
Lecture 6 Markov Chains ∗

Tiejun Li

Markov process is one of the most important stochastic processes in application. Roughly speaking, A

Markov process is independent of the past, knowing the present state. In this lecture, we only consider the

finite state Markov chain. The readers may be refereed to [2] for further information.

1 Markov Chains

Example 1. (1D Random Walk) Let ξi are i.i.d. random variables such that ξi = ±1 with probability 1
2 ,

and let

Xn = ξ1 + ξ2 + . . .+ ξn

{Xn} represents a unconstrained unbiased random walk on Z, the set of integers. Given Xn = i, we have

P{Xn+1 = i± 1| Xn = i} =
1

2
,

P{Xn+1 = anything else| Xn = i} = 0.

We see that the distribution of Xn+1 depends only on the value of Xn.

The result above can be restated as the Markov property

P{Xn+1 = in+1| {Xm = im}nm=1} = P{Xn+1 = in+1| Xn = in},

and the sequence {Xn}∞n=1 is called a realization of a Markov process.

Example 2 (Ehrenfest’s diffusion model). An urn contains a mixture of red and black balls. At each time

1, 2, . . . a ball is picked at random from the urn and replaced by a ball of the other colour. The total number

of balls in the urn is therefore a constant N , say. Let the state Xn of the system at time n be the number

of black balls in the urn.

As will be stated below, the one-step transition matrix can be given as

P =



0 1 0 0 0 0
1
N 0 N−1

N 0 0 0

0 2
N 0 N−2

N 0 0

0 0
. . . 0

. . . 0

0 . . . 0 N−1
N 0 1

N

0 . . . 0 0 1 0


(1)
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Example 3. (Finite state Markov chain) Suppose a Markov chain only takes a finite set of possible values,

without loss of generality, we let the state space be {1, 2, . . . , N}. Define the transition probabilities

p
(n)
jk = P{Xn+1 = k|Xn = j}

This uses the Markov property that the distribution of Xn+1 depends only on the value of Xn.

Proposition 1. (Chapman-Kolmogorov equation)

P (Xn = j|X0 = i) =
∑
k

P (Xn = j|Xm = k)P (Xm = k|X0 = i), 1 ≤ m ≤ n− 1.

Definition 1. (Time-stationary, or time homogeneous) A Markov chain is called stationary if pnjk is in-

dependent of n. From now on we will discuss only stationary Markov chains and let P = (pjk)Nj,k=1. P is

called the transition probability matrix(TPM).

Markov property implies that

P{X0 = i0, X1 = i1, . . . , Xn = in} = (µ0)i0pi0i1pi1i2 . . . pin−1in

where (µ0)i0 is defined by the intial distribution (µ0)i0 = P{X0 = i0}.

From this we get

P{Xn = in|X0 = i0} =
∑

i1,...,in−1

pi0i1pi1i2 . . . pin−1in

= (Pn)i0in

The last quantity denotes the (i0, in)-th entry of the matrix Pn.

P is also called a stochastic matrix, in the sense that

pij ≥ 0,

N∑
j=1

pij = 1.

Given the initial distribution of the Markov chain µ0, the distribution of Xn is then given by

µn = µ0P
n

Example 4. µn satisfies the recurrence relation µn = µn−1P . This equation can also be rewritten as

(µn)i = (µn−1)i(1−
∑
j 6=i

pij) +
∑
j 6=i

(µn−1)jpji.

The interpretation is clear.

The following two questions are of special interest.

• Is there an invariant distribution? π is called an invariant distribution if

π = πP

This is equivalent to say that there exists a nonnegative left eigenvector of P with eigenvalue equal to

1. Notice that 1 is always an eigenvalue of P since it always has the right eigenvector (1, . . . , 1)T .
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• When is the invariant distribution unique?

To answer these questions, it is useful to recall some general results on nonnegative matrices.

Definition 2. (Reducibility) If there exists a permutation matrix Q such that

QPQT =

(
A1 B

0 A2

)
then P is called reducible. Otherwise P is called irreducible.

Example 5. (Graph representation of Markov chains) Any Markov chain can be sketched by their graph

representation as in Figure 1. The arrows and real numbers show the transition probability of the Markov

1

2

3

1

1
1/2

1/2

1 2

3

1

1/2

1/2

1

Figure 1: Graph representation of Markov chains. Left panel: chain 1, right panel: chain 2.

chain. The TPM corresponds to left panel is

P =

 1 0 0
1
2 0 1

2

0 0 1

 ,
It’s quite clear that P is a reducible matrix, and it has two invariant distributions π1 = (1, 0, 0) and π2 =

(0, 0, 1).

The TPM corresponds to the right panel is

P =

 0 1 0
1
2 0 1

2

0 1 0

 .
It’s a irreducible matrix, and the only invariant distribution is π = ( 1

4 ,
1
2 ,

1
4 ).

The following theorem is a key answer for invariant distribution of a Markov chain

Theorem 1. (Perron-Frobenius) Let A be an irreducible nonnegative matrix, and let ρ(A) be its spectral

radius: ρ(A) = maxλ |λ|, where λ is an eigenvalue of A. Then,

1. There exists a positive right eigenvector x of A, such that

Ax = ρ(A)x

x = (x1, . . . , xN )T , xi > 0.
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2. λ = ρ(A) is an eigenvalue of multiplicity 1.

Coming back to Markov chains, we obtain as a consequence of the Perron-Frobenius Theorem that

• If P is irreducible, then there exists exactly one invariant distribution.

• If P is reducible, then there are some cases that we can decompose the state space into ergodic

components for the Markov chain. On each component there exists a unique in variant distribution.

Arbitrary convex combinations of these invariant distributions on each component are invariant dis-

tributions for the whole chain. However in this case, the invariant distribution for the whole chain is

clearly not unique. One typical example may be as follows:

P =


0 1 0 0 0

0.5 0.5 0 0 0

0.3 0 0.4 0.3 0

0 0 0 0.5 0.5

0 0 0 0.5 0.5

 .
In this case, states 1, 2 and 4, 5 form two closed irreducible sub-chains, but P is reducible. There

are infinite many invariant distributions. But reducibility itself is not a sufficient condition for the

non-uniqueness of the invariant distribution, e.g.

P =


0 1 0 0 0

0.3 0.4 0.3 0 0

0.3 0 0.4 0.3 0

0 0 0 0.5 0.5

0 0 0 0.5 0.5

 .
Though the invariant distribution has some zero components which are related to the transience of

the states, it is unique.

Irreducibility is equivalent to the property that all nodes on the chain communicate, i.e. given any pair

(i, j) we have

pik1pk1k2 · · · pksj > 0,

for some (k1, k2, . . . , ks) (if there is only transition from i→ k1 → · · · → kj → j, we say that j is accessible

from i).

The following theorem gives the asymptotic states of a Markov chain

Theorem 2. Assume that for any pairs (i, j), there exists an s such that (P si,j) > 0 (irreducible). Then

1. There exists a unique invariant distribution π. π is strictly positive.

2. For any µ0,

πn = µ0P̄n → π exponentially fast as n→∞,

where

P̄n =
1

n

n∑
j=1

P j .
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Remark 1. A stronger assumption is “primitive” which says that there exist an natural number s, such

that

(P s)ij > 0, for all i, j

and a stronger convergence theorem µn = µ0P
n → π can be obtained. A critical example is that

P =

[
0 1

1 0

]
,

which is called a periodic chain. Actually we have primitive ⇔ irreducible + aperiodic for finite Markov

chains.

Theorem 3. Assume that the Markov chain is primitive. Then for any initial distribution µ0

µn = µ0P
n → π exponentially fast as n→∞,

where π is the unique invariant distribution.

Proof. Given two distributions, µ0 and µ̃0, we define the total variation distance by

d(µ0, µ̃0) =
1

2

∑
i∈S
|µ0,i − µ̃0,i|.

Since

0 =
∑
i∈S

(µ0,i − µ̃0,i) =
∑
i∈S

(µ0,i − µ̃0,i)
+ −

∑
i∈S

(µ0,i − µ̃0,i)
−
,

where a+ = max(a, 0) and a− = max(−a, 0). We also have

d(µ0, µ̃0) =
1

2

∑
i∈S

(µ0,i − µ̃0,i)
+

+
1

2

∑
i∈S

(µ0,i − µ̃0,i)
−

=
∑
i∈S

(µ0,i − µ̃0,i)
+ ≤ 1.

Let µs = µ0P
s, µ̃s = µ̃0P

s and consider d(µs, µ̃s). We have

d(µs, µ̃s) =
∑
i∈S

[∑
j∈S

(
µ0,j(P

s)ji − µ̃0,j(P
s)ji

)]+

≤
∑
j∈S

(
µ0,j − µ̃0,j

)+ ∑
i∈B+

(P s)ji,

where B+ is the subset of indices where
∑
j∈S (µ0,j − µ̃0,j) (P s)ji > 0. We note that B+ cannot contain all

the elements of S, otherwise one must have (µ0P
s)i > (µ̃0P

s)i for all i, and∑
i∈S

(µ0P
s)i >

∑
i∈S

(µ̃0P
s)i,

which is impossible since both sides sum to 1. Therefore at least one element is missing in B+. By

assumption, there exists an s > 0 and α ∈ (0, 1) such that (P s)ij ≥ α for all pairs (i, j). Hence∑
i∈B+

(P s)ji ≤ (1− α) < 1. Therefore

d(µs, µ̃s) ≤ d(µ0, µ̃0)(1− α),
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i.e. the Markov chain is contractive after every s steps. Similarly for any m ≥ 0

d(µn,µn+m) ≤ d(µn−sk,µn+m−sk)(1− α)k ≤ (1− α)k,

where k is the largest integer such that n − sk ≥ 0. If n is sufficiently large the right hand side can be

made arbitrarily small. Therefore the sequence {µn}∞n=0 is a Cauchy sequence. Hence it has to converge to

a limit π, which satisfies

π = lim
n→∞

µ0P
n+1 = lim

n→∞
(µ0P

n)P = πP .

Such a π satisfying such a property is also unique. For if there were two such distributions, π(1) and π(2),

then d(π(1),π(2)) = d(π(1)P s,π(2)P s) < d(π(1),π(2)). This implies d(π(1),π(2)) = 0, i.e π(1) = π(2).

Remark 2. We do not discuss the convergence speed here. But in fact it is exponential, which depends on

the spectral gap of the transition probability matrix P . The readers may be referred to [3, 4].

Theorem 4 (Ergodic theorem). let Xn be an irreducible, positive recurrent Markov chain with invariant

distribution π(x), and f be a bounded function, then

1

N

N∑
n=1

f(Xn)→ 〈f〉π, a.s.

1.1 Time Reversal

Theorem 5. Assume that the Markov chain {Xn}n≥0 admits a unique invariant distribution π and is also

initially distributed according to π. Denote by P its transition probability matrix. Define a new Markov

chain {Yn}0≤n≤N by Yn = XN−n where N ∈ N is fixed. Then {Yn}0≤n≤N is also an Markov chain with

invariant distribution π. Its transition probability matrix P̂ is given by

p̂ij =
πj
πi
pji. (2)

Proof. It is straightforward to check that P̂ is a stochastic matrix with an invariant distribution π. To

prove that {Yn} is Markov with transition probability matrix P̂ , it is enough to observe that

P(Y0 = i0, Y1 = i1, . . . , YN = iN ) = P(XN = i0, XN−1 = i1, . . . , X0 = iN )

= πiN piN iN−1
· · · pi1i0 = πi0 p̂i0i1 · · · p̂iN−1iN

for any i0, i1, . . . , iN .

A particularly important class of Markov chains are those that satisfy the condition of detailed balance

πipij = πjpji (3)

In this case, we have p̂ij = pij . We call the chain reversible. The reversible chain can be equipped with

variational structure and has nice spectral properties. Define the matrix

L = P − I

6



and correspondingly its action on any function f

(Lf)(i) =
∑
j∈S

pij(f(j)− f(i)).

Let L2
π be the space of square summable functions f endowed with the π-weighted scalar product

(f, g)π =
∑
i∈S

πif(i)g(i). (4)

Denote the Dirichlet form or energy of a function f by

D(f) =
∑
i,j∈S

πipij(f(j)− f(i))2.

One can show that D(f) = (f,−Lf)π. These formulations are particularly useful in potential theory for

Markov chains.

1.2 Hitting time distribution

Example 6. (Hitting time distribution of a Markov chain) Consider TPM of a 4-state Markov chain(1,2,3,4):

P =


1
4

1
2

1
4 0

1
3 0 1

3
1
3

1
4

1
4

1
4

1
4

0 1
3

1
3

1
3

 .
Define the first hitting time n∗ = inf{n| Xn = 3 or 4} and the hitting time probability q(m) = Prob{n∗ = m},
an interesting question is to ask how to obtain q(m). The idea is to modify the chain to a 3-state chain

P̃ =

 1
4

1
2

1
4

1
3 0 2

3

0 0 1

 .
then

1− (µn)3 =

∞∑
m=n+1

q(m),

hence

q(n) = (µn)3 − (µn−1)3 = µ0 · (P̃n − P̃n−1) ·

 0

0

1

 ,

2 Continuous time Markov chains

2.1 Poisson Process

Definition 3. (Poisson Process) Let X(t) be the number of calls received up to time t, and assume the

follows:

1. X(0) = 0;
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2. X(t) has independent increments, i.e. for any 0 ≤ t1 < t2 < · · · < tn,

X(t2)−X(t1), X(t3)−X(t2), . . . , X(tn)−X(tn−1)

are independent;

3. for any t ≥ 0, s ≥ 0, we have the distribution of the increment X(t + s) − X(t) is independent of t

(time-homogeneous);

4. for any t ≥ 0, h > 0, we have

P{X(t+ h) = X(t) + 1| X(t)} = λh+ o(h),

P{X(t+ h) = X(t)|X(t)} = 1− λh+ o(h),

P{X(t+ h) ≥ X(t) + 2} = o(h),

where λ is called the rate.

Then X(t) is called a Poisson process.

Let pm(t) = P{X(t) = m}, then

p0(t+ h) = p0(t)p0(h) = p0(t)(1− λh) + o(h).

This gives
p0(t+ h)− p0(t)

h
= −λp0(t) + o(1).

As h→ 0, we obtain
dp0(t)

dt
= −λp0(t), p0(0) = 1.

The solution is given by

p0(t) = e−λt.

For m > 0, we have

pm(t+ h) = pm(t)p0(h) + pm−1(t)p1(h) +

m∑
i=2

pm−i(t)pi(h).

From the definition of Poisson process, we get

pm(t+ h) = pm(t)(1− λh) + pm−1(t)λh+ o(h).

Taking the limit as h→ 0, we get

dpm(t)

dt
= −λpm(t) + λpm−1(t)

Using the fact pm(0) = 0(m > 0), we get

pm(t) =
(λt)m

m!
e−λt
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by induction method. This means that for any fixed t, the distribution of X(t) is Poisson with parameter

λt.

The waiting times can be obtained in the following way. Define

µt = P{Waiting time ≥ t},

then µ0 = 1, and it obeys µt − µt+h = µtλh+ o(h), thus µ′t = −λµt, we get

µt = e−λt.

i.e. The waiting times are i.i.d. exponentially distributed with rate λ.

2.2 Q-Process

Now let us turn to general continuous time Markov chains. We will restrict only on finite state space

case in this text. We define

pij(t) = Prob{X(t+ s) = j|X(s) = i}.

Here we also assumed the stationarity of the Markov chain, i.e. the right hand side is independent of s. By

definition we have

pij(t) ≥ 0,

N∑
j=1

pij(t) = 1.

In addition we require that

pii(h) = 1− λih+ o(h), λi > 0, (5)

pij(h) = λijh+ o(h), j 6= i. (6)

(5) is a statement about the regularity in time of the Markov chain; together with the obvious constraint

that pjj(0) = 1. (6) states that if the process is in state j at time t and a change occurs between t and

t+ h, the process must have jumped to some state i 6= j; λij is the rate of switching from state i to state j.

From the non-negativity and normalization condition of the probability, we have

λij ≥ 0,

N∑
j=1,j 6=i

λij = λi. (7)

The Markov property of the process requires the Chapman-Kolmogorov equation

pij(t+ s) =

N∑
k=1

pik(t)pkj(s). (8)

Using matrix notation P (t) = (pij(t)), we can express the Chapman-Kolmogorov relation as

P (t+ s) = P (t)P (s) = P (s)P (t).

Similarly, if we define

Q = lim
h→0+

h−1(P (h)− I), (9)
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and denote Q = (qij), (5), (6) and (7) can be stated as

qii = −λi, qij = λij (i 6= j),

N∑
j=1

qij = 0.

Q is called the generator of the Markov chain.

Since
P (t+ h)− P (t)

h
=
P (h)− I

h
P (t)

as s→ 0+, we get
dP (t)

dt
= QP (t) = P (t)Q (10)

The solution of this equation is given by

P (t) = eQtP (0) = eQt,

since P (0) = I.

Next we discuss how the distribution of the Markov chain evolves in time. Let ν(t) be the distribution

of X(t). Then

νj(t+ dt) =
∑
i 6=j

νi(t)pij(dt) + νj(t)pjj(dt)

=
∑
i 6=j

νi(t)qijdt+ νj(t)(1 + qjjdt) + o(dt)

for infinitesimal dt. This gives
dν(t)

dt
= ν(t)Q, (11)

which is called the forward Kolmogorov equation for the distribution. Its solution can be given as

νj(t) =

N∑
i=1

νi(0)pij(t),

or, in matrix notation,

ν(t) = ν(0)eQt.

Similar as the Poisson process, we can consider the waiting time distribution for each state j,

µj(t) = Prob{τ ≥ t|X(0) = j}.

The same procedure as previous section leads to

dµj(t)

dt
= qjjµj(t), µj(0) = 1.

Thus the waiting time at state j is exponentially distributed with rate −qjj =
∑
k 6=j qjk. From the memo-

ryless property of exponential distribution, the waiting time can be counted from any starting point.

It is interesting to investigate the probability

p(θ, j|0, i)dθ := Prob{The jump time τ is in [θ, θ + dθ)

and X(τ) = j given X(0) = i}.
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We have

p(θ, j|0, i)dθ =Prob{No jump occurs in [0, θ) given X(0) = i}

× Prob{One jump occurs from i to j in [θ, θ + dθ)}

=µi(θ)qijdθ = exp(qiiθ)qijdθ. (12)

Thus we obtain the marginal probability

Prob(X(τ) = j|X(0) = i) = p(j|0, i) = −qij
qii

=
qij∑
j 6=i qij

where τ is the waiting time. These results are particularly useful for the numerical simulation of the

trajectories of the Q-process.

Define the jump times of (Xt)t≥0

J0 = 0, Jn+1 = inf{t : t ≥ Jn, Xt 6= XJn}, n ∈ N

where we take the convention inf ∅ =∞, and holding times

Hn =

{
Jn − Jn−1, if Jn−1 <∞,
∞, otherwise.

for n = 1, 2, . . .. We define X∞ = XJn if Jn+1 =∞. Define the jump chain induced by Xt

Yn = XJn , n ∈ N.

From Strong Markov property and the derivation of p(θ, j|0, i), we know that the holding times H1, H2, . . .

are independent exponential random variables with parameters qY0
, qY1

, . . ., respectively, and the jump chain

Yn is a Markov chain with Q̃ as the transition probability matrix, where Q̃ = (q̃ij) defined as

q̃ij =

{
qij/qi, if i 6= j and qi > 0,

0, if i 6= j and qi = 0,
(13)

q̃ii =

{
0, if qi > 0,

1, if qi = 0.
(14)

It is called the jump matrix, and the corresponding Markov chain is called the embedded chain or jump

chain of the original Q-process.

It is natural to consider the invariant distribution for the Q-processes as in the discrete time Markov

chains. From the forward Kolmogorov equation (11), the invariant distribution must satisfy

πQ = 0, π · 1T = 1.

But to ensure the convergence ν(t)→ π, we need the following theorem on the finite state space.

Theorem 6 (Convergence to equilibrium). Suppose the matrix Q is irreducible with invariant distribution

π, then for all states i, j we have

pij(t)→ πj as t→∞.
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Note that we do NOT need the primitive condition since in the continuous time case if qij > 0 we have

pij(t) ≥ Pi(J1 ≤ t, Y1 = j,H2 > t) =

∫ t

0

e−qiuqijdu · e−qjt =
qij
qi

(1− e−qit)e−qjt > 0.

Similarly we also have the ergodic theorem

Theorem 7 (Ergodic theorem). Suppose the matrix Q is irreducible with invariant distribution π, then for

any bounded function f we have
1

t

∫ t

0

f(X(s))ds→ 〈f〉π, a.s.

We should remark that the irreducibility condition is not enough to establish the above ergodic theorems

in the countable state space case. We need the so-called positive recurrent condition in both theorems.

3 Homeworks

• HW1. Discuss the invariant distribution of the Ehrenfest’s model.

• HW2. Rederive the distribution of Poisson process through characteristic function method.

• HW3. Let f be a function defined on the state space, and let

hi(t) = Eif(X(t)),

where Ei means the expectation with respect to initial state i. Derive an equation for h(t).

• HW4. Consider the following binomial process: we repeatedly throw an unfair coin with parameter p

(say, the proability that the HEAD appears) with time unit τ . If the HEAD appears, we denote it as

a jump. Then we let p, τ → 0 and consider the limiting process. In which regime you can intuitively

get the Poisson process with parameter λ?

• HW5. For the Poisson process, if the condition 3 is removed, and the rate λ depends on t. That is,

λ is replaced with λ(t) in conidtion 4, then what about pm(t) and the waiting time distribution µs

conditioned at the current time t?
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