Lecture 20 Rare Events: II *

Tiejun Li

1 Computing Transition Paths

The characterization of the MEP yields a natural methodology to compute the optimal transition
path connecting metastable states A and B for the Brownian dynamics by a pseuso-steepest descent
flow

duplat) = —=(VU(p))" +r7,  @(0)=Ap(1)=B (1)
where ¢(a, t) is parametric curve of a € (0,1), 7 = ¢./|pal, and
(VU(p))" =VU(p) — (+ &%) VU(9p).

The function r is just a Lagrange multiplier to ensure the equi-arclength parameterization

(|90a|)a =0.

Note that the term r7 is not necessary for the evolution of a continuous path ¢, and the equi-
arclength parameterization can be also replaced by other choices. They are taken in (1) for reason
of numerics since otherwise the discretization points will collapse into state A or B after long time

computations. This is called string method [1] in the literature.

The real implementation of (1) can be performed with the following simplified two-step iterations.

Step 1. Evolution of the steepest descent dynamics. For example, one can simply apply the
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forward Euler scheme
@it =@ — AtVU (¢}

or Runge-Kutta type schemes for one or several steps.

Step 2. Reparameterization of the string. One can redistribute the points {@?*'} according to
equi-arclength or other weighted parameterizations. The positions of new points can be
obtained by suitable interpolation as below.

a). Define so =0, s; = 5,1+ |@Fr — @l y| fori =1,..., N, and &; = s;/sn.
b). Interpolate '™ at s; = i/N from {a;, @I}

(2

With such implementation, the boundary states can be chosen close to A and B instead of knowing

their exact locations.

A simple illustration of the application of string method to the Mueller potential and micromag-

netic switching is shown in Figure 1.
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Figure 1: Illustration of the performance of string method for 2D Mueller potential [3] and micro-
magnetic switching [2]. Left panel: The calculated MEP and initial string (the vertical straight line).
Right panel: Magnetic energy along two transition paths found by string method with different initial
values. The path (a) costs lower action than path (b).



2 Transition Rates

Let us quantify the difficulty of transitions in terms of mean first exit times from metastable
states. Consider the one-dimensional diffusion process associated with the Brownian dynamics

dX, = —0,U(X,)dt + v/2edW,. (2)

We assume that U(x) has two local minima at x4 = —1, xp = 1 and a local maximum, which in this
case is also a saddle point, at £ = 0. We are interested in estimating the mean first passage time

from z4 to zg.

To do this, let us consider a diffusion process X; in the domain D = [a,b] with reflecting and

absorbing boundary conditions at a and b, respectively. Denote the first passage time to b by
T = 1inf{t > 0: X; = b}
and the mean first passage time starting from x by
7(z) = E*7p.

Then the probability remaining in [a, b) at time t has the form

b
R(z,t) =P*(X; € [a,])) = / p(y,t|z,0)dy = P*(m, > t).

We have ~ ~
T(z) = E*n, = —/ toyR(x, t)dt = / R(z,t)dt (3)
0 0

under the assumption that tR(z,t) — 0 as t — oo. Applying £ to both sides of (3) we get
00 00 b
LT1(z) = / LR(x,t)dt = / / Op(y, t|z,0)dydt
0 0 a
b b
= / Pli=co — Pli=ody = —/ Sz —y)dy = —1 (4)
From the boundary conditions for the backward equation, we have R(z,t)|,—, = 0 and 0, R(x,t)|,=q =
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0, which implies the boundary conditions for 7(x)
0pT(2)|22a = 0,  7(2)|s=p = 0. (5)
For our problem, we have
Ar(z) = =U'(x)7'(z) + e7”(x) = —1 for x € (a,b) and 7|,—p =0, 7'|z=q = 0. (6)

The solution to this problem is given simply by

1" vw [Y _ve
T(x) = / e / et )dzdy. (7)
€ x a

Now let us take a — —00, b — xp and x = x4, thus obtain

1 B Yy Y)—U(z
T(x4) = e/ / " )dzdy. (8)
TA —00

Define the function F(y,z) = U(y) — U(z) on the domain

S = {(y, 2):y € [xa,xp] and z € (—o0,y| for any y}.

We have

max F(y,z) = AUap = U(xc) — U(za)
(y,2)es

at (y,z) = (r¢,x4). With Laplace asymptotics in the 2D domain S, we have in the leading order

() o (2a) ~ A (9)

VIU"(@e) U (24)

for any x < x¢c — g, where Jg is a positive constant. Here we implicitly require the condition that
U"(x4) and |U"(z¢)| are positive.

The formula (9) tells us that the transition time is exponentially large in O(AU4p/¢), which is a
typical result in rare event study. The derivations also tell that the length of transition times does

not heavily depends on where the particle starts from. Even when the starting point x is close to



o, mostly it will relax to the neighborhood of x4 at first, then transit to xz. The choice of the first
passage point does not affect the final result very much. As long as z; is beyond z¢ in a nonzero

distance, the transition time asymptotics remains the same.

In the considered case, we naturally define the transition rate

kap = (10)

1 _ 0G0 ) (_ AUAB> |

T(zA) 27 £

This is the celebrated Kramers reaction rate formula in the Brownian dynamics case, which is also
called Arrhenius’s law of reaction rates. In the multi-dimensional case with index-one saddle point

o, one can also derive the reaction rate asymptotics

\/|)\s| det H 4 AUap
= — ) 11
Kas 2r \ det HE P 5 (11)

for the Brownian dynamics, where Ay < 0 is the unique negative eigenvalue of the Hessian Ho =
V2U(xc), Ha = V?U(x4), HE is the restriction of He on the (d — 1)-dimensional stable manifold
at c. The readers can be referred to [4,5] for more details.
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