
Lecture 21 Application in chemical reaction kinetics ∗

Tiejun Li

1 Setup for chemical reaction kinetics

Consider a well-stirred system ofN molecular species {S1, S2, . . . , SN} interacting through

M reaction channels {R1, R2, . . . , RM}. The following quantities are used to characterize

the whole reaction dynamics.

1. State of the system:

X t = (X1
t , X

2
t , . . . , X

N
t ). (1)

2. Each reaction channel Rj is characterized by ites propensity function aj(x) and its

state change vector

νννj = (ν1j , ν
2
j , . . . , ν

N
j ), (2)

where aj(x) ≥ 0 for physical states. Here aj(x)dt gives the probability that the system

will experience an Rj reaction in the next infinitesimal time dt when the current state

X t = x. νij is the change in the number of Si molecules caused by one Rj reaction.

Usually we define a0(x) =
∑M

j=1 aj(x). The chemical master equation for the system is

∂tP (x, t|x0, t0) =
M∑
j=1

aj(x− νννj)P (x− νννj, t|x0, t0)−
M∑
j=1

aj(x)P (x, t|x0, t0). (3)

It can be easily obtained through

P (x, t+ dt|x0, t0) =
M∑
j=1

P (x− νννj, t|x0, t0)aj(x− νννj)dt+ (1−
M∑
j=1

aj(x)dt)P (x, t|x0, t0)

with suitable manipulation.
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2 Stochastic simulation algorithm (SSA)

The classical simulation algorithm for chemical reaction kinetics is called SSA, which is

proposed by Gillespie [2] in 1970’s. It is essentially the same as the kinetic Monte Carlo

(KMC) algorithm.

• Step 1: Sampling the waiting time τ as an exponentially distributed random variable

(R.V.) with rate a0(X t);

• Step 2: Sampling an M point R.V. k with probability
aj(Xt)

a0(Xt)
for the j-th reaction;

• Step 3: Update X t+τ = X t + νννk, then return to Step 1.

But there are shortcomings of SSA:

• When population of molecules is very large, the reactions fire very frequently, which

is quite time-consuming.

• When the reaction rate is very large for a reversible reaction

S1 −→ S2 with rate C1 (4)

S2 −→ S1 with rate C2 (5)

The simulation will go back and forth, but the net effect is small.

The philosophy is to accelerate at the cost of accuracy.

3 Tau-leaping algorithm

3.1 Tau-leaping algorithm

Gillespie proposed the following condition for accelerating the simulation:

“Leap Condition: Require the leap time τ to be small enough

that the change in the state during [t, t+τ) will be so slight that no

propensity function will suffer an appreciable (i.e., macroscopically

noninfinitesimal) change in its value.”

This means that we set aj(X t) fixed, and leap with time stepsize δt. Then the number

of j-th reaction will be P(aj(X t)δt, which is a Poisson random variable with distribution

λk/k! exp(−λ). Here λ = aj(Xt)δt. So we have the tau-leaping scheme

X t+δt = X t +
M∑
j=1

νννjP(aj(X t)δt) (6)
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The procedure for selecting tau (time stepsize) is as follows. Note that the state after

τ -leaping is

X →X +
M∑
j=1

νννjaj(X)τ := X + τξ.

Then the leap condition will be

|aj(X + τξ)− aj(X)| ≤ εa0(X),

where 0 < ε < 1 is a specified value. The Taylor expansion of the LHS gives τ |ξ · ∇aj| ≤
εa0(X), which gives one stepsize selection strategy

τ ≈ min
j=1,...,M

{ εa0(X)

|ξ · ∇aj|

}
.

Many more robust stepsize selection strategies are also proposed.

Remark 1. The total propensity is a0(X). So the expected waiting time for one reaction

fires is O(1/a0(X)). If

τ ≤ m/a0(X), m ∼ O(1)

One will use SSA instead.

Remark 2. Compare with the forward Euler step xn+1 = xn + f(xn)δt for ODE

ẋ = f(x).

We actually fix f(x) as a constant f(xn) in [tn, tn+1) with a similar idea. One will find more

connections along this direction.

3.2 Multi-scale picture

The multi-scale picture from tau-leaping is charming.

• From tau-leaping to Chemical Langevin Equation:

When aj(X t)τ � 1, P (aj(X t)τ) ≈ N(aj(X t)τ, aj(X t)τ) by Central Limit Theorem

X t+τ ≈X t +
M∑
j=1

νννjaj(X t)τ +
M∑
j=1

νννj

√
aj(X t)τN(0, 1)

which corresponds to CLE

dX t =
M∑
j=1

νννjaj(X t)dt+
M∑
j=1

νννj

√
aj(X t)dW t
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• From Chemical Langevin Equation to Reaction Rate Equation:

When aj(X t)τ → +∞, N(aj(X t)τ, aj(X t)τ) ≈ aj(X t)τ by Law of Large Numbers

X t+τ ≈X t +
M∑
j=1

νννjaj(X t)τ

which corresponds to RRE

dX t

dt
=

M∑
j=1

νννjaj(X t)

Tau-leaping bridges all of the equations in different scales with a seamless way!

The comparison with fluid mechanics (upscaling) will be instructive.

SSA −→ Molecular dynamics

↓ ↓
CLE −→ Kinetic theory

↓ ↓
RRE −→ Continuum mechanics

3.3 Avoiding negative populations

Because of unboundedness of Poisson R.V., negative populations may appear. One

choice to avoid N.P. is by binomial tau-leaping. Note that Poisson distribution may be

viewed as a limit of binomial distribution B(n, p) when n→∞ with λ = np fixed. That is

B(k;n, p) = Ck
np

k(1− p)n−k → P(λ).

Algorithm 1 (Binomial tau-leaping [5]). Avoiding negative populations.

• Step 1: At time t, set X̃ = X t, select τ ;

• Step 2: Sequentially for j = 1, 2, . . . ,M do:

– Find k
(j)
max ∼ Maximal admissible number of j-th reactions according to X̃;

– Define p = ajτ/k
(j)
max;

– Sample binomial distribution R.V. kj ∼ B(k
(j)
max, p);

– Firing j-th reaction kj times:

X̃ + νννjkj → X̃

• Step 3: The iteration is repeated until the final time T is achieved.
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A simple analysis of binomial tau-leaping as follows. Note that the number of j-th

reactions:
Poisson : ajτ ±

√
ajτ

Binomial : ajτ ±
√
ajτ
(

1− ajτ/k(j)max

) 1
2

in the law of rare events limit (ajτ � k
(j)
max), they give same result; in the finite size case,

the noise is different!

3.4 Stiff system

Chemical reactions are usually stiff.

Example 1 (Reversible reaction). Consider the reversible reaction system

S1 −→ S2 with rate C1 (7)

S2 −→ S1 with rate C2 (8)

when C1 and C2 are both large.

Define C1 + C2 = λ, X1
t +X2

t = XT (total number). Here λ� 1. Then we have

EX1
t =

C2X
T

λ
(1− e−λt) + e−λtX1

0

EX2
t =

C1X
T

λ
(1− e−λt) + e−λtX2

0

The trajectory of X t is sketched as follows.

Example 2 (Fast decaying). Consider the following system

S −→ ∅ with rate C1 (9)

∅ −→ S with rate C2 (10)

when C1 − C2 is large.

Define λ = C1−C2, we have EXt = e−λtX0. The trajectory of Xt is sketched as follows.

Now we perform some analysis for the stiff reversible reaction system. Suppose the

explicit tau-leaping is applied.{
X1
n+1 = X1

n − P(C1X
1
nδt) + P(C2X

2
nδt)

X2
n+1 = X2

n − P(C2X
2
nδt) + P(C1X

1
nδt)

We have X1
n +X2

n = XT = Const.. So we have

X1
n+1 = X1

n − P(C1X
1
nδt) + P(C2(X

T −X1
n)δt).
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Taking expectation we obtain

EX1
n+1 = (1− λδt)EX1

n + C2X
T δt.

The stability condition is

|1− λδt| ≤ 1 =⇒ δt ≤ 2

λ
.

When λ� 1, we have δt� 1. That is the stiffness! As n→∞, we have

EX1
n →

C2

λ
XT ,

which is the correct limit state.

Now consider the variance. At first we have

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)).

Then

Var(X1
n+1) = C1δtEX1

n + C2δtE(XT −X1
n) + Var

(
X1
n − C1X

1
nδt+ C2(X

T −X1
n)δt

)
= (1− λδt)2Var(X1

n) + (C1 − C2)δtEX1
n + C2δtX

T .

As n→∞, we have

Var(X1
n)→ 2

2− λδt
C1C2X

T

(C1 + C2)2
=

2

2− λδt
Var(X1

∞) ≥ Var(X1
∞).

In order to get the right variance, we need λδt→ 0. Since λ� 1, we need δt→ 0, which is

a strict constraint.

Strategy: Implicit method to overcome stiffness.

The first choice is

X1
n+1 = X1

n − P(C1X
1
n+1δt) + P(C2(X

T −X1
n+1)δt).

But the problem is how to sample P(C1X
1
n+1δt). If we apply the iteration

X1,k+1
n+1 = X1

n − P(C1X
1,k
n+1δt) + P(C2(X

T −X1,k
n+1)δt),

there will be no fixed point because of randomness.

The second choice is semi-implicit method as

X1
n+1 = X1

n − C1X
1
n+1δt+ C2(X

T −X1
n+1)δt

−
[
P(C1X

1
nδt)− C1X

1
nδt
]

+
[
P(C2(X

T −X1
n)δt)− C2(X

T −X1
n)δt

]
.

Similar analysis as before shows the stability condition∣∣∣ 1

1 + λt

∣∣∣ ≤ 1.

6



So the stiffness is resolved! But the variance

Var(X1
n)→ 2

2 + λδt
Var(X1

∞) ≤ Var(X1
∞).

because of the damping effect of implicit method. Trapezoidal method is a good choice for

linear problem. But the story goes on for nonlinear stiff problem!

3.5 Mathematical analysis

Consider the jump process with state dependent intensity:

dX t =
M∑
j=1

∫ A

0

νννjcj(a;X t−)λ(dt× da). (11)

Here

cj(a;X t) =

{
1, if a ∈ (hj−1(X t), hj(X t)],

0, otherwise.
j = 1, 2, . . . ,M, (12)

and A = maxXt a0(X t). λ(dt × da) is the reference Poisson random measure associated

with a Poisson point process (qt, t ≥ 0) taking values in (0, A]. That is,∫ t

0

∫
B
λ(dt× da) = #{0 ≤ s < t; qs ∈ B}, (13)

where B is a Borel set in (0, A]. And we assume λ(dt× da) has Lebesgue intensity measure

m(dt× da) = dt× da.

Based on this form, we can prove explicit tau-leaping is of strong order 1/2, weak order

1 under suitable assumptions [6].

3.6 Stationary distribution

The chemical master equation (FPE) is (3) as before. Denote it as ∂tP = LP . Here L
is the adjoint operator of the infinitesimal generator

L∗u =
M∑
j=1

aj(x)u(x+ νννj, t)−
M∑
j=1

aj(x)u(x, t)

=
M∑
j=1

aj(x)
(
u(x+ νννj, t)− u(x, t)

)
.

For the stationary solution, we ask

LP = 0.
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For reversible reaction, we only consider the equation for x since x+ y = xT (ν1 = −1, ν2 =

1): (
C1(x+ 1)p(x+ 1)− C1xp(x)

)
+
(
C2(x

T − x+ 1)p(x− 1)− C2(x
T − x)p(x)

)
= 0.

Define a2(x) = C2(x
T − x), a1(x) = C1x, (0 ≤ x ≤ xT ), we have(

a1(x+ 1)p(x+ 1)− a2(x)p(x)
)
−
(
a1(x)p(x)− a2(x− 1)p(x− 1)

)
= 0.

If x = 0, a1(x)p(x) − a2(x − 1)p(x − 1) = a(0)p(0) = 0, we have the detailed balance

a1(x)p(x) = a2(x− 1)p(x− 1), so

p(x)

p(x− 1)
=
a2(x− 1)

a1(x)
=⇒ p(x)

p(0)
=
a2(x− 1)

a1(x)

a2(x− 2)

a1(x− 1)
· · · a2(0)

a1(1)

We obtain the stationary distribution

p(x) = p(0)
(C2

C1

)x xT !

x!(xT − x)!

=
xT !

x!(xT − x)!

( C2

C1 + C2

)x(C1 + C2

C1

)x
From the normalization we have

p(x) ∼ B(xT , q), q =
C2

C1 + C2

with mean xTC2/(C1 + C2), and variance xTC1C2/(C1 + C2).

References

[1] D.T. Gillespie, A general method for numerically simulating the stochastic time evo-

lution of coupled chemical reactions, J. Comp. Phys. 22 (1976), 403-434.

[2] D.T. Gillespie, Exact stochastic simulation of coupled chemical reactions, J. Phys.

Chem. 81 (1977), 2340-2361.

[3] D.T. Gillespie, Markov processes: an introduction for physical scientists, Academic

Press, Boston, 1992.

[4] D.T. Gillespie, Approximate accelerated stochastic simulation of chemically reacting

systems, J. Chem. Phys. 115 (2001), 1716.

[5] D.G. Vlachos et al, J. Chem. Phys. 122 (2005), 24112.

[6] Tiejun Li, Analysis of explicit tau-leaping schemes for simulating chemically reacting

systems, Multi. Model. Simul. 6, 447-466 (2007).

8


