
Lecture 2 Random Variables ∗

Tiejun Li

1 A Crash Course on Basic Concepts

1.1 Discrete Examples

We will concentrate on the elementary and intuitive aspects of probability here. In the

discrete case, the function P (X) is called the probability mass function (pmf).

• Bernoulli distribution:

P (X) =

{
p, X = 1,

q, X = 0.

where p > 0, q > 0, p+ q = 1. The mean and variance are

EX = p,Var(X) = pq.

If p = q = 1
2
, it is the well-known fair-coin tossing game.

• Binomial distribution B(n, p):

n independent experiments of Bernoulli distribution Xk, X := X1 + . . .+Xn, then

P (X = k) = Ck
np

kqn−k.

The mean and variance are

EX = np,Var(X) = npq.

• Multinomial distribution M(p1, . . . , pr):

Multinomial distribution is a simple generalization of binomial distribution, in which

each trial results in exactly one of some fixed number r possible outcomes with prob-

ability p1, p2, . . . , pr, where

r∑
i=1

pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , r,

∗School of Mathematical Sciences, Peking University, Beijing 100871, P.R. China

1



and we have n independent trials. Let the random variables Xi indicate the number

of times the i-th outcome was observed over the n trials. X = (X1, . . . , Xr) follows a

multinomial distribution with parameters n and p, where p = (p1, . . . , pr).

The pmf of the multinomial distribution is:

P (X1 = x1, . . . , Xr = xr) =
n!

x1! · · ·xr!
px11 · · · pxrr , n = x1 + · · ·+ xr.

The mean, variance and covariance are

E(Xi) = npi, Var(Xi) = npi(1− pi), Cov(Xi, Xj) = −npipj (i 6= j).

• Poisson distribution:

The number X of radiated particles in a fixed time τ obeys

P (X = k) =
λk

k!
e−λ,

where λ is the average number of radiated particles each time. The mean and variance

are

EX = λ,Var(X) = λ.

Poisson distribution may be viewed as the limit of binomial distribution (the law of

rare events)

Ck
np

kqn−k −→ λk

k!
e−λ (n→∞, np = λ).

Poisson distribution can also describe the spatial distribution of randomly scattered

points. For example, Let A be a set in R2. XA(ω) be the number of points in A. If

the points are uniformly distributed on the plane, and suppose the scattering density

is λ (mean number of points per area), then XA has Poisson distribution

then

λ = area of A× number of points/area.

XA has Poisson distribution

P (XA = n) =
(λ ·meas(A))n

n!
e−λ·meas(A).

• Geometric probability.

Probability = Ratio of areas

Special case of continuous examples — uniform distribution.

Example 1. Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics.

Suppose there are n particles and N bins, where N > n.
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1. Given n bins, what is the probability that each bin has one particle? (Boson)

2. What is the probability that there exist n bins such that each bin has exactly one

particle? (Fermion, Pauli exclusion principle)

In statistical physics the classical particles are distinguishable. If they satisfy the Pauli

exclusion principle, then they are subject to Maxwell-Boltzmann statistis. The quantum

particles are indistinguishable. If they satisfy the Pauli exclusion principle, then they are

subject to Fermi-Dirac statistis (Fermions). If they do not satisfy the Pauli exclusion princi-

ple, then they are subject to Bose-Einstein statistis (Bosons). Distinguishable particles that

are subject to the exclusion principle do not occur in physics.

The whole picture is as follows:

Distinguishable balls (classical) Undistinguishable balls (quantum)

Without exclusion Nn (Maxwell-Boltzmann) Cn
N+n−1 (Bose-Einstein)

With exclusion P n
N Cn

N (Fermi-Dirac)

1.2 Continuous Examples

In continuous case, the function p(x) is called the probability density function (pdf).

• Uniform distribution U [0, 1]:

p(x) =

{
1 if x ∈ [0, 1]

0 otherwise

The mean and variance are

EX =
1

2
,Var(X) =

1

12
.

• Exponential distribution:(λ > 0)

p(x) =

{
0 if x < 0

λe−λx if x ≥ 0

The mean and variance are

EX =
1

λ
,Var(X) =

1

λ2
.

Waiting time for continuous time Markov process also has exponential distribution,

where λ is the rate of the process.
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• Normal distribution(Gaussian distribution)(N(0, 1)):

p(x) =
1√
2π
e−

x2

2

or more generally N(µ, σ)

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

where µ is the mean (expectation), σ2 is the variance.

High dimensional case (N(µ,Σ))

p(x) =
1

(2π)n/2(det Σ)1/2
e−(X−µ)TΣ−1(X−µ)

where µ is the mean, Σ is a symmetric positive definite matrix, which is the covariance

matrix of X. det Σ is the determinant of Σ. More general high dimensional normal

distribution is defined with characteristic functions g(t) = exp
(
iµ · t− 1

2
t′Σt

)
.

Remark 1. In 1D case, the normal distribution N(np, npq) may be viewed as the

limit of the Binomial distribution B(n, p) when n is large. This is the famous De

Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT).

Notice that
B(n, p)− np
√
npq

−→ N(0, 1) as n→∞.

Remark 2. In 1D case, the normal distribution N(λ, λ) may be viewed as the limit

of the Poisson distribution Poisson(λ) when λ is large. Notice the simple fact that

the sum of two independent Poisson(λ) and Poisson(µ) is Poisson(λ + µ) (why?),

we can decompose Poisson(λ) into the sum of n i.i.d. Poisson(λ/n), we have

Poisson(λ)− λ√
λ

−→ N(0, 1) when λ is large.

1.3 Probability Space

• σ-algebra F

F is a collection of subsets of Ω:

1. Ω ∈ F ;

2. If A ∈ F , then Ā = Ω\A ∈ F ;

3. If A1, A2, · · · , An, · · · ∈ F , then
⋃∞
j=1Aj ∈ F .

Here (Ω,F) is called a measurable space.
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• Probability measure P

1. (Positive) ∀A ∈ F , P (A) ≥ 0;

2. (Countably additive) If A1, A2, · · · ∈ F , and they are disjoint, then P (
⋃∞
j=1 Aj) =∑∞

j=1 P (Aj);

3. (Normalization) P (Ω) = 1.

• Probability space — Triplet (Ω,F , P )

1. Random variable: a measurable function X : Ω→ R.

2. Distribution(or law): a probability measure µ on R defined for any set B ⊂ R by

µ(B) = Prob(X ∈ B) = P{ω ∈ Ω : X(ω) ∈ B}.

3. Probability density function(pdf): an integrable function p(x) on R such that for

any set B ⊂ R,

µ(B) =

∫
B

p(x)dx.

4. Mean (expectation):

Ef(X) =

∫
Ω

f(X(ω))P (dω) =

∫
R

f(x)dµ(x) =

∫
R

f(x)p(x)dx.

5. Variance:

Var(X) = E(X − EX)2 = EX2 − (EX)2.

6. p-th moment: E|X|p.

7. Covariance:

Cov(X, Y ) = E(X − EX)(Y − EY ).

8. Independence:

Ef(X)g(Y ) = Ef(X)Eg(Y ).

for all continuous functions f and g.

1.4 Notions of Convergence

Probability space (Ω,F , P ), {Xn} — a sequence of random variables, µn — the distir-

bution of Xn. X — another random variable with distribution µ.

Definition 1. (Almost sure convergence) Xn converges to X almost surely as n → ∞,

(Xn → X, a.s.) if

P{ω ∈ Ω, Xn(ω)→ X(ω)} = 1
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Definition 2. (Convergence in probability) Xn converges to X in probability if for any

ε > 0,

P{ω|Xn(ω)−X(ω)| > ε} → 0

as n→ +∞.

Definition 3. (Convergence in distribution) Xn converges to X in distribution (Xn
d−→ X)

(i.e. µn ⇀ µ or µn
d−→ µ, weak convergence), if for any bounded continuous function f

Ef(Xn)→ Ef(X)

Definition 4. (Convergence in Lp) If Xn, X ∈ Lp, and

E|Xn −X|p → 0.

If p = 1, that is convergence in mean; if p = 2, that is convergence in mean square.

Relation:

Almost sure convergence GGGBFGGG

subsequence
Converge in probability −→ Converge in distribution

⇑
Lp convergence

1.5 Conditional Expectation

Let X and Y be two discrete random variables with joint probability

p(i, j) = P(X = i, Y = j).

The conditional probability that X = i given that Y = j is given by

p(i|j) =
p(i, j)∑
i p(i, j)

=
p(i, j)

P(Y = j)

if
∑

i p(i, j) > 0 and conventionaly taken to be zero if
∑

i p(i, j) = 0. The natural definition

of the conditional expectation of f(X) given that Y = j is

E(f(X)|Y = j) =
∑
i

f(i)p(i|j). (1)

The axiomatic definition of the conditional expectation Z = E(X|G) is defined with

respect to a sub-σ-algebra G ⊂ F as follows.

Definition 5 (Conditional expectation). For any random variable X with E|X| < ∞, the

condition expectation Z of X given G is defined as
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(i) Z is a random variable which is measurable with respect to G;

(ii) for any set A ∈ G, ∫
A

Z(ω)P(dω) =

∫
A

X(ω)P(dω).

The existence of Z = E(X|G) comes from the Radon-Nikodym theorem by considering

the measure µ on G defined by µ(A) =
∫
A
X(ω)P(dω) (see [3]). One can easily find that µ

is absolutely continuous with respect to the measure P|G, the probability measure confined

in G. Thus Z exists and is unique up to the almost sure equivalence in P|G.

Theorem 1 (Properties of conditional expectation). Suppose X, Y are random variables

with E|X|,E|Y | <∞, a, b ∈ R. Then

(i) E(aX + bY |G) = aE(X|G) + bE(Y |G)

(ii) E(E(X|G)) = E(X)

(iii) E(X|G) = X, if X is G-measurable

(iv) E(X|G) = EX, if X is independent of G

(v) E(XY |G) = Y E(X|G), if Y is G-measurable

(vi) E(X|G) = E(E(X|G)|H) for the sub-σ-algebras G ⊂ H.

Lemma 1 (Conditional Jensen’s inequality). Let X be a random variable such that E|X| <
∞ and φ : R→ R is a convex function such that E|φ(X)| <∞. Then

E(φ(X)|G) ≥ φ(E(X|G)). (2)

The readers may be referred to [4] for the details of the proof.

For the conditional expectation of a random variable X with respect to another random

variable Y , it is natural to define it as

E(X|Y ) := E(X|G) (3)

where G is the σ-algebra Y −1(B) generated by Y .

To realize the equivalence between the abstract definition (3) and (1) when Y only takes

finitely discrete values, we suppose the following decomposition

Ω =
n⋃
j=1

Ωj

and Ωj = {ω : Y (ω) = j}. Then the σ-algebra G is simply the sets of all possible unions of

Ωj. The measurability of conditional expectation E(X|Y ) with respect to G means E(X|Y )
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takes constant on each Ωj, which exactly corresponds to E(X|Y = j) as we will see. By

definition, we have ∫
Ωj

E(X|Y )P(dω) =

∫
Ωj

X(ω)P(dω) (4)

which implies

E(X|Y ) =
1

P(Ωj)

∫
Ωj

X(ω)P(dω). (5)

This is exactly E(X|Y = j) in (1) when f(X) = X and X also takes discrete values.

The conditional expectation has the following important property as the optimal ap-

proximation in L2 norm among all of the Y -measurable functions.

Proposition 1. Let g(Y ) be any measurable function of Y , then

E(X − E(X|Y ))2 ≤ E(X − g(Y ))2. (6)

Proof. We have

E(X − g(Y ))2 = E(X − E(X|Y ))2 + E(E(X|Y )− g(Y ))2

+ 2E
[
(X − E(X|Y )(E(X|Y )− g(Y ))

]
.

and

E
[
(X − E(X|Y )(E(X|Y )− g(Y ))

]
=E
[
E
[
(X − E(X|Y )(E(X|Y )− g(Y ))|Y

]]
=E
[
(E(X|Y )− E(X|Y ))(E(X|Y )− g(Y ))

]
= 0

by properties (ii),(iii) and (v) in Theorem 1. The proof is done.

2 Characteristic Function

The characteristic function of a random variable X or its distribution µ is defined as

f(ξ) = EeiξX =

∫
R
eiξxµ(dx). (7)

Proposition 2. The characteristic function has the following properties:

1. ∀ξ ∈ R, |f(ξ)| ≤ 1, f(ξ) = f(−ξ), f(0) = 1;

2. f is uniformly continuous on R;

3. f (n)(0) = inEXn provided E|X|n <∞.
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Proof. The proof of statements 1 and 3 are straightforward. The second statement is valid

by
|f(ξ1)− f(ξ2)| = |E(eiξ1X − eiξ2X)| = |E(eiξ1X(1− ei(ξ2−ξ1)X))|

≤ E|1− ei(ξ2−ξ1)X |.

Dominated convergence theorem concludes the proof.

Example 2. The characteristic functions of some typical distributions are as below.

1. Bernoulli distribution: f(ξ) = q + peiξ.

2. Binomial distribution B(n, p): f(ξ) = (q + peiξ)n.

3. Poisson distribtion P(λ): f(ξ) = eλ(eiξ−1).

4. Exponential distribution Exp(λ): f(ξ) = (1− λ−1iξ)−1.

5. Normal distribution N(µ, σ2): f(ξ) = exp
(
iµξ − σ2ξ2

2

)
.

The following important theorem gives an explicit characterization of the weak con-

vergence of probability measures based on their characteristic functions, which is a key in

proving central limit theorem later.

Theorem 2 (Lévy’s continuity theorem). Let {µn}n∈N be a sequence of probability measures,

and {fn}n∈N be their corresponding characteristic functions. Assume that

1. fn converges everywhere on R to a limiting function f .

2. f is continuous at ξ = 0.

Then there exists a probability distribution µ such that µu
d→ µ. Moreover f is the charac-

teristic function of µ.

Conversely, if µn
d→ µ, where µ is some probability distribution then fn converges to f

uniformly in every finite interval, where f is the characteristic function of µ.

For a proof, see [4].

As in Fourier transforms, one can also define the inverse transform

ρ(x) =
1

2π

∫
R
e−iξxf(ξ)dξ.

An interesting question arises as to when this gives the density of a probability measure.

To answer this we define
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Definition 6. A function f is called positive semi-definite if for any finite set of values

{ξ1, . . . , ξn}, n ∈ N, the matrix (f(ξi − ξj))ni,j=1 is positive semi-definite, i.e.∑
i,j

f(ξi − ξj)viv̄j ≥ 0, (8)

for any v1, . . . , vn ∈ C.

Theorem 3 (Bochner’s Theorem). A function f is the characteristic function of a proba-

bility measure if and only if it is a positive semi-definite and continuous at 0 with f(0) = 1.

Proof. We only gives the necessity part. Suppose f is a characteristic function, then

n∑
i,j=1

f(ξi − ξj)viv̄j =

∫
R

∣∣∣ n∑
i=1

vie
iξix
∣∣∣2µ(dx) ≥ 0. (9)

The sufficiency part is difficult and the readers may be referred to [4].

3 Generating function

For discrete R.V. taking integer values, the generating function has the central impor-

tance

G(x) =
∞∑
k=0

P (k)xk.

One immediately has the formula:

P (k) =
1

k!
G(k)(x)

∣∣∣
x=0

.

Definition 7. Define the convolution of two sequences {ak}, {bk} as {ck} = {ak} ∗ {bk},
the components are defined as

ck =
k∑
j=0

ajbk−j.

Theorem 4. Consider two independent R.V. X and Y with PMF

P (X = j) = aj, P (Y = k) = bk

and {ck} = {ak} ∗ {bk}. Suppose the generating functions are A(x), B(x) and C(x), respec-

tively, then the generating function of X + Y is C(x).

Some generating functions:

• Bernoulli distribution: G(x) = q + px.

• Binomial distribution: G(x) = (q + px)n.

• Poisson distribution: G(x) = e−λ+λx.
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4 Moment Generating Function and Cumulants

The moment generating function of a random variable X is defined for all values of t by

M(t) = EetX =


∑
x

p(x)etx, X is discrete-valued∫
R
p(x)etxdx, X is continuous

(10)

provided that etX is integrable. It is obvious M(0) = 1.

Once M(t) can be defined, one can show M(t) ∈ C∞ in its domain and its relation to

the nth moments

M (n)(t) = E(XnetX) and µn := EXn = M (n)(0), n ∈ N. (11)

This gives

M(t) =
∞∑
n=0

µn
tn

n!
, (12)

which tells why M(t) is called the moment generating function.

Theorem 5. Denote MX(t),MY (t) and MX+Y (t) the moment generating functions of ran-

dom variables X, Y and X + Y , respectively. If X, Y are independent, we have

MX+Y (t) = MX(t)MY (t). (13)

The proof is straightforward.

The following moment generating functions of typical random variables can be obtained

by direct calculations.

(a) Binomial distribution: M(t) = (pet + 1− p)n.

(b) Poisson distribution: M(t) = exp[λ(et − 1)].

(c) Exponential distribution: M(t) = λ/(λ− t) for t < λ.

(d) Normal distribution N(µ, σ2): M(t) = exp
(
µt+ σ2t2

2

)
.

The cumulant generating function K(t) is defined based on M(t) by

K(t) = lnM(t) = lnEetX =
∞∑
n=1

κn
tn

n!
. (14)

With such definition, we have the cumulants κ0 = 0 and

κn = K(n)(0), n ∈ N. (15)
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The moment generating function is not so powerful as the characteristic function since

the integrable condition is usually too strong for many random variables. Under similar

consideration, we can also define another type of cumulant generating function H(t) as

H(t) = lnEeitX =
∞∑
n=1

κn
(it)n

n!
.

All of the definitions above can be extended to random vectors without difficulty. In

this circumstance, we have

M(t) = Eet·X , t ∈ Rd

and correspondingly the moments

µk = E(Xk1
1 · · ·X

kd
d ) =

∂|k|M

∂tk11 · · · ∂t
kd
d

(0), k = (k1, . . . , kd) ∈ Nd,

where |k| :=
∑d

j=1 kj is the order of multi-index k. The relation between M(t) and µk is

simply

M(t) =
∞∑
k1=0

· · ·
∞∑

kd=0

µk
tk11 · · · t

kd
d

k1! · · · kd!
. (16)

The K(t), H(t) can be defined similarly, and the corresponding cumulants are defined by

κk =
∂|k|K

∂tk11 · · · ∂t
kd
d

(0), k = (k1, . . . , kd) ∈ Nd,

and

K(t) =
∞∑
k1=0

· · ·
∞∑

kd=0

κk
tk11 · · · t

kd
d

k1! · · · kd!
.

It is straightforward to verify the relations

µX = κX , µXY = κXY + µXµY ,

µXY Z = κXY Z + µXκY Z + µY κXZ + µZκXY + µXµY µZ ,

and so on. The general relation between µ and κ for scalar X is left as an exercise.

For the multi-variate normal distribution N(µ,Σ) we obtain

M(t) = exp
(
µ · t+

1

2
tTΣt

)
, K(t) = µ · t+

1

2
tTΣt. (17)

Note that only the cumulants κn with order n ≤ 2 survive for Gaussian distributions. This

property can be utilized to prove the useful Wick’s theorem (see Exercise 6).

The moment and cumulant generating functions have explicit meaning in statistical

physics, in which

Z(β) = Ee−βE, F (β) = −β−1 lnZ(β)
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are called partition function and Helmholtz free energy, respectively. Here β = (kBT )−1 is

the inverse temperature, which is just a physical constant. They can be connected to M

and K by

Z(β) = MX(−β), F (β) = −β−1KX(−β)

if X is taken as E, the energy of the system.

5 Borel-Cantelli Lemma

Let {An} be a sequence of events, An ∈ F . Define

lim sup
n→∞

(An) = {ω ∈ Ω, ω ∈ An infinitely often (i.o.)}

=
∞⋂
n=1

∞⋃
k=n

Ak

Lemma 2. (First Borel-Cantelli Lemma) If
∑∞

n=1 P (An) < +∞, then P (lim supn→∞An) =

P{ω : ω ∈ An, i.o.} = 0.

Proof. P{
⋂∞
n=1

⋃∞
k=nAk} ≤ P{

⋃∞
k=nAk} ≤

∑∞
k=n P (Ak) for any n, but the last term goes

to 0, as n→∞.

As an example of the application of this result, we prove

Lemma 3. Let {Xn} be a sequence of identically distributed (not necessarily independent)

random variables, such that E|Xn| < +∞. Then

lim
n→∞

Xn

n
= 0 a.s.

The proof of this relies on another useful fact.

Lemma 4. (Chebyshev Inequality) Let X be a random variable such that E|X|k < +∞, for

some integer k. Then

P{|X| > λ} ≤ 1

λk
E|X|k

for any positive constant λ.

Proof. For any λ > 0,

E|X|k =

∫ ∞
−∞
|x|kdµ ≥

∫
|X|≥λ

|X|kdµ

≥ λk
∫
|X|≥λ

dµ = λkP{|X| ≥ λ}.
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Proof of Lemma 3. For any ε > 0, define

An = {ω ∈ Ω :

∣∣∣∣Xn(ω)

n

∣∣∣∣ > ε}∑
n

P (An) =
∑
n

P{|Xn| > nε}

=
∑
n

∑
k=n

P{kε < |Xn| < (k + 1)ε}

=
∑
k

kP{kε < |Xn| < (k + 1)ε}

≤ 1

ε
E|X| < +∞

Therefore if we define

Bε = {ω ∈ Ω, ω ∈ An i.o.}

then P (Bε) = 0. Let B =
⋃∞
n=1B 1

n
. Then P (B) = 0, and

lim
n→∞

Xn(ω)

n
= 0, if ω /∈ B.

Lemma 5. (Second Borel-Cantelli Lemma) If
∑∞

n=1 P (An) = +∞, and An are mutually

independent, then

P{ω ∈ Ω, ω ∈ An i.o.} = 1

6 Homeworks

• HW1. Prove the second Borel-Cantelli Lemma.

• HW2. Prove that if X ∼ P(λ), Y ∼ P(µ) and X is independent of Y , then X + Y ∼
P(λ+ µ).

• HW3. Suppose X ∼ P(λ), Y ∼ P(µ) are two independent Poisson random variables

and the sum X + Y = N is fixed. Then the conditional distribution of X (or Y ) is a

Binomial distribution with parameter n = N and p = λ/(λ+ µ) (or p = µ/(λ+ µ)).

• HW4. Prove the following statements:

1. (Memoryless property of exponential distribution) Suppose X ∼ E(λ), prove that

Prob(X > s+ t|X > s) = Prob(X > t) for all s, t > 0.

2. Let X be a random variable such that

Prob(X > s+ t) = Prob(X > s)Prob(X > t) for all s, t > 0,

prove that there exists λ > 0 such that X ∼ E(λ).
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• HW5. (Wick’s theorem) For multi-variate Gaussian random variables (X1, X2, . . . , Xn)

with mean 0, utilize (17) and (16) to prove

E(X1X2 · · ·Xk) =

{ ∑∏
E(XiXj), k is even,

0, k is odd,

where the notation
∑∏

means summing of products over all possible partitions of

X1, . . . , Xk into pairs, e.g. for (X,Y,Z) is jointly Gaussian we obtain

E(X2Y 2Z2) =(EX2)(EY 2)(EZ2) + 2(EY Z)2EX2 + 2(EXY )2EZ2 + 2(EXZ)2EY 2

+ 8(EXY )(EY Z)(EXZ). (18)

Each term in (18) can be schematically mapped to some graph as below

(EXY )2EZ2 7−→ X Y Z , (EY Z)2EX2 7−→ X Y Z ,

(EXZ)2EY 2 7−→ X Y Z , (EX2)(EY 2)(EZ2) 7−→ X Y Z ,

(EXY )(EY Z)(EXZ) 7−→ X Y Z .

And the coefficient of each term is the combinatorial number for generating the corre-

sponding schematic combinations. This is essentially the so-called Feynman diagrams.

• HW6. Suppose that the events An are mutually independent with Prob(∪nAn) = 1

and Prob(An) < 1 for each n. Prove that Prob{An i.o.} = 1.

• HW7. Numerically investigate the limit process

Binomial −→ Poisson −→ Normal distribution

with MATLAB. Find the suitable parameter regime that the limit holds.
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