Lecture 21 Application in chemical reaction kinetics *

Tiejun Li

1 Setup for chemical reaction kinetics

Consider a well-stirred system of N molecular species $\{S_1, S_2, \ldots, S_N\}$ interacting through M reaction channels $\{R_1, R_2, \ldots, R_M\}$. The following quantities are used to characterize the whole reaction dynamics.

1. State of the system:

$$\boldsymbol{X}_t = (X_t^1, X_t^2, \dots, X_t^N).$$
(1)

2. Each reaction channel R_j is characterized by ites propensity function $a_j(x)$ and its state change vector

$$\boldsymbol{\nu}_j = (\nu_j^1, \nu_j^2, \dots, \nu_j^N), \tag{2}$$

where $a_j(\boldsymbol{x}) \geq 0$ for physical states. Here $a_j(\boldsymbol{x})dt$ gives the probability that the system will experience an R_j reaction in the next infinitesimal time dt when the current state $\boldsymbol{X}_t = \boldsymbol{x}$. ν_j^i is the change in the number of S_i molecules caused by one R_j reaction.

Usually we define $a_0(\boldsymbol{x}) = \sum_{j=1}^M a_j(\boldsymbol{x})$. The chemical master equation for the system is

$$\partial_t P(\boldsymbol{x}, t | \boldsymbol{x}_0, t_0) = \sum_{j=1}^M a_j(\boldsymbol{x} - \boldsymbol{\nu}_j) P(\boldsymbol{x} - \boldsymbol{\nu}_j, t | \boldsymbol{x}_0, t_0) - \sum_{j=1}^M a_j(\boldsymbol{x}) P(\boldsymbol{x}, t | \boldsymbol{x}_0, t_0).$$
(3)

It can be easily obtained through

$$P(\boldsymbol{x}, t + dt | \boldsymbol{x}_0, t_0) = \sum_{j=1}^{M} P(\boldsymbol{x} - \boldsymbol{\nu}_j, t | \boldsymbol{x}_0, t_0) a_j(\boldsymbol{x} - \boldsymbol{\nu}_j) dt + (1 - \sum_{j=1}^{M} a_j(\boldsymbol{x}) dt) P(\boldsymbol{x}, t | \boldsymbol{x}_0, t_0)$$

with suitable manipulation.

^{*}School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China

2 Stochastic simulation algorithm (SSA)

The classical simulation algorithm for chemical reaction kinetics is called SSA, which is proposed by Gillespie [2] in 1970's. It is essentially the same as the kinetic Monte Carlo (KMC) algorithm.

- Step 1: Sampling the waiting time τ as an exponentially distributed random variable (R.V.) with rate $a_0(\mathbf{X}_t)$;
- Step 2: Sampling an M point R.V. k with probability $\frac{a_j(\mathbf{X}_t)}{a_0(\mathbf{X}_t)}$ for the j-th reaction;
- Step 3: Update $X_{t+\tau} = X_t + \boldsymbol{\nu}_k$, then return to Step 1.

But there are shortcomings of SSA:

- When population of molecules is very large, the reactions fire very frequently, which is quite time-consuming.
- When the reaction rate is very large for a reversible reaction

$$S_1 \longrightarrow S_2$$
 with rate C_1 (4)

$$S_2 \longrightarrow S_1$$
 with rate C_2 (5)

The simulation will go back and forth, but the net effect is small.

The philosophy is to accelerate at the cost of accuracy.

3 Tau-leaping algorithm

3.1 Tau-leaping algorithm

Gillespie proposed the following condition for accelerating the simulation:

"Leap Condition: Require the leap time τ to be small enough that the change in the state during $[t, t+\tau)$ will be so slight that no propensity function will suffer an appreciable (i.e., macroscopically noninfinitesimal) change in its value."

This means that we set $a_j(\mathbf{X}_t)$ fixed, and leap with time stepsize δt . Then the number of *j*-th reaction will be $\mathcal{P}(a_j(\mathbf{X}_t)\delta t)$, which is a Poisson random variable with distribution $\lambda^k/k! \exp(-\lambda)$. Here $\lambda = a_j(X_t)\delta t$. So we have the tau-leaping scheme

$$\boldsymbol{X}_{t+\delta t} = \boldsymbol{X}_t + \sum_{j=1}^M \boldsymbol{\nu}_j \mathcal{P}(a_j(\boldsymbol{X}_t)\delta t)$$
(6)

The procedure for selecting tau (time stepsize) is as follows. Note that the state after τ -leaping is

$$oldsymbol{X}
ightarrow oldsymbol{X}
ightarrow oldsymbol{X} + \sum_{j=1}^M oldsymbol{
u}_j a_j(oldsymbol{X}) au := oldsymbol{X} + au oldsymbol{\xi}.$$

Then the leap condition will be

$$|a_j(\boldsymbol{X} + \tau \boldsymbol{\xi}) - a_j(\boldsymbol{X})| \le \epsilon a_0(\boldsymbol{X}),$$

where $0 < \epsilon < 1$ is a specified value. The Taylor expansion of the LHS gives $\tau |\boldsymbol{\xi} \cdot \nabla a_j| \leq \epsilon a_0(\boldsymbol{X})$, which gives one stepsize selection strategy

$$\tau \approx \min_{j=1,\dots,M} \Big\{ \frac{\epsilon a_0(\boldsymbol{X})}{|\boldsymbol{\xi} \cdot \nabla a_j|} \Big\}.$$

Many more robust stepsize selection strategies are also proposed.

Remark 1. The total propensity is $a_0(\mathbf{X})$. So the expected waiting time for one reaction fires is $\mathcal{O}(1/a_0(\mathbf{X}))$. If

$$\tau \leq m/a_0(\boldsymbol{X}), \quad m \sim \mathcal{O}(1)$$

One will use SSA instead.

Remark 2. Compare with the forward Euler step $x_{n+1} = x_n + f(x_n)\delta t$ for ODE

$$\dot{x} = f(x).$$

We actually fix f(x) as a constant $f(x_n)$ in $[t_n, t_{n+1})$ with a similar idea. One will find more connections along this direction.

3.2 Multi-scale picture

The multi-scale picture from tau-leaping is charming.

• From tau-leaping to Chemical Langevin Equation: When $a_j(\mathbf{X}_t)\tau \gg 1$, $P(a_j(\mathbf{X}_t)\tau) \approx N(a_j(\mathbf{X}_t)\tau, a_j(\mathbf{X}_t)\tau)$ by Central Limit Theorem

$$\boldsymbol{X}_{t+\tau} \approx \boldsymbol{X}_t + \sum_{j=1}^M \boldsymbol{\nu}_j a_j(\boldsymbol{X}_t) \tau + \sum_{j=1}^M \boldsymbol{\nu}_j \sqrt{a_j(\boldsymbol{X}_t) \tau} N(0, 1)$$

which corresponds to CLE

$$d\boldsymbol{X}_{t} = \sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}(\boldsymbol{X}_{t}) dt + \sum_{j=1}^{M} \boldsymbol{\nu}_{j} \sqrt{a_{j}(\boldsymbol{X}_{t})} d\boldsymbol{W}_{t}$$

• From Chemical Langevin Equation to Reaction Rate Equation:

When $a_j(\mathbf{X}_t)\tau \to +\infty$, $N(a_j(\mathbf{X}_t)\tau, a_j(\mathbf{X}_t)\tau) \approx a_j(\mathbf{X}_t)\tau$ by Law of Large Numbers

$$\boldsymbol{X}_{t+\tau} \approx \boldsymbol{X}_t + \sum_{j=1}^M \boldsymbol{\nu}_j a_j(\boldsymbol{X}_t) \tau$$

which corresponds to RRE

$$\frac{d\boldsymbol{X}_t}{dt} = \sum_{j=1}^M \boldsymbol{\nu}_j a_j(\boldsymbol{X}_t)$$

Tau-leaping bridges all of the equations in different scales with a seamless way! The comparison with fluid mechanics (upscaling) will be instructive.

SSA	\longrightarrow	Molecular dynamics
\downarrow		\downarrow
CLE	\longrightarrow	Kinetic theory
\downarrow		\downarrow
RRE	\longrightarrow	Continuum mechanics

3.3 Avoiding negative populations

Because of unboundedness of Poisson R.V., negative populations may appear. One choice to avoid N.P. is by binomial tau-leaping. Note that Poisson distribution may be viewed as a limit of binomial distribution B(n, p) when $n \to \infty$ with $\lambda = np$ fixed. That is

$$B(k;n,p) = C_n^k p^k (1-p)^{n-k} \to \mathcal{P}(\lambda).$$

Algorithm 1 (Binomial tau-leaping [5]). Avoiding negative populations.

- Step 1: At time t, set $\tilde{\mathbf{X}} = \mathbf{X}_t$, select τ ;
- Step 2: Sequentially for $j = 1, 2, \ldots, M$ do:
 - Find $k_{\max}^{(j)} \sim Maximal admissible number of j-th reactions according to <math>\tilde{X}$;
 - Define $p = a_j \tau / k_{\max}^{(j)}$;
 - Sample binomial distribution R.V. $k_j \sim B(k_{\max}^{(j)}, p);$
 - Firing j-th reaction k_j times:

$$ilde{X} + oldsymbol{
u}_j k_j
ightarrow ilde{X}$$

• Step 3: The iteration is repeated until the final time T is achieved.

A simple analysis of binomial tau-leaping as follows. Note that the number of j-th reactions:

Poisson :
$$a_j \tau \pm \sqrt{a_j \tau}$$

Binomial : $a_j \tau \pm \sqrt{a_j \tau} \left(1 - a_j \tau / k_{\max}^{(j)}\right)^{\frac{1}{2}}$

in the law of rare events limit $(a_j \tau \ll k_{\max}^{(j)})$, they give same result; in the finite size case, the noise is different!

3.4 Stiff system

Chemical reactions are usually stiff.

Example 1 (Reversible reaction). Consider the reversible reaction system

$$S_1 \longrightarrow S_2$$
 with rate C_1 (7)

$$S_2 \longrightarrow S_1$$
 with rate C_2 (8)

when C_1 and C_2 are both large.

Define $C_1 + C_2 = \lambda$, $X_t^1 + X_t^2 = X^T$ (total number). Here $\lambda \gg 1$. Then we have

$$\mathbb{E}X_t^1 = \frac{C_2 X^T}{\lambda} (1 - e^{-\lambda t}) + e^{-\lambda t} X_0^1$$
$$\mathbb{E}X_t^2 = \frac{C_1 X^T}{\lambda} (1 - e^{-\lambda t}) + e^{-\lambda t} X_0^2$$

The trajectory of \boldsymbol{X}_t is sketched as follows.

Example 2 (Fast decaying). Consider the following system

$$S \longrightarrow \emptyset \quad with \ rate \ C_1$$

$$\tag{9}$$

$$\emptyset \longrightarrow S \quad with \ rate \ C_2$$
 (10)

when $C_1 - C_2$ is large.

Define $\lambda = C_1 - C_2$, we have $\mathbb{E}X_t = e^{-\lambda t}X_0$. The trajectory of X_t is sketched as follows.

Now we perform some analysis for the stiff reversible reaction system. Suppose the explicit tau-leaping is applied.

$$\begin{cases} X_{n+1}^{1} = X_{n}^{1} - \mathcal{P}(C_{1}X_{n}^{1}\delta t) + \mathcal{P}(C_{2}X_{n}^{2}\delta t) \\ X_{n+1}^{2} = X_{n}^{2} - \mathcal{P}(C_{2}X_{n}^{2}\delta t) + \mathcal{P}(C_{1}X_{n}^{1}\delta t) \end{cases}$$

We have $X_n^1 + X_n^2 = X^T = Const.$ So we have

$$X_{n+1}^{1} = X_{n}^{1} - \mathcal{P}(C_{1}X_{n}^{1}\delta t) + \mathcal{P}(C_{2}(X^{T} - X_{n}^{1})\delta t).$$

Taking expectation we obtain

$$\mathbb{E}X_{n+1}^1 = (1 - \lambda \delta t) \mathbb{E}X_n^1 + C_2 X^T \delta t.$$

The stability condition is

$$|1 - \lambda \delta t| \le 1 \Longrightarrow \delta t \le \frac{2}{\lambda}$$

When $\lambda \gg 1$, we have $\delta t \ll 1$. That is the stiffness! As $n \to \infty$, we have

$$\mathbb{E}X_n^1 \to \frac{C_2}{\lambda} X^T,$$

which is the correct limit state.

Now consider the variance. At first we have

$$\operatorname{Var}(Y) = \mathbb{E}(\operatorname{Var}(Y|X)) + \operatorname{Var}(\mathbb{E}(Y|X)).$$

Then

$$\operatorname{Var}(X_{n+1}^{1}) = C_{1}\delta t \mathbb{E}X_{n}^{1} + C_{2}\delta t \mathbb{E}(X^{T} - X_{n}^{1}) + \operatorname{Var}\left(X_{n}^{1} - C_{1}X_{n}^{1}\delta t + C_{2}(X^{T} - X_{n}^{1})\delta t\right)$$

= $(1 - \lambda\delta t)^{2}\operatorname{Var}(X_{n}^{1}) + (C_{1} - C_{2})\delta t\mathbb{E}X_{n}^{1} + C_{2}\delta tX^{T}.$

As $n \to \infty$, we have

$$\operatorname{Var}(X_n^1) \to \frac{2}{2 - \lambda \delta t} \frac{C_1 C_2 X^T}{(C_1 + C_2)^2} = \frac{2}{2 - \lambda \delta t} \operatorname{Var}(X_\infty^1) \ge \operatorname{Var}(X_\infty^1).$$

In order to get the right variance, we need $\lambda \delta t \to 0$. Since $\lambda \gg 1$, we need $\delta t \to 0$, which is a strict constraint.

Strategy: Implicit method to overcome stiffness.

The first choice is

$$X_{n+1}^{1} = X_{n}^{1} - \mathcal{P}(C_{1}X_{n+1}^{1}\delta t) + \mathcal{P}(C_{2}(X^{T} - X_{n+1}^{1})\delta t).$$

But the problem is how to sample $\mathcal{P}(C_1 X_{n+1}^1 \delta t)$. If we apply the iteration

$$X_{n+1}^{1,k+1} = X_n^1 - \mathcal{P}(C_1 X_{n+1}^{1,k} \delta t) + \mathcal{P}(C_2 (X^T - X_{n+1}^{1,k}) \delta t),$$

there will be no fixed point because of randomness.

The second choice is semi-implicit method as

$$\begin{aligned} X_{n+1}^{1} &= X_{n}^{1} - C_{1} X_{n+1}^{1} \delta t + C_{2} (X^{T} - X_{n+1}^{1}) \delta t \\ &- \Big[\mathcal{P}(C_{1} X_{n}^{1} \delta t) - C_{1} X_{n}^{1} \delta t \Big] + \Big[\mathcal{P}(C_{2} (X^{T} - X_{n}^{1}) \delta t) - C_{2} (X^{T} - X_{n}^{1}) \delta t \Big]. \end{aligned}$$

Similar analysis as before shows the stability condition

$$\left|\frac{1}{1+\lambda t}\right| \le 1.$$

So the stiffness is resolved! But the variance

$$\operatorname{Var}(X_n^1) \to \frac{2}{2+\lambda\delta t} \operatorname{Var}(X_\infty^1) \le \operatorname{Var}(X_\infty^1).$$

because of the damping effect of implicit method. Trapezoidal method is a good choice for linear problem. But the story goes on for nonlinear stiff problem!

3.5 Mathematical analysis

Consider the jump process with state dependent intensity:

$$d\boldsymbol{X}_{t} = \sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}(a; \boldsymbol{X}_{t-}) \lambda(dt \times da).$$
(11)

Here

$$c_j(a; \boldsymbol{X}_t) = \begin{cases} 1, & \text{if } a \in (h_{j-1}(\boldsymbol{X}_t), h_j(\boldsymbol{X}_t)], \\ 0, & \text{otherwise.} \end{cases} \quad j = 1, 2, \dots, M,$$
(12)

and $A = \max_{\mathbf{X}_t} a_0(\mathbf{X}_t)$. $\lambda(dt \times da)$ is the reference Poisson random measure associated with a Poisson point process $(q_t, t \ge 0)$ taking values in (0, A]. That is,

$$\int_0^t \int_{\mathcal{B}} \lambda(dt \times da) = \#\{0 \le s < t; q_s \in \mathcal{B}\},\tag{13}$$

where \mathcal{B} is a Borel set in (0, A]. And we assume $\lambda(dt \times da)$ has Lebesgue intensity measure $m(dt \times da) = dt \times da$.

Based on this form, we can prove explicit tau-leaping is of strong order 1/2, weak order 1 under suitable assumptions [6].

3.6 Stationary distribution

The chemical master equation (FPE) is (3) as before. Denote it as $\partial_t P = \mathcal{L}P$. Here \mathcal{L} is the adjoint operator of the infinitesimal generator

$$\mathcal{L}^* u = \sum_{j=1}^M a_j(\boldsymbol{x}) u(\boldsymbol{x} + \boldsymbol{\nu}_j, t) - \sum_{j=1}^M a_j(\boldsymbol{x}) u(\boldsymbol{x}, t)$$
$$= \sum_{j=1}^M a_j(\boldsymbol{x}) \Big(u(\boldsymbol{x} + \boldsymbol{\nu}_j, t) - u(\boldsymbol{x}, t) \Big).$$

For the stationary solution, we ask

$$\mathcal{L}P = 0.$$

For reversible reaction, we only consider the equation for x since $x + y = x^T$ ($\nu_1 = -1, \nu_2 = 1$):

$$\left(C_1(x+1)p(x+1) - C_1xp(x)\right) + \left(C_2(x^T - x + 1)p(x-1) - C_2(x^T - x)p(x)\right) = 0.$$

Define $a_2(x) = C_2(x^T - x), a_1(x) = C_1 x, (0 \le x \le x^T)$, we have

$$\left(a_1(x+1)p(x+1) - a_2(x)p(x)\right) - \left(a_1(x)p(x) - a_2(x-1)p(x-1)\right) = 0.$$

If x = 0, $a_1(x)p(x) - a_2(x-1)p(x-1) = a(0)p(0) = 0$, we have the detailed balance $a_1(x)p(x) = a_2(x-1)p(x-1)$, so

$$\frac{p(x)}{p(x-1)} = \frac{a_2(x-1)}{a_1(x)} \Longrightarrow \frac{p(x)}{p(0)} = \frac{a_2(x-1)}{a_1(x)} \frac{a_2(x-2)}{a_1(x-1)} \cdots \frac{a_2(0)}{a_1(1)}$$

We obtain the stationary distribution

$$p(x) = p(0) \left(\frac{C_2}{C_1}\right)^x \frac{x^T!}{x!(x^T - x)!}$$
$$= \frac{x^T!}{x!(x^T - x)!} \left(\frac{C_2}{C_1 + C_2}\right)^x \left(\frac{C_1 + C_2}{C_1}\right)^x$$

From the normalization we have

$$p(x) \sim B(x^T, q), \quad q = \frac{C_2}{C_1 + C_2}$$

with mean $x^T C_2 / (C_1 + C_2)$, and variance $x^T C_1 C_2 / (C_1 + C_2)$.

References

- [1] D.T. GILLESPIE, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comp. Phys. 22 (1976), 403-434.
- [2] D.T. GILLESPIE, Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem. 81 (1977), 2340-2361.
- [3] D.T. GILLESPIE, Markov processes: an introduction for physical scientists, Academic Press, Boston, 1992.
- [4] D.T. GILLESPIE, Approximate accelerated stochastic simulation of chemically reacting systems, J. Chem. Phys. 115 (2001), 1716.
- [5] D.G. Vlachos et al, J. Chem. Phys. 122 (2005), 24112.
- [6] Tiejun Li, Analysis of explicit tau-leaping schemes for simulating chemically reacting systems, Multi. Model. Simul. 6, 447-466 (2007).