of temperature Ti is to make the acceptance probability is

relatively large since

πi(x
(n)
i+1)πi+1(x

(n)
i )

πi(x
(n)
i )πi+1(x

(n)
i+1)

∼ exp

(
−
(

1

Ti
− 1

Ti+1

)
∆U

)
.

5 Kinetic Monte Carlo

Kinetic Monte Carlo is also called BKL algorithm [9]. It is widely used in simulating crystal growth.

• Drawbacks of standard MC:

At the metastable state σm, suppose the proposal state is σ′, then

r = e−β∆H , ∆H = H(σ′)−H(σm).

If r � 1, rejection occurred very often! The sample sequence will be like

σm, σm, . . . , σm, σnew . . . .

That’s very inefficient!

KMC aims to setup a rejection free algorithm.
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• Generation of new state:

Consider 2D Ising model: (ten-fold way in BKL algorithm)

For a given state σ, there are 10 kinds of flips(single flip proposal):

Class Spin
Number of spins up

(nearest neighbors)
1 ↑ 4

2 ↑ 3

3 ↑ 2

4 ↑ 1

5 ↑ 0

6 ↓ 4

7 ↓ 3

8 ↓ 2

9 ↓ 1

10 ↓ 0

Table 1: Classification of spins in the 10-fold way

There are 10 kinds of flipping probability Pj = min(1, exp(−β∆Hj)), j = 1, . . . , 10. Suppose there

are nj sites at j class j = 1, . . . , 10. Define

Qi =

i∑
j=1

njPj , i = 1, . . . , 10,

then the BKL algorithm is as follows:

Algorithm 5. (BKL Algorithm)

Step1 Generate R ∼ U [0, Q10);

Step2 Identify Qi−1 ≤ R < Qi, (Q0 = 0);

Step3 Randomly choose one site to flip in class i.

• Time increment between two flips:

Suppose on the average there is one attempted flip per lattice site in time τ (physical time), (# of

sites = N = M2) then

Q10

N
: Probability of flipping for a spin (only one) on a given attempt.

Note that the above procedure has homogenized the successful flipping probability to each site. We

have the successful flipping probability for one site in unit time

Q10

N

/
τ

N
=
Q10

τ
: Flip one spin unit time.

Define P (∆t) is the probability that no flip occurs before time ∆t has elapsed since the previous flip,

then

P (∆t)− P (∆t+ dt) = P (∆t) · Q10

τ
dt,
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so one has

P (∆t) = exp(−Q10∆t

τ
), P (0) = 1.

i.e. the time increment

∆t = − τ

Q10
lnR, R ∼ U [0, 1], 0 ≤ R ≤ 1.

Remark 2. Essence: The Markov chain in Metropolis algorithm is some skeleton of a continuous

time Q-process with Q-matrix

qij = 1Qij
Aij (1)

in KMC, where 1Qij
is defined as 1Qij

= 1 if Qij > 0 and 1Qij
= 0 otherwise. Aij is the acceptance

probability P shown above.

Remark 3. If one applies KMC to compute the ensemble average, the time increment occurs as a

weight for different states.

Remark 4. KMC can simulate the non-equilibrium process such as crystal growth, but the connection

between the process and the real physics is not clear!

6 Homeworks

1. Write down the transition kernel of simulated tempering method (transition probability matrix in the

case of discrete state Markov chain).

2. Write down the transition kernel of parallel tempering method (transition probability matrix in the

case of discrete state Markov chain).
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