Lecture 21 Application in chemical reaction kinetics

Tiejun Li

1 Setup for chemical reaction kinetics

Consider a well-stirred system of N molecular species { S, Ss, ..., Sy} interacting through
M reaction channels {Ry, Ry, ..., Ry}. The following quantities are used to characterize

the whole reaction dynamics.

1. State of the system:
X, = (X}, X2 ..., XN, (1)

2. Each reaction channel R; is characterized by ites propensity function a;(x) and its
state change vector

R 1 2 N 9

VJ—(V]-,I/]-,...,V]- ) (2)

where a;(x) > 0 for physical states. Here a;(x)dt gives the probability that the system

will experience an R; reaction in the next infinitesimal time d¢ when the current state

X, == 1/;: is the change in the number of \S; molecules caused by one R; reaction.

M
j=1

Usually we define ag(x) = > ._; aj(x). The chemical master equation for the system is

M M
OP(x, tao, to) = Y aj(@ —v)P(x — v, tawg, to) — Y a;(x)P(m, tlzo, to).  (3)
j=1 j=1

It can be easily obtained through

M M
P(w,t + dt’wo,to) = Z P(w —Vy, t|.’£0, to)aj(:v - I/j)dt + (1 — ZCLJ(ID)dt)P(CU, t|$0, to)
j=1 j=1

with suitable manipulation.
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2 Stochastic simulation algorithm (SSA)

The classical simulation algorithm for chemical reaction kinetics is called SSA, which is
proposed by Gillespie [2] in 1970’s. It is essentially the same as the kinetic Monte Carlo
(KMC) algorithm.

e Step 1: Sampling the waiting time 7 as an exponentially distributed random variable
(R.V.) with rate ag(X;);

e Step 2: Sampling an M point R.V. k with probability % for the j-th reaction;

e Step 3: Update X, = X + v, then return to Step 1.

But there are shortcomings of SSA:

e When population of molecules is very large, the reactions fire very frequently, which

is quite time-consuming.
e When the reaction rate is very large for a reversible reaction
S; — Sy with rate C} (4)
Sy — 57 with rate Cs (5)
The simulation will go back and forth, but the net effect is small.

The philosophy is to accelerate at the cost of accuracy.

3 Tau-leaping algorithm

3.1 Tau-leaping algorithm

Gillespie proposed the following condition for accelerating the simulation:

“Leap Condition: Require the leap time 7 to be small enough
that the change in the state during [¢,¢+7) will be so slight that no
propensity function will suffer an appreciable (i.e., macroscopically
noninfinitesimal) change in its value.”

This means that we set a;(X}) fixed, and leap with time stepsize d¢. Then the number
of j-th reaction will be P(a;(X)dt, which is a Poisson random variable with distribution
A /Klexp(—)). Here A = a;(X;)dt. So we have the tau-leaping scheme

Xpo = Xi+ Y viP(a;(X,)t) (6)

Jj=1
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The procedure for selecting tau (time stepsize) is as follows. Note that the state after

T-leaping is

M
X — X—i—ZVjaj(X)T =X+ 7€

j=1

Then the leap condition will be
|a;(X + 78) — a;(X)] < eag(X),

where 0 < € < 1 is a specified value. The Taylor expansion of the LHS gives 7[§ - Va;| <
eag(X), which gives one stepsize selection strategy

~ . an(X)
re i {0

Many more robust stepsize selection strategies are also proposed.

Remark 1. The total propensity is ag(X). So the expected waiting time for one reaction
fires is O(1/ao(X)). If
T <m/ap(X), m~ O(1)

One will use SSA instead.

Remark 2. Compare with the forward Euler step x,.1 = x, + f(x,)0t for ODE
&= f(z).

We actually fix f(z) as a constant f(x,,) in [tn, tne1) with a similar idea. One will find more

connections along this direction.

3.2 Multi-scale picture

The multi-scale picture from tau-leaping is charming.

e From tau-leaping to Chemical Langevin Equation:

When a;(X¢)7 > 1, P(a;j(X:)7) = N(a;j(X)7,a;(X¢)7) by Central Limit Theorem

M M
X~ X4+ > v5a;(X)7+ Y viy/a;(X)7TN(0,1)
j=1 =1

which corresponds to CLE

M M
dX, =Y via(X,)dt + > v/ a;(X)dW,
j=1 i=1
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e From Chemical Langevin Equation to Reaction Rate Equation:
When a;(X )T — +00, N(a;(X)7,a;(X)T) = aj(X;)T by Law of Large Numbers

M
Xt+7— =~ Xt + Zl/jaj(Xt)T

j=1

which corresponds to RRE

X, <
=D via (X))
j=1

Tau-leaping bridges all of the equations in different scales with a seamless way!

The comparison with fluid mechanics (upscaling) will be instructive.

SSA —  Molecular dynamics

! !
CLE — Kinetic theory
\J \J

RRE — Continuum mechanics

3.3 Avoiding negative populations

Because of unboundedness of Poisson R.V., negative populations may appear. One

choice to avoid N.P. is by binomial tau-leaping. Note that Poisson distribution may be

viewed as a limit of binomial distribution B(n,p) when n — oo with A = np fixed. That is

B(k;n,p) = Crp*(1 —p)" ™" = P(N).

Algorithm 1 (Binomial tau-leaping [5]). Avoiding negative populations.

o Step 1: At time t, set X = X, select ;
o Step 2: Sequentially for j =1,2,..., M do:
— Pind k) ~ Mazimal admissible number of j-th reactions according to X ;

Define p = aﬂ/kfﬁ;x;
Sample binomial distribution R.V. kj ~ B(kg;x,p);

Firing j-th reaction k; times:
X + ijj — X
e Step 3: The iteration is repeated until the final time T is achieved.
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A simple analysis of binomial tau-leaping as follows. Note that the number of j-th

reactions:
Poisson : a;7 x \/a;T

1
Binomial : a;7 =+ , /aj7'<1 — CLjT/kgg,x> ’

in the law of rare events limit (a;7 < k:g;x), they give same result; in the finite size case,

the noise is different!

3.4 Stiff system

Chemical reactions are usually stiff.
Example 1 (Reversible reaction). Consider the reversible reaction system
S1 — Sy with rate Cy (7)
So — S;  with rate Cy (8)
when C and Cy are both large.

Define O + Cy = A\, X} + X2 = X7 (total number). Here A > 1. Then we have

XT

EX! = CQA (1—e ™) +eMX]
XT

EX? = Ol)\ (I—e™) +eMXE

The trajectory of X, is sketched as follows.
Example 2 (Fast decaying). Consider the following system
S — 0 with rate C4 (9)
0 — S with rate Cy (10)
when Cy — Cs is large.

Define A = C; — C5, we have EX, = e ™X|,. The trajectory of X is sketched as follows.

Now we perform some analysis for the stiff reversible reaction system. Suppose the

explicit tau-leaping is applied.

X! o= XL—P(CiX16t) + P(CoX26t)
X2, = X2—P(C:X20t) + P(CL X,.0t)

We have X! + X2 = X7 = Const.. So we have
X1 =X = P(C1 X5t + P(Co( XT — X1)6t).
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Taking expectation we obtain

EX!. = (1 - AHEX, + Co X" 6t.

n

The stability condition is
2
When A > 1, we have 6t < 1. That is the stiffness! As n — oo, we have
Cy

ExX! —» =—=x7T
n A )

which is the correct limit state.

Now consider the variance. At first we have
Var(Y) = E(Var(Y|X)) + Var(E(Y|X)).
Then
Var(X!,,) = CiOtEXL + CootE(XT — X1) + Var (X,}L — CLX 16t + Cy(XT — X;)at)
= (1= Xdt)*Var(X}) + (Cy — Cy)0tEX} + Coot X7
As n — 0o, we have

2 C1C X7 2

be -
VarlXo) = G G+ o)~ 2= ot

Var(XL) > Var(X1).

In order to get the right variance, we need Aot — 0. Since A > 1, we need 0t — 0, which is

a strict constraint.
Strategy: Implicit method to overcome stiffness.

The first choice is
Xh =X, = P(C1Xp16t) + P(Co( X" — X),1)01).
But the problem is how to sample P(C, X}, ,dt). If we apply the iteration

X = XL - POy X 6t) + P(Co(XT — X 2F)ot),

n+1

there will be no fixed point because of randomness.

The second choice is semi-implicit method as
Xiy = XD- CXL6t+ Co(XT — XL,)0t
~ [P(CiX18t) = CiXJt) + [P(Co(XT = X1)dt) = Co(XT = X2)ot]
Similar analysis as before shows the stability condition
‘ 1
14+ Mt

‘gL
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So the stiffness is resolved! But the variance

Var(X}) — Var(XL) < Var(X1).

24 Aot

because of the damping effect of implicit method. Trapezoidal method is a good choice for
linear problem. But the story goes on for nonlinear stiff problem!

3.5 Mathematical analysis

Consider the jump process with state dependent intensity:

M A
dXt = Z/O I/]’Cj(CL;Xt_>)\(dt>< da) (11)
j=1

Here
1, if a € (hj—1(Xy), hi( X4)],

=1,2,.... M 12
0, otherwise. J e (12)

o X1) = {

and A = maxx, aog(X:). A(dt x da) is the reference Poisson random measure associated
with a Poisson point process (¢;, ¢ > 0) taking values in (0, A]. That is,

/t/)\(dtxda):#{0§5<t;qsEB}, (13)

where B is a Borel set in (0, A]. And we assume A(dt x da) has Lebesgue intensity measure
m(dt x da) = dt x da.

Based on this form, we can prove explicit tau-leaping is of strong order 1/2, weak order
1 under suitable assumptions [6].
3.6 Stationary distribution

The chemical master equation (FPE) is (3) as before. Denote it as 0;P = LP. Here L
is the adjoint operator of the infinitesimal generator

L = Z aj(x)u(x +v;,t) — Z a;(@)u(z, 1)

M

= Z aj(x) (u(a: + vy, t) — u(z, t))

For the stationary solution, we ask

LP =0.



For reversible reaction, we only consider the equation for x since x +y = 27 (v, = =1, =

1):
<C’1(:zc + Dp(z+1) — pr(a:)) + (Cg(xT —z+Dp(z —1) — Cy(a” — m)p(x)) = 0.

Define as(x) = Cy(z? — z),a:(z) = Ciz, (0 < x < 2T), we have

(@ + Ve +1) = ax(@)p(@) ) = (@ (@)p(@) - el = Vple = 1)) =0,
If v =0, a;(x)p(z) — az(z — D)p(x — 1) = a(0)p(0) = 0, we have the detailed balance
a1(x)p(z) = az(x — 1)p(z — 1), so
pl)  ax(z—1) p(x) _ as(z —1)as(z —2) o az(0)
=1 a@  p0) al) al-1)w)

We obtain the stationary distribution

p(z) = p(@(%j)xaﬂ(;;ipl z)!
T z @
waiaaa) o)

From the normalization we have

C
p(x) ~ B(z',q), ¢ 2

a Cy+ Oy
with mean 27 Cy/(C} + Cy), and variance 27 C,Cy/(C} + Cy).
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