
Lecture 3 Generation of RVs ∗

Tiejun Li

1 Basic MC method

The MC method for integration is as follows:

I(f) =

∫
f(x)p(x)dx −→ IN(f) =

1

N

N∑
i=1

f(Xi), Xi ∼ p(x) i.i.d.

From the WLLN, IN(f)→ I(f) in probability.

Problem: How to generate the random variables Xi? (i = 1, . . . , N)

2 Generation of RVs

The first step to apply Monte Carlo method is to generate random variables. In computer

simulations the random variables are replaced with pseudo-random variables for the reason

of repeatability. We will show in the continued texts that the arbitrary distribution can

be generated based on the uniform distributions. Let us start with generating the uniform

distribution U [0, 1]. We recommend [4] for the codes to be used in practice.

2.1 Uniform distribution

The most commonly used pseudo-random number generator (PRNG) for U [0, 1] is based

on the linear congruential generator (LCG) and its different kinds of variants. It has the

following simple form

Xn+1 = aXn + b(mod m) (2.1)

where a, b and m are chosen natural numbers beforehand, and X0 is the seed. The obtained

sequence Xn/m is the desired pseudo-random number satisfies U [0, 1]. The period for a

typical sequence produced by the above recursion formula is defined as the length of the

repeating cycle. It is proven in [1] that

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China

1

Theorem 2.1. The period of a LCG is m if and only if

(i) b and m are relatively prime;

(ii) every prime factor of m divides a− 1;

(iii) if m
∣∣4, then (a− 1)

∣∣4.

To achieve the goal of full period, a good choice in computer implementation is m = 2k,

a = 4c+ 1, and b is odd.

The LCG is also discussed when b = 0. In 1969, Lewis, Goodman and Miller proposed

the following pseudo-random number generator

Xn+1 = aXn (mod m),

with a = 75 = 16807,m = 231 − 1. This generator has passed all new theoretical tests in

subsequent years, and resulted in a lot of successful use. They called it “Minimal standard

generator” against which other generators should be judged. It is implemented in the

function ran0() in the book Numerical Recipes [4]. The period of ran0() is about 2.1×109.

With shuffling algorithm by combining sequences with different periods, a more powerful

pseudo-random number generator ran2() with period about 2.3× 1018 is constructed. The

authors claim that they will pay $1,000 for the first person who may convince them by

finding a statistical test that this generator fails in a nontrivial way!

More general LCG generators take the following form

Xn+1 = a0Xn + a1Xn−1 + · · ·+ ajXn−j + b (mod m).

These generators are characterized by the period τ , which in the best case can not proceed

mj+1 − 1. The length of τ depends on the choice of aj, b and m.

One important fact about the LCG is that it shows very poor distributions of s-tuples,

i.e. the vectors (Xn, Xn+1, . . . , Xn+s−1). In [2], Marsaglia proved the important fact

Theorem 2.2. The s-tuples (Xn, Xn+1, . . . , Xn+s−1) obtained via (2.1) lie on a maximum

of (s!m)
1
s equidistant parallel hyperplanes within the s-dimensional hypercube (0, 1)s.

When s is large, the deviation with respect to the uniform distribution is apparent.

Though the LCG has this drawback, it is still the most widely used pseudo random number

generator in practice. The nonlinear generators are also discussed to overcome this lim-

itation. Some very recent mathematical softwares adopt the so-called Mersenne Twister

generator, which avoids the linear congruential steps and has the period up to 219937− 1 [3].

We remark here that since the generation of RVs are essential for the success of the

algorithm, one must use the reliable RV generators from available well-accepted codes or

libraries!

2

2.2 Statistical testing

It is very difficult to distinguish whether a given sequence is generated from deterministic

methods or stochastic methods. The practical way to handle this issue is to judge whether

it can pass the corresponding statistical testing if the sequence is assumed to be random.

That is the principle under which the pseudo-random number generator works. Below we

show some of the statistical testing strategies for uniform distribution U [0, 1]. One may be

referred to the book [1] or the document

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

maintained by the National Institute of Standards and Technology for more details on the

empirical tests for PRNG.

• Equi-distribution test: The interval (0, 1) is divided into K subintervals. The num-

ber Nj of points falling into the j-th interval is then determined from a sample

{X1, . . . , XN}. A χ2-test is performed where the expected number in each subinterval

is N/K.

• Serial test: Consider the s-vector

Xn = (Xn, Xn+1, . . . , Xn+s−1)

in s-dimensional space (s > 2). The s-hypercube is divided into rs equi-partitions

and the frequency of the samples falling in each sub-partition is measured. Similarly

a χ2-test is applied to the sample sequences.

• Run test: Consider a short sequence Xn−1 > Xn < Xn+1 > Xn+2 < Xn+3. We have a

run-up of length 1 followed by two run-ups of length 2 since it has 3 increasing sub-

sequences Xn−1|Xn, Xn+1 |Xn+2, Xn+3. For a sequence of pseudo-random numbers, we

can count the number of run-ups of length 1, length 2, . . . and denote them by R1, R2,

etc. It can be shown that {Rk} is normally distributed in large sample size. Various

statistical tests can be used to test such distributions.

2.3 Inverse Transformation Method

The general random variables Y ∈ R can be generated from U [0, 1] in principle based

on the following well-known proposition.

Proposition 2.3 (Inverse Transformation Method). Suppose the distribution function of Y

is F (y), i.e. P(Y ≤ y) = F (y), which is strictly increasing. Xi ∼ U [0, 1], then Yi := F−1(Xi)

is the desired random variables.

3

The geometric interpretation of the above proposition is clear from the following figure.

When there are two sharp peaks at Y = y1 and y2 in the pdf of Y , the corresponding

distribution function of Y will exhibit two sharp increase near y1 and y2. Thus the projection

of F (y) onto the vertical segment [0, 1] has large portions near F (y1) and F (y2). The inverse

transformation from U [0, 1] gives the desired distribution.

y
1

y
2

y

p(y)

y

x

F(y)

y
1
 y

2

Figure 1: Left panel: The pdf of Y . Right panel: The distribution

function F (y).

Proof: If F (y) is strictly increasing, we have the following simple proof for any y ∈ R

P(Y ≤ y) = P(F−1(X) ≤ y) = P(X ≤ F (y)) = F (y).

When there are atoms in the distribution of Y or some parts have zero probability, the

distribution function F (y) is only non-decreasing and right continuous. In this case we

should define the generalized inverse F− of F as

F−(u) = inf{x : F (x) ≥ u}.

With this definition, we have for any u ∈ [0, 1] and for any x ∈ F−([0, 1]) (the real domain),

the generalizied inverse satisfies

F (F−(u)) ≥ u and F−(F (x)) ≤ x.

Thus

{(u, x) : F−(u) ≤ x} = {(u, x) : F (x) ≥ u}

and

P(F−(U) ≤ x) = P(U ≤ F (x)) = F (x).

Some straightforward applications of the inverse transformation method are as follows.

• Generation of U [a, b]:

4

The distribution function

F (y) =
y − a
b− a

, y ∈ [a, b],

then F−1(x) = (b− a)x+ a, so we can take Xi ∼ U [0, 1], Yi = (b− a)Xi + a.

• Exponential distribution:

The distribution function

F (y) = 1− e−λy

then F−1(x) = − ln(1− x)/λ, x ∈ [0, 1], so we can take

Yi = −1

λ
lnXi, (i = 1, 2, . . .)

where Xi ∼ U [0, 1] since 1−Xi ∼ U [0, 1] also.

Now let us investigate the possibility of generating N(0, 1) via inverse transformation

method. We have

F (x) =

∫ x

−∞
p(y)dy =

1

2
+

1

2
erf
(x√

2

)
.

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function. So F−1(x) =

√
2erf−1(2x−1). It is difficult

to implement with this formula since it involves the solution of transcendental equations !

2.4 Box-Muller method for Gaussian RVs

A nice idea to generate Gaussian RVs is by the following Box-Muller method. The basic

approach is though measure transformation on a lifted high dimensional space. Consider

a two dimensional Gaussian distributed vector with independent components. With polar

coordinates x = r cos θ, y = r sin θ, we have

1

2π
e−

x21+x22
2 dx1dx2 =

(1

2π
dθ
)
· (e−

r2

2 rdr).

So we transform the generation of a 2D Gaussian into the generation of Θ and R. Here

the measure 1/2πdθ corresponds to U [0, 2π] in θ space, and e−
r2

2 rdr corresponds to the

distribution in r-direction with F (r) =
∫ r
0
e−

s2

2 sds = 1−e− r2

2 . F−1(r) is easy to be obtained

and we obtain the method to generate Gaussian RV

Zi = Ri cos Θi,

where Ri =
√
−2 lnXi, Θi = 2πYi and Xi, Yi ∼ U [0, 1]i.i.d..

5

Remark 2.4. Another approximately generating Gaussian random variable is by central

limit theorem

Xn =
√

12/N
(N∑
k=1

ξk −
N

2

)
where ξk ∼ U([0, 1]) i.i.d.. The CLT asserts that N = 12 is sufficiently large for many

purposes.

2.5 Composition of random variables

Some distributions can be obtained by the composition of simple random variables in-

stead of the direct application of the previous principles. Here are some examples.

• Sampling the hat pdf.

Suppose the pdf is

f(z) =

{
z, 0 < z < 1,

2− z, 1 ≤ z < 2.

It is interesting to observe that Z has the same distribution with X+Y , where X and

Y are i.i.d. with distribution U [0, 1]. This suggests that sampling Z can be obtained

by the summation of two uniform RVs ξ1 and ξ2.

• Sampling a random variable raised to a power.

Let X1, . . . , Xn be drawn i.i.d. from the CDF F1(x1), . . . , Fn(xn). If we set Z to be

the largest number among Xi, i.e.

Z = max{X1, . . . , Xn}. (2.2)

Then the CDF of Z will be F (z) =
∏n

i=1 Fi(z). Suppose we want to generate Z ∼
p(z) = nzn−1, where z ∈ [0, 1]. Then F (z) = zn and we can take Xi are U [0, 1] RVs in

(2.2).

• Sampling the mixture models.

Suppose the pdf

f(x) =
n∑
i=1

αigi(x), αi ≥ 0, gi(x) ≥ 0.

We can rewrite it as

f(x) =
n∑
i=1

βihi(x), βi = αi

∫
gi(x)dx, hi(x) =

gi(x)∫
gi(x)dx

,

so we have the relation ∫
hi(x)dx = 1,

n∑
i=1

βi = 1.

6

The sampling of X can be obtained by first sample the index I according to the

distribution {βi}ni=1, and then sample X according to the pdf hI(x). The rationale

behind this is simply by the definition of conditional probability.

2.6 Acceptance-Rejection method

Though the inverse transformation method gives one approach to generate arbitrary

RVs in principle, we have found that it encounters difficulty in implementations if there is

no closed form inverse of the CDF. Next we present acceptance-rejection method, which is

another general methodology to sample arbitrary RVs.

The aim is to generate RV with density 0 ≤ p(x) ≤ d, a ≤ x ≤ b. The idea is to lift the

state space into a higher dimensional space as shown in Figure 2. Suppose we can sample

a uniformly distributed two dimensional random variable (X, Y) in the shaded domain A,

where

A := {(x, y) : x ∈ [a, b], y ∈ [0, p(x)]}.

The pdf is χA(x, y) and its X-marginal distribution

pX(x) =

∫ p(x)

0

χA(x, y)dy =

∫ p(x)

0

1dy = p(x),

which is exactly the desired distribution. The uniform distribution in domain A can be easily

obtained by the inheritance from the uniform distribution in [a, b] × [0, d]. This naturally

leads to the Acceptance-Rejection algorithm

Algorithm 2.5 (Acceptance-Rejection method). Generate X ∼ p(x).

Step1. Generate Xi ∼ U [a, b].

Step2. Generate a decision-making RV Yi ∼ U [0, d].

Step3. If 0 ≤ Yi < p(Xi), accept; otherwise, reject.

Step4. Back to Step1.

For the unbounded random variables, we should introduce more general comparison

functions. We draw a curve f(x) which lies everywhere above the original distribution

density function p(x). This f(x) is called comparison function. Suppose we can generate

the uniform distribution in the two dimensional domain covered by f(x), we can apply the

acceptance-rejection strategy to reduce it to the uniform distribution in the domain covered

by p(x). Then the X-marginal distribution assures us the correct sampling. Now let us

consider the generation of uniform RVs with the support covered by f(x) in 2D.

Suppose we have ∫ ∞
−∞

f(x)dx = A

7

a b

A

0

d

f(x)

Rejection

Acceptance

Figure 2: Schematics of the Acceptance-Rejection method

and we have the concrete form for F−1(x), where

F (x) =

∫ x

−∞
f(x)dx.

Then we consider the decomposition of uniform measure in x ∈ (−∞,∞), y ∈ [0, f(x)]

1

A
f(x)dx

1

f(x)
dy.

This introduces a strategy for generating 2D uniform distribution by conditional sampling.

Algorithm 2.6 (Acceptance-Rejection method with general comparison function). Gener-

ate the unbounded X ∼ p(x).

Step1. Generate Xi = F−1(AZi), where Zi ∼ U([0, 1]);

Step2. Generate decision-making RV Yi ∼ U [0, f(Xi)];

Step3. If 0 ≤ Yi < p(Xi), accept; otherwise, reject;

Step4. Back to Step1.

For bell-shaped random variables, the commonly used comparison function is the Cauchy

distribution (or Lorentzian function) because of the slow decay when y is large

p(y) =
1

π(1 + y2)
.

One can check the first and second moments of the Cauchy distribution are both infinity

though the principal integral of p(y) is 0 because of symmetry. Since the standard deviation

typically characterize the width of the “shoulder” near the center, the infinite second moment

gives the reason why it is the usual candidate of comparison functions. Its inverse indefinite

8

integral is jus the tangent function. The comparison function is often chosen as the rescaled

Cauchy function

f(x) =
c0

1 + (x− x0)2/a20
= c0p

(x− x0
a0

)
.

One can adjust the values of x0, a0 and c0 such that it is everywhere greater than p(x).

For the discrete random variables such as the Poisson and binomial distribution. one

can extend it into a continuous distribution. With Poisson distribution as an example, we

can extend it to R as

q(m) =
x[m]e−x

[m]!
,

where [m] represents the largest integer less than m. When x is large enough, we can take

Cauchy function as the comparison function.

3 Homeworks

HW1. Familiarize the following functions in MATLAB.

mean, median, min, max, cov, hist

HW2. How many ways can you give to sample U(S2), the uniform distribution on the

sphere surface S2. Implement them and make a comparison.

HW3. Derive the overall rejection probability of the Algorithm 2.6.

HW4. (Envelope Acceptance-Rejection) To generate the R.V. X ∼ p(x), we suppose

that there exist bounds gl(x) ≤ p(x) ≤ Mgm(x), where gm(x) is a pdf, M is a positive

constant and gl(x) ≥ 0 is a very simple function. Prove that the following algorithm

Step1: Generate X ∼ gm(x), U ∼ U [0, 1];

Step2: Accept X if U ≤ gl(X)/(Mgm(X));

Step3: Otherwise accept X if if U ≤ p(X)/(Mgm(X)).

generates X correctly and state its advantage compared with Algorithm 2.6.

References

[1] D.E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, third

edition edition, 1998.

[2] Marsaglia. Random numbers fall mainly in the planes. Proc. Nat. Acad. Sci. USA, 61:25,

1968.

9

[3] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator. ACM Trans. Mod. Comp. Simul., 8:3–30,

1998.

[4] W.T. Vetterling W.H. Press, S.A. Teukolsky and B.P. Flannery. Numerical Recipes in

C. Cambridge University Press, Cambridge, New York, Port Chester, Melbourne and

Sydney, Second edition edition, 1995.

10

