
Lecture 19 Rare Events: I ∗

Tiejun Li

1 Metastability and transition events

Consider the diffusion process defined by

dXε
t = −∇U(Xε

t )dt+
√
εdWt (1)

whereWt is the standard multi-dimensional Wiener process, U(x) is assumed to be a smooth Morse
function, i.e. the critical points of U are non-degenerate in the sense that the Hessian matrices at
the critical points are non-degenerate. When ε = 0, for generic initial conditions, the solution of this
ODEs converges to a local minimum of the potential function U . For each local minimum, the set of
initial conditions from which the solutions of the ODEs converge to that local minimum is the basin
of attraction of that local minimum. The whole configuration space is then divided into the union of
the different basins of attraction. The boundaries of the basins of the attraction are the separatrices,
which are themselves invariant sets of the deterministic dynamics. In particular, each local minimum
is stable under the dynamics.

When ε is positive but small, on O(1) time scale, the picture just described still pretty much
holds. In particular, with overwhelming probability, the solution to the SDEs will stay within the
basin of attraction of a local minimum. However, as we discuss below, on exponentially large time
scales in O(1/ε), the solution will hop over from one basin of attraction to another, giving rise to a
noise-induced instability. Such hopping events are the rare events we are interested in.

The above picture can be best illustrated in the following one dimensional example (see Figure
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1) with the double-well potential
U(x) = 1

4(x2 − 1)2. (2)

The potential U has two local minima at x+ = 1 and x− = −1, and one saddle at xs = 0. xs is also
called the transition state between x+ and x−. Thus we have two basins of attraction

B− = {x| x ≤ 0} and B+ = {x| x ≥ 0}.

Most of time, Xt wanders around x+ or x−. But after exponentially large time scales in O(1/ε), Xε
t

hops between the regions B+ and B−, which manifests basic features of rare events.
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(a) Potential function U(x)
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(b) A typical trajectory of Xt

Figure 1: Illustration of rare events in the 1D double-well potential. Left panel: The symmetric
double-well potential with two metastable states at x+ = 1 and x− = −1. Right panel: A specific
trajectory of Xt, which wanders around x+ or x− and hops after a sufficiently long time.

In physical terms, the local minima or the basin of attractions are called metastable states.
Obviously, when we discuss metastability, the key issue is that of the time scale. In rare event
studies, one is typically concerned about the following three key questions:

1. What is the most probable transition path and how to compute it? When the dimension of Xε
t

is bigger than 1, this becomes a meaningful question.

2. Where is the transition state, i.e. the neighboring saddle point, for a transition event starting
from a metastable state? Presumably the saddle points can be identified from the eigenvalue
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analysis of the Hessian of U . However, when the dimension is high and the landscape of U is
complex, it is not trivial.

3. How large is the typical transition time from a metastable state? Answer of this question helps
understanding the stability of a metastable state, which corresponds to the key time scale issue.

We will present some recent methodologies in the literature to answer these questions.

2 WKB Analysis

Consider the SDEs

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t ) · dWt, Xε
0 = y ∈ Rd. (3)

We assume that the standard Lipschitz and uniform ellipticity conditions on b and σ hold and denote
the transition pdf by pε(x, t|y). We are interested in the behavior of its solution for small ε. Let X0

t

be the solution of the deterministic ODEs

Ẋ0
t = b(X0

t ), X0
0 = y.

It can be shown that (cf. [3] for reference) for any fixed T > 0 and δ > 0, we have the law of large
numbers for the processes Xε

lim
ε→0

P
(

max
t∈[0,T ]

|Xε
t −X0

t | > δ

)
= 0.

This implies that for any open set B ⊂ Rd, we have

lim
ε→0

ˆ
B

pε(x, t|y)dx =

1, if X0
t ∈ B,

0, otherwise,

or equivalently limε→0 pε(x, t|y) = δ(x−X0
t ).

Inspired by the form of probability distribution function of Brownian dynamics, we insert the
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Wentzel-Kramers-Brillouin (WKB) ansatz

pε(x, t|y) ∼ exp
(
−ε−1φ(x, t|y)

)
into the forward Kolmogorov equation associated with the SDEs (3)

∂pε
∂t

= −∇ · (b(x)pε) + ε

2∇
2 : (A(x)pε). (4)

where A(x) = σσT (x) = (aij(x)) is the diffusion matrix. Collecting the leading order terms gives a
time-dependent Hamilton-Jacobi equation

∂φ

∂t
= H(x,∇xφ), (5)

where H is the Hamiltonian with the form

H(x,p) = bT (x)p+ 1
2p

TA(x)p =
∑
i

bipi + 1
2
∑
ij

aijpipj. (6)

We will call p the momentum variable for its formal correspondence in classical mechanics [1,4]. The
solution of this equation can be characterized by the variational principle:

φ(x, t|y) = inf
ϕ

{
It[ϕ] : ϕ is absolutely continuous in [0, t] and ϕ(0) = y,ϕ(t) = x

}
, (7)

where It is the action functional
It[ϕ] =

ˆ t

0
L(ϕ, ϕ̇)ds (8)

and L is called the Lagrangian
L(x, z) = 1

2‖z − b(x)‖2
A (9)

where the norm ‖z‖2
A := zTA−1z. The Lagrangian L is the dual of the Hamiltonian H in the sense

of Legendre-Fenchel transform

L(x, z) = sup
p
{p · z −H(x,p)}.
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The readers may be referred to [1, 4] for more details about the variational derivations about the
above connections.

3 Large Deviations and Transition Paths

The WKB analysis in Chapter 2 has given us the intuition that the probability

P(Xε
t ∈ B) � exp(−ε−1C) as ε→ 0,

whereB is an open set, and the symbol�means exponential equivalence, i.e. we have limε→0 ε lnAε/Bε

= 1 if Aε � Bε. The constant C will be positive if x(t) /∈ B, and 0 otherwise. Indeed this large
deviation type estimate is rigorously true, and even hold for the SDEs (3) in path space C[0, T ].

First let us quote the large deviation result for the SDEs [2, 5].

Theorem 1. Under the condition that b(x) and σ(x) is bounded and Lipschitz, and A(x) is uni-
formly elliptic, we have that for any T > 0, the following large deviation estimates for Xε defined in
(3) hold.

(i) Upper bound. For any closed set F ⊂ (C[0, T ])d,

lim sup
ε→0

ε lnP(Xε ∈ F ) ≤ − inf
ϕ∈F

IT [ϕ].

(ii) Lower bound. For any open set G ⊂ (C[0, T ])d,

lim inf
ε→0

ε lnP(Xε ∈ G) ≥ − inf
ϕ∈G

IT [ϕ].

Here IT [ϕ] is the rate functional defined in (8)-(9) if ϕ is absolutely continuous with square integrable
ϕ̇ and satisfies ϕ(0) = y, otherwise IT [ϕ] =∞.

The proof of Theorem 1 is beyond the scope of this book. However we will give a formal derivation
by path integral approach. It is straightforward that the one-dimensional SDE

dXε
t =
√
εdWt, X0 = 0
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has solution Xε
t =
√
εWt. Using the path integral representation, the probability distribution induced

by {Xε
t } on C[0, T ] can be formally written as

dP ε[ϕ] = Z−1 exp
(
− 1

2ε

ˆ T

0
|ϕ̇(s)|2ds

)
Dϕ = Z−1 exp

(
−1
ε
IT [ϕ]

)
Dϕ (10)

Note that IT [ϕ] can be +∞ if ϕ is not absolutely continuous and square integrable or does not satisfy
the corresponding initial condition. Then let us consider the stochastic ODE

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t )dWt, X0 = y.

We are interested in the asymptotic behavior of the probability distribution P ε induced by {Xε
t }.

To understand how the action functional IT has the form (8)-(9), we can reason formally as follows.
From the SDE we have Ẇt = (

√
ε)−1σ−1(Xε

t )(Ẋε
t − b(Xε

t )). Hence

ˆ T

0
Ẇ 2
t dt = ε−1

ˆ T

0
|σ−1(Xε

t )(Ẋε
t − b(Xε

t )|2dt.

From the distribution (10) induced by
√
εWt, we obtain

dP ε[ϕ] = Z−1 exp
(
−1
ε
IT [ϕ]

)
Dϕ,

where IT [ϕ] is finite if ϕ is absolutely continuous with square integrable ϕ̇ and satisfies ϕ(0) = y, and
IT [ϕ] =∞ otherwise.

Based on Theorem 1 and Varadhan’s lemma, we have the asymptotics

−ε logP ε(B) ∼ inf
ϕ∈B

IT [ϕ], ε→ 0

for a reasonable set B in C[0, T ]. This motivates a natural characterization of the most probable
transition paths in the limit ε→ 0. Given a set of path B in C[0, T ] we can define the optimal path
in B as the path ϕ? that has the maximum probability or minimal action

inf
ϕ∈B

IT (ϕ) = IT (ϕ?),
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if this minimization problem has a solution. Such a path is called a minimum (or least) action path.
The minimum action path has special features in case that b(x) = −∇U(x) and σ(x) = I.

Assume that A and B are two neighboring metastable states of U separated by the saddle point C.
Define B = {ϕ : ϕ ∈ (C[0, T ])d,ϕ(0) = A,ϕ(T ) = B}. We are interested in the minimum action
path ϕ ∈ B and let the transition time T to be free

inf
T>0

inf
ϕ(0)=A,ϕ(T )=B

IT [ϕ]. (11)

We have the following characterizations.

Lemma 2. The minimum action path ϕ of the Brownian dynamics is comprised of two parts defined
through functions ϕ1 and ϕ2 as

ϕ̇1(s) = ∇U(ϕ1(s)), ϕ1(−∞) = A,ϕ1(∞) = C, (12)

ϕ̇2(s) = −∇U(ϕ2(s)), ϕ2(−∞) = C,ϕ2(∞) = B, (13)

and the minimum action is achieved as

I∗ = I∞(ϕ1) + I∞(ϕ2) = I∞(ϕ1) = 2(U(C)− U(A)) = 2∆UAB. (14)

Proof. It is not difficult to convince oneself that the minimum in T in (11) is attained when T =∞
since A, B and C are all critical points (see Exercise 1). To see why the minimization problem in
(11) is solved by the path defined above, we first note that

I∞[ϕ1] = 2∆UAB, I∞[ϕ2] = 0. (15)

In addition, for any path ϕ connecting A and a point C̃ on the separatrix that separates the basins
of attraction of A and B, we have

I∞[ϕ] = 1
2

ˆ
R
(ϕ̇−∇U, ϕ̇−∇U)dt+ 2

ˆ
R
ϕ̇ · ∇Udt

≥ 2
ˆ
R
ϕ̇ · ∇Udt = 2(U(C̃)− U(A)) ≥ 2∆UAB

since C is the minimum of U on the separatrix. Combing the result above we obtain the minimum
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I∗ = 2∆UAB.

Thus the most probable transition path is then the combination of ϕ1 and ϕ2: ϕ1 goes along
the steepest ascent dynamics and therefore requires the action of the noise. ϕ2 simply follows the
steepest descent dynamics and therefore does not require the help from the noise. Putting them
together we obtain the characterization for the most probable transition path of Brownian dynamics

ϕ̇(s) = ±∇U(ϕ(s)). (16)

Paths that satisfy this equation are called the minimum energy path (MEP). One can write (16) as:

(
∇U(ϕ)

)⊥
= 0, (17)

where (∇U(ϕ))⊥ denotes the component of ∇U(ϕ) normal to the curve described by ϕ.

Exercises

1. Prove that for absolutely continuous ϕ on [0, T ], the variational minimization

inf
T>0

inf
ϕ(0)=y,ϕ(T )=x

IT [ϕ] = inf
ϕ(0)=y,ϕ(∞)=x

I∞[ϕ],

where IT [ϕ] is defined in (8)-(9), and x is a stationary point, i.e. b(x) = 0.
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