
Lecture 5 Limit theorems ∗

Tiejun Li

1 Law of Large Numbers

Let {Xj}∞j=1 be a sequence of independently and identically distributed (abbreviated as i.i.d. in the

later text) random variables. Let η = EX1 and Sn the partial sum of Xj from 1 to n. The well-known law

of large numbers validates the intuitive characterization of the mathematical expectation: it is the limit of

empirical average when the sample size n goes to infinity. It is also the theoretical basis of the Monte Carlo

methods.

Theorem 1.1 (Weak law of large numbers (WLLN)). For i.i.d. random variables {Xj}∞j=1 with E|Xj | <∞,

we have
Sn
n
→ η in probability.

Proving the result under the stated assumption is quite involved. We will give a proof of the WLLN

under the stronger assumption that E|Xj |2 <∞.

Proof. Without loss of generality, we can assume η = 0. Using Chebyshev’s inequality, we have

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ 1

ε2
E
∣∣∣∣Snn

∣∣∣∣2
for any ε > 0. Using independence, we have

E|Sn|2 =

n∑
i,j=1

E(XiXj) = nE|X1|2.

Hence

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ 1

nε2
E|X1|2 → 0,

as n→∞.

Theorem 1.2 (Strong law of large numbers (SLLN)). For i.i.d. random variables {Xj}∞j=1 we have

Sn
n
→ η a.s.

if and only if E|Xj | <∞.
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Proof. We will only give a proof of SLLN here under the stronger assumption that E|Xj |4 <∞. The proof

in the most general condition may be referred to [2].

Without loss of generality, we can assume η = 0. Using Chebyshev’s inequality, we obtain

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ 1

ε4
E
∣∣∣∣Snn

∣∣∣∣4 .
Using independence, we get

E|Sn|4 =

n∑
i,j,k,l=1

E(XiXjXkXl) = nE|Xj |4 + 3n(n− 1)(E|Xj |2)2.

We have (E|Xj |2)2 ≤ E|Xj |4 <∞ by Hölder inequality. Hence

P
{∣∣∣∣Snn

∣∣∣∣ > ε

}
≤ C

n2ε4
.

Since the series 1/n2 is summable we get

P
{∣∣∣∣Snn

∣∣∣∣ > ε, i.o.

}
= 0

by Borel-Cantelli lemma. This implies that

Sn
n
→ 0 a.s.

and we are done.

Example 1.3 (Cauchy distribution). The following example shows that the law of large numbers does not

hold if the assumed condition is not satisfied. Consider the i.i.d. random variables {Xj}∞j=1 with Cauchy

distribution having probability density function

1

π(1 + x2)
, x ∈ R. (1.1)

We have EXj = 0 by symmetry and E|Xj | = ∞,E|Xj |2 = ∞. In this case, we can prove Sn/n always has

the same distribution as X1. Thus the weak and strong law of large numbers are both violated.

2 Central Limit Theorem

The following central limit theorem explains why the normal or normal-like distributions are so widely

observed in the nature.

Theorem 2.1 (Lindeberg-Lévy central limit theorem (CLT)). Let {Xj}∞j=1 be a sequence of i.i.d. random

variables. Assume that EX2
j <∞ and let σ2 = var(Xj). Then

Sn − nη√
nσ2

→ N(0, 1)

in the sense of distribution.
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Proof. Assume without loss of generality η = 0 and σ = 1, otherwise we can shift and rescale Xj . Let f be

the characteristic function of X1 and let gn be the characteristic function of Sn/
√
n. Then

gn(ξ) = EeiξSn/
√
n =

n∏
j=1

EeiξXj/
√
nσ2

=

n∏
j=1

f

(
ξ√
n

)
= fn

(
ξ√
n

)
.

Using Taylor expansion and the properties of characteristic functions we obtain

f

(
ξ√
n

)
= f(0) +

ξ√
n
f ′(0) +

1

2

(
ξ√
n

)2

f ′′(0) + o

(
1

n

)
= 1− ξ2

2n
+ o

(
1

n

)
Hence

gn(ξ) = f
(
ξ/
√
n
)n

=

(
1− ξ2

2n
+ o

(
1

n

))n
→ e−

1
2 ξ

2

as n→∞

for every ξ ∈ R1. This completes the proof by using Levy’s continuity theorem.

The central limit theorem is the theoretical basis for the assumption that additive noise can be modeled

by Gaussian noises. It also gives an estimate for the rate of convergence in the law of large numbers. Since

by CLT we have
Sn
n
− η ∼ σ√

n
.

The rate of convergence of Sn/n to η is O(n−
1
2 ). This is the reason why most Monte Carlo methods has a

rate of convergence of O(n−
1
2 ) where n is the sample size.

0

r
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Figure 1: Schematics of the freely jointed chain.

Application in polymer physics. The central limit theorem is fundamental to understand the end-

to-end statistics for a polymer. The simplest model for flexible polymers is called the freely jointed chain,

in which a polymer consists of K units, each of length b0 and able to point in any direction independently

of each other (Figure 1). Denote the bond vectors as rk (k = 1, . . . ,K), which has i.i.d. distribution density

p(r) =
1

4πb20
δ(r − b0).

The end-to-end vector

R =

K∑
k=1

rk.
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From the central limit theorem, we have asymptotically

R ∼ N(0,Kb20I), K � 1.

Note that this Gaussian type approximation as K � 1 is independent of the choice of the bond vector

distribution. This model is called Gaussian chain in polymer physics.

Remark 2.2 (Stable laws). Theorem 2.1 requires that the variance of Xj be finite. For variables with

unbounded variances one can show the following. If there exists {an} and {bn} such that

P{an(Sn − bn) ≤ x} → G(x) as n→∞,

then the distribution G(x) is stable. For details see [3].

3 Laplace asymptotics

Laplace method is the basis of large deviation theory. It is widely used in many fields of applied

mathematics. We will only introduce the one-dimensional version of Laplace asymptotics in this section.

For more details, see [1].

Let us consider the Laplace integral

F (t) =

∫
R
eth(x)dx, t� 1

where h(x) ∈ C2(R), h(0) = 0 is the only global maximum such that

h(x) ≤ −b if |x| ≥ c

for positive reals b, c. Suppose h(x)→ −∞ fast enough as x→∞ to ensure the convergence of F for t = 1

and assume h
′′
(0) < 0, then the Laplace Lemma holds.

Lemma 3.1. (Laplace method) As t→∞, to leading order

F (t) ∼
√

2π(−th
′′
(0))−

1
2 .

Proof. If h(x) = h′′(0)x2/2, h
′′
(0) < 0, then∫

R
eth(x)dx =

√
2π(−th

′′
(0))−

1
2 .

In general, for any ε > 0, there exists δ > 0 such that for any |x| ≤ δ,

|h(x)− h
′′
(0)

2
x2| ≤ εx2.

It follows that∫
[−δ,δ]

exp
( tx2

2
(h′′(0)− 2ε)

)
dx ≤

∫
[−δ,δ]

exp
(
th(x)

)
dx ≤

∫
[−δ,δ]

exp
( tx2

2
(h′′(0) + 2ε)

)
dx.

4



For this δ > 0, there exists η > 0 by assumptions such that

h(x) ≤ −η if |x| ≥ δ,

thus ∫
|x|≥δ

exp
(
th(x)

)
dx ≤ e−(t−1)η

∫
R
eh(x)dx ∼ O(e−αt), α > 0, for t > 1.

First consider the upper bound, we have∫
R

exp
(
th(x)

)
dx

≤
∫
R

exp
( tx2

2
(h′′(0) + 2ε)

)
dx−

∫
|x|≥δ

exp
( tx2

2
(h′′(0) + 2ε)

)
dx+O(e−αt)

=
√

2π
[
t(−h

′′
(0)− 2ε)

]− 1
2

+O(e−βt)

where β > 0. In fact, we ask ε < −h′′(0)/2 here.

The proof of lower bound is similar. By the arbitrary smallness of ε, we have

lim
t→∞

F (t)/
√

2π(−th
′′
(0))−

1
2 = 1,

which completes the proof.

The result is easily extended to the case where h(0) 6= 0. The term eth(0) will appear in the leading

order and another commonly used form ignoring the prefactor is the so-called saddle point approximation

lim
t→∞

1

t
logF (t) = sup

x∈R
h(x),

which is the typical form in large deviation theory and widely used in physics literature.

4 Cramér’s Theorem for Large Deviations

Let {Xj}nj=1 be a sequence of i.i.d. random variables and let η = EXj . The laws of large numbers says

that for any ε > 0, with probability close to 1, |Sn/n− η| < ε for large enough n; conversely if y 6= η, then

the probability that Sn/n is close to y goes to zero as n → ∞. Events of this type, i.e. {|Sn/n− y| < ε},
are called large deviation events compared with the small deviation events from the mean like the set

{|Sn/n− η| ≤ c/
√
n} in central limit theorem.

To estimate the precise rate at which P {|Sn/n− y| < ε} goes to zero, we assume here that the distribu-

tion µ of the Xj ’s have finite exponential moments. Let us define the moment generating function

M(λ) = EeλXj =

∫
R
eλxdµ(x) <∞, λ ∈ R,

the cumulant generating function

Λ(λ) = logM(λ) (4.1)

and the Legendre-Fenchel transform of Λ(λ) as

I(x) = sup
λ
{xλ− Λ(λ)}. (4.2)

Then we have the large deviation type theorem for the i.i.d. sums.
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Theorem 4.1 (Cramér’s Theorem). The distribution of the empirical average µn defined by

µn(Γ) = P {Sn/n ∈ Γ}

satisfies the large deviation principle:

(i) For any closed set F ∈ B

lim
n→∞

1

n
logµn(F ) ≤ − inf

x∈F
I(x).

(ii) For any open set G ∈ B
lim
n→∞

1

n
logµn(G) ≥ − inf

x∈G
I(x).

I(x) is called the rate function.

For the so-called I-continuity set Γ, i.e. infx∈Γ◦ I(x) = infx∈Γ̄ I(x), this theorem suggests that roughly

µn(Γ) � exp

(
−n inf

x∈Γ
I(x)

)
.

Here we use the notation “�” instead of “≈” since the equivalence is in the logarithmic scale. Before the

proof, we need some results on the Legendre-Fenchel transform and some elementary properties of I(x).

Lemma 4.2. Suppose f(x) : Rd → R̄ = R ∪ {±∞} is a lower semicontinuous convex function. The

conjugate function F (y) of f(x) (Legendre-Fenchel transform) defined as

F (y) = sup
x
{(x, y)− f(x)}

has the following properties:

(i) F is also a lower semicontinuous convex function.

(ii) Fenchel inequality holds

(x, y) ≤ f(x) + F (y).

(iii) The conjugacy relation holds:

f(x) = sup
y
{(x, y)− F (y)}.

where we utilize the rule

α+∞ =∞, α−∞ = −∞ for α finite

α · ∞ =∞, α · (−∞) = −∞, for α > 0

0 · ∞ = 0 · (−∞) = 0, inf ∅ =∞, sup ∅ = −∞

The readers may be referred to [5, 6] for proof details.

Heuristic derivation of the rate function. Now we apply the Laplace asymptotics to explain

heuristically why the rate function takes the interesting form in (4.2). Suppose the Cramér’s theorem is

already correct, then roughly we have

µ(dx) ∝ exp(−nI(x))dx
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and thus by Laplace asymptotics

lim
n→∞

1

n
logEµn(exp(nΦ(x))) := lim

n→∞

1

n
log

∫
R

exp(nΦ(x))µn(dx) = sup
x
{Φ(x)− I(x)}. (4.3)

Now we take Φ(x) = λx then

Eµn(exp(nλx)) = E exp(λ

n∑
j=1

Xj) = [E exp(λXj ]
n

=
(
M(λ)

)n
.

The equation (4.3) leads to

Λ(λ) = sup
x
{λx− I(x)}.

By the conjugacy relation of Legendre-Fenchel transform, we obtain the rate function I(x) as shown in

(4.2).

Lemma 4.3. The rate function I(x) has the following properties:

(i) I(x) is convex and lower semicontinuous.

(ii) I(x) is non-negative and I(η) = 0.

(iii) I(x) is non-decreasing in [η,∞) and non-increasing in (−∞, η].

(iv) If x > η, I(x) = sup
λ>0
{λx− Λ(λ)}; If x < η, I(x) = sup

λ<0
{λx− Λ(λ)}.

Proof. (i) The convexity of Λ(λ) follows by Hölder’s inequality. For any 0 ≤ θ ≤ 1,

Λ(θλ1 + (1− θ)λ2) = logE
(

exp(θλ1Xj) exp((1− θ)λ2Xj)
)

≤ log
(

(E exp
(
λ1Xj)

)θ(E exp(λ2Xj)
)(1−θ))

= θΛ(λ1) + (1− θ)Λ(λ2)

Thus Λ(λ) is a convex function. The rest is a direct application of Lemma 4.2.

(ii) Taking λ = 0, we obtain x · 0− Λ(0) = 0. Thus I(x) ≥ 0. On the other hand, we have

Λ(λ) = logE exp(λXj) ≥ log exp(λη) = λη

by Jensen’s inequality. This gives I(η) ≤ 0. Combing with I(x) ≥ 0 we get the result.

(iii) From the convexity of I(x) and it achieves minimum at x = η, we immediately obtain the desired

monotone property in (−∞, η] and [η,∞).

(iv) If x > η, then when λ ≤ 0

λx− Λ(λ) ≤ λη − Λ(λ) ≤ 0,

Thus the supremum is only achieved when λ > 0 by the non-negativity of I(x). Similar proof can be applied

to the case x < η.
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Proof of Theorem 4.1. Without loss of generality, we assume η = 0.

(i) Upper bound. Suppose x > 0, Jx := [x,∞). For λ > 0,

µn(Jx) =

∫ ∞
x

µn(dy) ≤ e−λx
∫ ∞
x

eλyµn(dy)

≤ e−λx
∫ ∞
−∞

eλyµn(dy) = e−λx
[
M(

λ

n
)
]n
.

Taking nλ instead of λ in the above equation, we obtain

1

n
logµn(Jx) ≤ −(λx− Λ(λ))

and accordingly
1

n
logµn(Jx) ≤ − sup

λ>0
{λx− Λ(λ)} = −I(x).

If x < 0, we can define J̃x = (−∞, x]. Similarly as above we get

1

n
logµn(J̃x) ≤ −I(x).

For a closed set F ∈ B, if 0 ∈ F , infx∈F I(x) = 0. Then the upper bound holds obviously. Otherwise, let

(x1, x2) is the maximal interval satisfying the condition (x1, x2) ∩ F = ∅ and 0 ∈ (x1, x2). So x1, x2 ∈ F ,

F ⊂ J̃x1
∪ Jx2

. From monotonicity of I(x) in (−∞, 0] and [0,∞), we obtain

lim
n→∞

1

n
logµn(F ) ≤ max

(
lim
n→∞

1

n
logµn(J̃x1

), lim
n→∞

1

n
logµn(Jx2

)

)
≤ −min(I(x1), I(x2)) = − inf

x∈F
I(x).

(ii) Lower bound. For any nonempty open set G, it is sufficient to prove that for any x ∈ G

lim
n→∞

1

n
logµn(G) ≥ −I(x).

Now fix x and assume I(x) <∞.

Case 1. If the supremum

I(x) = sup
λ
{λx− Λ(λ)}

can not be achieved, then x 6= 0. Suppose x > 0 and there exists λn →∞ such that

I(x) = lim
n→∞

(λnx− Λ(λn)).

We have ∫ x−0

−∞
exp(λn(y − x)µ(dy)→ 0 as n→∞.

by dominated convergence theorem. On the other hand

lim
n→∞

∫ ∞
x

exp(λn(y − x)µ(dy) = lim
n→∞

∫ ∞
−∞

exp(λn(y − x)µ(dy) = exp(−I(x)) <∞.

Thus µ((x,∞)) = 0 and

exp(−I(x)) = lim
n→∞

∫ ∞
x

exp(λn(y − x)µ(dy) = µ({x}).
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We have

µn(G) ≥ µn({x}) ≥ (µ({x}))n = exp(−nI(x))

and thus
1

n
logµn(G) ≥ −I(x).

Similar proof can be applied to the case x < a.

Case 2. Suppose that the supremum is attained at λ0 such that

I(x) = λ0x− Λ(λ0).

Then x = Λ′(λ0) = M ′(λ0)/M(λ0). Define a new probability measure as

µ̃(dy) =
1

M(λ0)
exp(λ0y)µ(dy).

It has the expectation ∫
R
yµ̃(dy) =

1

M(λ0)

∫
R
y exp(λ0y)µ(dy) =

M ′(λ0)

M(λ0)
= x.

If x ≥ 0, then λ0 ≥ 0. For sufficiently small δ > 0, we have (x− δ, x+ δ) ⊂ G,

µn(G) ≥ µn(x− δ, x+ δ)

=

∫{∣∣ 1
n

n∑
j=1

yj−x
∣∣<δ} µ(dy1) · · ·µ(dyn)

≥ exp(−nλ0(x+ δ))

∫{∣∣ 1
n

n∑
j=1

yj−x
∣∣<δ} exp(λ0y1) · · · exp(λ0yn)µ(dy1) · · ·µ(dyn)

= exp(−nλ0(x+ δ))M(λ0)n
∫{∣∣ 1

n

n∑
j=1

yj−x
∣∣<δ} µ̃(dy1) · · · µ̃(dyn).

By the WLLN, we have ∫{∣∣ 1
n

n∑
j=1

yj−x
∣∣<δ} µ̃(dy1) · · · µ̃(dyn)→ 1 as n→∞.

Thus

lim
n→∞

1

n
logµn(G) ≥ −λ0(x+ δ) + Λ(λ0) = −I(x)− λ0δ for all 0 < δ � 1.

Similar proof can be applied to the case x < a.

Example 4.4 (Cramér’s theorem applied to the Bernoulli distribution with parameter p (0 < p < 1)). We

have Λ(λ) = ln(peλ + q) where q = 1− p. The rate function

I(x) =

{
x log x

p + (1− x) ln 1−x
q , x ∈ [0, 1],

∞, otherwise.
(4.4)

Here we take the convention 0 log 0 = 0. It is obvious that I(x) ≥ 0, and I(x) achieves its global minimum 0

at x∗ = p. I(x) has important background in information theory. It is called relative entropy, or Kullback-

Leibler distance between two distributions µ and ν defined as follows

D(µ||ν) =

r∑
i=1

µi log
µi
νi
, (4.5)
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where µ = (µ1, µ2, . . . , µr), ν = (ν1, ν2, . . . , νr). In the previous case, we have r = 2, µ = (x, 1 − x) and

ν = (p, q), the underlying Bernoulli distribution.

Connections with statistical mechanics. There are intimate relations between the large deviation

theory and equilibrium statistical mechanics [4]. Now let us only consider the simplest case here. For the

Bernoulli trials with parameter p, we can obtain the rate function as (see Exercise 5)

I(x) = x ln
x

p
+ (1− x) ln

1− x
q

, x ∈ [0, 1]

which is also called the relative entropy. When p = 1/2 we have

I(x) = x lnx+ (1− x) ln(1− x) + ln 2, x ∈ [0, 1].

In this case, the rate function is exactly the negative Shannon entropy up to a constant ln 2. Below we will

show that it has direct connection to Boltzmann entropy in statistical mechanics.

Consider a system with n independent spins being up or down with equal probability 1/2. If it is up,

we label it as 1, and 0 otherwise. We define the set of microstates as

Ω = {ω : ω = (s1, s2, . . . , sn), si = 1 or 0}.

For each microstate ω, we define its mean energy as

hn(ω) =
1

n

n∑
i=1

si.

In thermodynamics, the entropy is a function of the macrostate energy. In statistical mechanics, Boltzmann

gives a clear mathematical definition of the entropy

S = kB lnW (4.6)

in the micro-canonical ensemble (the number of spins n and total energy hn = E are fixed in this set-up),

where kB is the Boltzmann constant, W is the number of the microstates corresponding to the fixed energy

E. Actually this formula is carved in Boltzmann’s tombstone. From large deviation theory we have

I(E) = lim
n→∞

− 1

n
lnP(hn ∈ [E,E + dE]),

where dE is an infinitesimal quantity and

I(E) = lim
n→∞

− 1

n
ln
W (hn ∈ [E,E + dE])

2n

= ln 2− 1

kB
lim
n→∞

1

n
Sn(E).

Taking the normalization of S in (4.6) with 1/n in the n→∞ limit, we obtain

kBI(E) = kB ln 2− S(E),

where S(E) is the Boltzmann entropy in statistical mechanics. So we have that the rate function is the

negative entropy (with factor 1/kB) up to an additive constant. This is a general statement.
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In the canonical ensemble in statistical mechanics (the number of spins n and the temperature T are

fixed in this set-up), let us investigate the physical meaning of Λ. The logarithmic moment generating

function of Hn(ω) = nhn(ω) with normalization 1/n is

Λ(λ) = lim
n→∞

1

n
lnEeλHn ,

where we take Hn instead of a single R.V. si since it admits more general interpretation. Take λ = −β =

−(kBT )−1, we have

Λ(−β) = lim
n→∞

1

n
ln(
∑
ω

e−βHn(ω))− ln 2.

Define the partition function

Zn(β) =
∑
ω

e−βHn(ω)

and free energy

Fn(β) = −β−1 lnZn(β),

we have

Λ(−β) = −β lim
n→∞

1

n
Fn(β)− ln 2 = −βF (β)− ln 2.

Thus the free energy F (β) is the negative logarithmic moment generating function up to a constant.

According to the large deviation theory we have

−βF (β)− ln 2 = sup
E
{−βE − ln 2 + k−1

B S(E)},

i.e.

F (β) = inf
E
{E − TS(E)}.

The infimum is achieved at the critical point E∗ such that

∂S(E)

∂E

∣∣∣
E=E∗

=
1

T
,

which is exactly a thermodynamic relation between S and T . Here E∗ is essentially the internal energy U .

Exercises

1. Denote Xj the i.i.d. U [0, 1] random variables. Prove that

lim
n→∞

n

X−1
1 + · · ·+X−1

n

, lim
n→∞

n
√
X1X2 · · ·Xn, lim

n→∞

√
X2

1 + · · ·X2
n

n

exit almost surely and find their values.

2. The central limit of i.i.d. random variables as the Gaussian distribution can be understood from the

following viewpoint. Denote X1, X2, . . . the i.i.d. random variables with mean 0. Suppose

Zn =
X1 + · · ·+Xn√

n

d→ X and Z2n =
X1 + · · ·+X2n√

2n

d→ X. (4.7)

Denote the characteristic function of X is f(ξ).
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(a) Prove that f(ξ) = f2(ξ/
√

2).

(b) Prove that f(ξ) is the characteristic function of a Gaussian random variable under the condition

f ∈ C2(R).

(c) Investigate the situation if the scaling 1/
√
n in (4.7) is replaced with 1/n. Prove that X cor-

responds to the Cauchy-Lorentz distribution under the symmetry condition f(ξ) = f(−ξ) or

f(ξ) ≡ 1.

(d) If the scaling 1/
√
n is replaced with 1/nα, what can we infer about the characteristic function

f(ξ) if we assume f(ξ) = f(−ξ)? What is the correct range of α?

3. Prove the assertion in the Example 1.3.

4. (Single-side Laplace lemma) Suppose that h(x) attains the only maximum at x = 0, h
′ ∈ C1(0,+∞), h

′
(0) <

0, h(x) < h(0) for x > 0. h(x)→ −∞ as x→∞, and
∫∞

0
eh(x)dx converges. To the leading order∫ ∞

0

eth(x)dx ∼ (−th
′
(0))−1eth(0)

as t→∞.

5. Compute I(x) for N(µ, σ2) and the exponential distribution with parameter λ > 0.
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