
Lecture 15 Multiscale Analysis of SDEs ∗

Tiejun Li

1 Introduction

The multiscale is very common in different fields of science and engineering. Consider

the toy model

dx

dt
= f(x, y)

dy

dt
=

1

ε
(g(x)− y), ε� 1, ε > 0.

We call x the slow variable and y the fast variable.

The exact solution of y given x has the form

y(t) = e−t/εy0 + (1− e−t/ε)g(x)→ g(x)

as t → ∞. That is, y will relax to y = g(x) fast in O(ε) timescale. y = g(x) is called the

slow manifold. Finally we get the adiabatic approximation:

dx

dt
= f(x, g(x))

as ε→ 0.

A slight generalization is

dx

dt
= f(x, y)

dy

dt
=

1

ε
(g(x)− y) +

√
2

ε
Ẇ , ε� 1, ε > 0.

Given x, y(t) has an invariant distribution

y(t) ∼ N(g(x), 1) := µg(x)(y)dy

The effective dynamics is

dx

dt
= 〈f(x, y)〉µg(x) =

∫
R
f(x, y)µg(x)(y)dy

as ε→ 0.
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2 Asymptotic Analysis of SDEs

As an example of the application of PDE methods to the study of diffusion processes,

we discuss briefly some results on asymptotic analysis. For SDEs or ODEs, the presence of

a small parameter usually means that the system has some disparate time scales. Our task

is to eliminate the fast time scales in the system and derive effective equations that govern

the dynamics on the slow time scale.

Let us start with a simple example. Let Yt = y(t) be a stationary two-state Markov

jump process taking values ±α with jump rate β between these two states. With matrix

notation, the infinitesimal generator for Y has the form

A =

(
−β β

β −β

)
.

Let yε(t) = y(t/ε2) where ε is a small parameter. Consider the SDE

dxε(t)

dt
=

1

ε
yε(t), xε(0) = x. (2.1)

Let

uε(x, y, t) = E(x,y)
(
f(xε(t), yε(t))

)
,

where f is any given smooth function. Then uε satisfies the backward Kolmoogorov equation:

∂uε

∂t
=

1

ε
y
∂uε

∂x
+

1

ε2
Auε, uε(x, y, 0) = f(x, y). (2.2)

Since y can only take two values, by defining

u±(x, t) = uε(x,±α, t), f±(x, t) = f(x,±α),

we can rewrite (2.2) as

∂

∂t

(
u+
u−

)
=

1

ε

(
+α 0

0 −α

)
∂

∂x

(
u+
u−

)
+

1

ε2

(
−β β

β −β

)(
u+
u−

)
with initial condition u±(x, 0) = f±(x).

Let w = u+ + u−, we have

ε2
∂2w

∂t2
= α2∂

2w

∂x2
− 2β

∂w

∂t
, w|t=0 = f+ + f−, ∂tw|t=0 =

α

ε
∂x(f+ − f−).

Consider the case when f+ = f− = f . In this case the time derivative of w vanishes at

t = 0, hence we avoid the extra complication coming from the initial layer. Following the

standard approach in asymptotic analysis, we make the ansatz:

w = w0 + εw1 + ε2w2 + · · · .

2



To leading order, this gives:

∂w0

∂t
=
α2

2β

∂2w0

∂x2
, w0|t=0 = 2f. (2.3)

This means that to leading order, xε behaves like Brownian motion with diffusion constant

D = α/
√
β. This is not surprising since it is what the central limit theorem tells us for the

process

x̃ε(t) =
1

ε

∫ t

0

yε(s)ds as ε→ 0.

We turn now to the general case. Suppose the stochastic process Xε
t possess the backward

equation for uε(x, t) = Exf(Xε
t ) as

∂uε

∂t
=

1

ε2
L1u

ε +
1

ε
L2u

ε + L3u
ε, uε(0) = f, (2.4)

where L1,L2 and L3 are differential operators defined on some Banach space B, whose

properties will be specified below. We would like to study the asymptotic behavior of uε

when ε→ 0 for 0 ≤ t ≤ T , T <∞. This discussion follows the work of Khasminski, Kurtz,

Papanicolaou, etc [3].

We do not have to limit ourselves to SDEs. In fact, as long as the backward equation

takes the form of (2.4), the analysis that we present below applies, e.g. the homogenization

problem [4]. In particular, we can apply this procedure to the model problem studied above.

We will return to this specific example after we present the general procedure.

As a general framework we assume that the following conditions hold.

(a) L1 is an infinitesimal generator of a stationary Markov process, and the semi-group

exp(L1t) generated by L1 converges to a projection operator to the null space of L1,

which we will denote as P .

exp(L1t)→ P, t→∞.

(b) Solvability condition: PL2P = 0.

(c) Consistency condition for the initial value: Pf = f .

Note that (a) implies that P 2 = P , which is a projection operator and

Range(P ) = Null(L1), Null(P ) = Range(L1). (2.5)

But P does not need to be an orthogonal projection since generally P ∗ 6= P (see Exercise 1

for more details).
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Assume that uε can be expressed in the following form:

uε = u0 + εu1 + ε2u2 + . . . .

Substituting it into (2.4) and collecting terms of the same order in ε, we get

O(ε−2) : L1u0 = 0, (2.6)

O(ε−1) : L1u1 = −L2u0, (2.7)

O(ε0) : L1u2 = −L2u1 − L3u0 +
∂u0
∂t

, (2.8)

· · · · · ·

and u0(0) = f from the initial condition.

From (2.6) and (2.5), we obtain that u0 is in the null space of L1, which is the same as

the range of P , i.e.

Pu0 = u0. (2.9)

The consistency condition Pf = f , i.e. Pu0(x, 0) = u0(x, 0) allows us to avoid the initial

layer problem.

To solve u1 from (2.7), we assume the Fredholm alternative holds for the operator L1,

which should be rigorously proved for each concrete problem [1]. The Fredholm alternative

states that Eq. (2.7) has a solution if we have 〈g,L2u0〉 = 0 for any g ∈ Null(L∗1) ⊂ B∗. But

this is true since g ∈ Null(L∗1) implies that

g ∈ ⊥Range(L1) = ⊥Null(P ),

thus 〈g,L2u0〉 = 0 by (2.9) and solvability condition (b). Here g ∈ ⊥Range(L1) or ⊥Null(P )

means that for any h ∈ Range(L1) or Null(P ), we have 〈g, h〉 = 0.

With the solvability condition and the Fredholm alternative, we denote a solution of

(2.7) as

u1 = −L−11 L2Pu0. (2.10)

Substituting this into (2.8) and applying P on both sides, we obtain the effective equation

for the leading order u0

∂u0
∂t

= (PL3P − PL2L−11 L2P )u0 := L̄u0, u0(0) = f (2.11)

in the range of P . It is important to note that although (2.7) might have multiple solutions,

the solvability condition ensures that the choice of the solution of (2.10) does not affect the

final reduced system (2.11). One can also derive effective equations for the higher order

terms u1, u2, etc. But it is more complicated and usually not very useful.
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To see this abstract framework actually works, we use it for the simple model introduced

at the beginning of this section. We have

L1 = A, L2 =

(
+α 0

0 −α

)
∂

∂x
, L3 = 0.

Thus the projection operator P is given by

P = lim
t→∞

exp(L1t) = lim
t→∞

1

2

(
1 + e−2βt 1− e−2βt
1− e−2βt 1 + e−2βt

)
=

(
1
2

1
2

1
2

1
2

)
In the current example, we can simply pick a version of L−11 as

L−11 = −
∫ ∞
0

(exp(L1t)− P )dt = − 1

4β

(
1 −1

−1 1

)
.

It is easy to verify that the solvability condition PL2P = 0 is satisfied. The consistency

condition Pf = f gives f+ = f−, which we still denote as f . Finally the effective operator

−PL2L−11 L2P =
α2

4β

(
1 1

1 1

)
∂2

∂x2
.

Combining these we obtain the effective equation

∂

∂t
(u+0 + u−0 ) =

α2

2β

∂2

∂x2
(u+0 + u−0 ), (u+0 + u−0 )|t=0 = f+ + f− = 2f,

where u0 = (u+0 , u
−
0 ). Set w0 = u+0 + u−0 , we recover (2.3).

Other interesting applications can be found in [2, 3, 5, 6] and the references therein.

Homeworks

1. Consider a strongly continuous contraction semigroup S(t) generated by L on a Banach

space B, which means ‖S(t)‖ ≤ 1 and

‖S(t)f − f‖B → 0 as t→ 0, for all f ∈ B.

Assume S(t)→ P as t→∞, then we have

(a) P is a linear contraction on B and P 2 = P , a projection operator.

(b) S(t)P = PS(t) = P for any t ≥ 0.

(c) Range(P ) = Null(L).

(d) Null(P ) = Range(L).
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