
Lecture 17 Numerical SDEs: Advanced topics ∗

Tiejun Li

1 Implicit scheme

To overcome the stiffness issue, one can also apply implicit schemes, e.g. simplest implicit

Euler:

Xn+1 = Xn + b(Xn+1)δtn + σ(Xn)δWn

or semi-implicit scheme

Xn+1 = Xn +
[
αb(Xn) + (1− α)b(Xn+1)

]
δtn + σ(Xn)δWn

for α ∈ (0, 1).

The fully implicit scheme is also considered but not very successful although one can

transform the Ito SDE form into right-most endpoint form at first. For example

Xn+1 = Xn +
[
b(Xn+1)− c(Xn+1)

]
δtn + σ(Xn+1)δWn

where

ci(x) =
∑
jk

∂σij
∂xk

σkj

is from the transformation. If b = 0, σ(x) = x, the above scheme implies

Xn+1 =
Xn

1− δWn

It is possible that 1− δWn = 0 and indeed E|Xn+1| =∞!
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2 Extrapolation method

Talay and Tubaro proposed the following extrapolation method based on the error ex-

pansion:

e(δ) = Eg(Xδ
T )− Eg(XT ) = Cg,βδ

β + Cg,β+1δ
β+1

e

(
δ

2

)
= Eg(X

δ
2
T )− Eg(XT ) = Cg,β(

δ

2
)β + Cg,β+1(

δ

2
)β+1

2−βe(δ)− e(δ
2

) = Eg(Xδ
T )− Eg(XT ) = C̃g,β+1δ

β+1

See details in Stoch. Anal. Appl. 8 (1990), 483-509.

3 Multilevel Monte Carlo method

So far we only considered the bias error of the approximation, i.e. the error brought

by the time discretization. But a real approximation also involves Monte Carlo samplings.

Since 2008, M. Giles proposed the general framework of multilevel Monte Carlo methods for

SDEs [1], which approximates the expectation in an efficient way. This method stimulates

a lot of follow-up works in different fields [2].

We have already known that the Euler-Maruyama scheme is of weak order 1 in computing

YE = Ef(XT ) for the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

on [0, T ]. In real computations, we take the weak approximator

Yh,N =
1

N

N∑
k=1

f(X(k)
n ), n = T/h ∈ N (3.1)

with stepsize h and N independent samples, where Xn is obtained by the Euler-Maruyama

scheme. The mean square error has the bias-variance decomposition

MSE = E(YE − Yh,N)2 ≤ 2|YE − Ef(Xn)|2 + 2E|Ef(Xn)− Yh,N |2

≤ C1h
2 + C2N

−1. (3.2)

by the weak order 1 convergence and Monte Carlo estimate.

The above computation has the cost C3Nh
−1. The cost-accuracy tradeoff

min
h,N

MSE subject to a given cost K = C3Nh
−1 � 1

gives the optimal choice

N ∼ O(Kh), h ∼ O(K− 1
3 ) and MSE ∼ O(K− 2

3 ). (3.3)
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This means that if we require the accuracy MSE ∼ O(ε2), we must have h ∼ O(ε), N ∼
O(ε−2) and thus the cost K ∼ O(ε−3). The multilevel Monte Carlo method achieves the

same accuracy with cost K ∼ O(ε−2(ln ε)2), which is a typical fast algorithm.

The construction of multilevel Monte Carlo method is as follows. Define the L-level

grids with time stepsize hl = M−lT for l = 0, 1, . . . , L. Denote by Fl = f(Xl,M l) the

approximation of f(XT ) at the level l, where Xl,M l is the approximation of XT with stepsize

hl. We have

EFL =
L∑
l=0

E(Fl − Fl−1) where F−1 := 0. (3.4)

Take Nl realizations for each summand in (3.4), and define

Yl =
1

Nl

Nl∑
k=1

(
F

(k)
l − F

(k)
l−1

)
, l = 0, 1, . . . , L.

Correspondingly define the final estimator

ŶL =
L∑
l=0

Yl. (3.5)

From Monte Carlo estimate we have var(Yl) = Vl/Nl, where Vl := var(Fl − Fl−1) for l =

0, 1, . . . , L. With independent sampling in (3.5), we get

var(ŶL) =
L∑
l=0

var(Yl) =
L∑
l=0

Vl
Nl

(3.6)

with computational cost

K ∼ O

(
L∑
l=0

Nlh
−1
l

)
.

The key point of multilevel Monte Carlo is that with the decomposition (3.4), the term

Fl − Fl−1 has smaller fluctuations, i.e. smaller variance, at higher levels provided that

the realizations of Fl − Fl−1 come from two discrete approximations with different time

stepsizes but same Brownian paths. This property suggests that we can use less Monte

Carlo simulations for higher levels, i.e. finer grids, but more simulations for lower levels, i.e.

coarser grids. This cost-accuracy tradeoff is the origin of the efficiency of multilevel Monte

Carlo method.

Now let us consider the minimization

min
Nl

var(ŶL) =
L∑
l=0

Vl
Nl

subject to the cost K =
L∑
l=0

Nlh
−1
l � 1.
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This is generally a very difficult problem so we relax Nl to be continuous. Upon introducing

Lagrange multiplier we get the minimizer

Nl = λ
√
Vlhl, where λ = K

(
L∑
l=0

√
Vlh

−1
l

)−1

. (3.7)

From the strong and weak convergence result of Euler-Maruyama Scheme, we have

|E(Fl)− YE| = O(hl), E|XT −Xl,M l |2 = O(hl).

By assuming the Lipschitz continuity of f , we obtain

var(Fl − f(XT )) ≤ E|f(Xl,M l)− f(XT )|2 ≤ CE|XT −Xl,M l |2 = O(hl)

and thus

Vl = var(Fl − Fl−1) ≤ 2var(Fl − f(XT )) + 2var(Fl−1 − f(XT )) = O(hl)

since hl−1 = Mhl and M ∼ O(1).

For a given tolerance ε� 1, take

Nl = O(ε−2Lhl), (3.8)

according to the optimal choice (3.7), we get the variance estimate

var(ŶL) = O(ε2). (3.9)

from (3.6). Further take L = ln ε−1/ lnM , we have

hL = M−L = O(ε).

So the bias error

|EFL − YE| = O(hL) = O(ε). (3.10)

Combing (3.9) and (3.10), we obtain the overall mean square error

MSE = E(YE − ŶL)2 = O(ε2)

and the computational complexity

K =
L∑
l=0

Nlh
−1
l = O(ε−2L2) = O

(
ε−2(ln ε)2)

)
.

The optimal choice of M can be made by minimizing the prefactor in the estimate of the

computational cost [1].
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