
Lecture 13 SDE and Ito’s formula ∗

Tiejun Li

1 White noise

In physics literature, the physicists usually use the stochastic differential equations

(SDEs) like

Ẋt = b(Xt, t) + σ(Xt, t)Ẇt, X|t=0 = X0, (1.1)

where Ẇt is called the temporal Gaussian white noise, which is the formal derivative of the

Brownian motion Wt with respect to time. Its formal definition is that it is a Gaussian

process with mean and covariance functions as

m(t) = E(Ẇt) = 0, K(s, t) = E(ẆsẆt) = δ(t− s).

It can be formally understood as

m(t) =
d

dt
E(Wt) = 0, K(s, t) =

∂2

∂s∂t
E(WsWt) =

∂2

∂s∂t
(s ∧ t) = δ(t− s).

The name white noise comes from its power spectral density (PSD) S(ω) defined as the

Fourier transform of its autocorrelation function R(t) = E(Ẇ0Ẇt) = δ(t), thus S(ω) =

(̂δ(t)) = 1 which corresponds to a flat constant at all frequencies ω. We call it white as an

analogy to the frequency spectrum of white light. If the frequency spectrum of the noise is

not flat, it is called colored noise. From practical point view, the white noise is not physical

since it requires infinite energy

E =

∫ ∞
−∞

S(ω)dω =∞.

From the regularity theory of the Brownian motion, the function Ẇ is meaningless since

Wt has less than half order smoothness. In fact, it is not a traditional function but a

distribution [1]. However, the rigorous mathematical foundation of the white noise calculus

can be also established [2]. But we will only introduce the Itô’s classical way to establish

the well-posedness of the stochastic differential equations.
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Mathematically, the SDEs (1.1) are often denoted as

dXt = b(Xt, t)dt+ σ(Xt, t)dWt, (1.2)

to avoid the ambiguity of the white noise, where Wt is the standard Wiener process. Xt may

be viewed as a process induced by Wt. If there is no term σ(Xt, t)dWt, it is a deterministic

ODEs. The effect of b(Xt, t) is to drive the mean position of the system, while the effect of

σ(Xt, t)dWt is to diffuse around the mean position which we will see later. To make sense

of (1.2), one natural way is to define Xt through its integral form

Xt = X0 +

∫ t

0

b(Xs, s)ds+

∫ t

0

σ(Xs, s)dWs. (1.3)

We will show the first mathematical issue is how to define the integral
∫ t

0
σ(Xs, s)dWs

involving Brownian motion.

2 Itô integral

First suppose Xt is continuous with respect to time t. For a fixed sample ω, we borrow

the idea for defining the Riemann-Stieljes integral to make the definition∫ t

0

σ(Xs, s)dWs = lim
|∆|→0

∑
j

σ(Xj, t
∗
j)
(
Wtj+1

−Wtj

)
,

where ∆ is a subdivision of [0, t], Xj is the function value Xt∗j
and t∗j is chosen from the

interval [tj, tj+1]. One critical issue about the above definition is that it depends on the

choice of t∗j when we are handling Wt, which has unbounded variation in any interval almost

surely.

To have a sense on this, consider the Riemann-Stieltjes integral to
∫ b
a
f(t)dg(t), where f

and g are all assumed continuous. So∫ b

a

f(t)dg(t) ≈
∑
j

fj

(
g(tj+1)− g(tj)

)
. (2.1)

If one takes another value for fj in [tj, tj+1] under the same subdivision, then∫ b

a

f(t)dg(t) ≈
∑
j

f̃j

(
g(tj+1)− g(tj)

)
.

If g(t) has bounded total variation, we subtract the right hand side of the above two defi-

nitions and obtain∣∣∣∑
j

(fj − f̃j)
(
g(tj+1)− g(tj)

)∣∣∣ ≤ max
j
|fj − f̃j|

∑
j

∣∣∣g(tj+1)− g(tj)
∣∣∣

≤ max
j
|fj − f̃j|V (g; [a, b])→ 0
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as |∆| → 0 by the uniform continuity of f on [a, b]. Thus we get a well-defined definition

which is independent of the choice of reference point in the approximation. If g(t) = Wt(ω),

let us see what will happen in this case.

Example 2.1. Different choices for the stochastic integral
∫ T

0
WtdWt.

Choice 1: Leftmost endpoint integral.∫ T

0

WtdWt ≈
∑
j

Wtj(Wtj+1
−Wtj) := ILN .

Choice 2: Rightmost endpoint integral.∫ T

0

WtdWt ≈
∑
j

Wtj+1
(Wtj+1

−Wtj) := IRN .

Choice 3: Midpoint integral.∫ T

0

WtdWt ≈
∑
j

Wt
j+1

2

(Wtj+1
−Wtj) := IMN .

Without looking into the exact pathwise result for the three choices, we have the following

identities from the statistical average sense.

E(ILN) =
∑
j

EWtjE(Wtj+1
−Wtj) = 0,

E(IRN) =
∑
j

[
E(Wtj+1

−Wtj)
2 + EWtjE(Wtj+1

−Wtj)
]

=
∑
j

∆tj = T,

E(IMN ) = E
[∑

j

Wt
j+1

2

(Wtj+1
−Wt

j+1
2

) +
∑
j

Wt
j+1

2

(Wt
j+1

2

−Wtj)
]

=
∑
j

E(Wt
j+1

2

−Wtj)
2 =

∑
j

(tj+ 1
2
− tj) =

T

2
.

The reason is that the Brownian motion has unbounded variations for any finite interval.

The example above also shows that we should take special attention to stochastic integrals.

One important remark on the definition of stochastic integrals like (2.1) is that it can

not be defined for arbitrary continuous functions f , otherwise the function g must have

bounded variations on compacts [9]. To overcome this issue, one rescue is to restrict the

integrands to be a special class of functions, the adapted processes. That is the key point

of the well-known Itô integral to be introduced below.

The first stochastic integral which is studied rigorously in the history is Itô’s leftmost

endpoint integral [4], which is named Itô integral from then on. It turns out that the differ-

ent choices of the reference point correspond to different consistent definitions of stochastic
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integrals under suitable conditions, but they can be connected by some simple transforma-

tion rules (See [9], Theorem 30 in Chapter 5). To understand Itô’s definition for stochastic

integral, we take the filtration generated by standard Wiener process as FWt (we also assume

all of the sets of measure zero has been contained in FWt ). The construction of Itô integral

takes the leftmost endpoint approximation∫ T

0

f(t, ω)dWt ≈
∑
j

ftj(Wtj+1
−Wtj).

Mathematically, to understand Itô integral, we need the concept simple function which takes

the form

f(t, ω) =
n∑
j=1

ej(ω)χ[tj ,tj+1)(t), (2.2)

where ej(ω) is FWtj -measurable and χ[tj ,tj+1)(t) is the indicator function on [tj, tj+1). It is

natural to define ∫ T

0

f(t, ω)dWt =
∑
j

ej(ω)(Wtj+1
−Wtj) (2.3)

for this choice of simple functions.

Lemma 2.2. For any S ≤ T , the stochastic integral for the simple functions satisfies

(1) E
(∫ T

S

f(t, ω)dWt

)
= 0, (2.4)

(2) (Itô isometry) E
(∫ T

S

f(t, ω)dWt

)2

= E
(∫ T

S

f 2(t, ω)dt

)
. (2.5)

Proof. The first property is straightforward by the independence between ∆Wj := Wtj+1
−

Wtj and ej(ω) and ∆Wj ∼ N(0, tj+1 − tj). For the second property we have

E
(∫ T

S

f(t, ω)dWt

)2

= E
(∑

j

ej∆Wj

)2

= E
(∑

j,k

ejek∆Wj∆Wk

)
= E

(∑
j

e2
j∆W

2
j + 2

∑
j<k

ejek∆Wj∆Wk

)
=
∑
j

Ee2
j · E∆W 2

j +
∑
j<k

E(fjfk∆Wj) · E(∆Wk)

=
∑
j

Ee2
j∆tj = E

(∫ T

S

f 2(t, ω)dt

)
.

where the last third identity holds because of the independence between ∆Wk and ejek∆Wj

for j < k.

Now for f(t, ω) which belongs to the class of functions V [S, T ] defined as
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(i) f is B([0,∞))×F -measurable as a function from (t, ω) to R,

(ii) f(t, ω) is FWt -adapted,

(iii) f ∈ L2
PL

2
t , that is E

(∫ T
S
f 2(t, ω)dt

)
<∞,

we have the approximation property through simple functions φn(t, ω)

E
(∫ T

S

(f(t, ω)− φn(t, ω))2dt

)
→ 0, (2.6)

i.e. φn → f in L2
PL

2
t (c.f. [5, 8]). With this setup, we can define the Itô integral as∫ T

S

f(t, ω)dWt = lim
n→∞

∫ T

S

φn(t, ω)dWt in L2
P . (2.7)

From (2.5),
∫ T
S
φn(t, ω)dWt is in L2

P for any simple function φn(t, ω). Furthermore we have

E
(∫ T

S

φndWt −
∫ T

S

φmdWt

)2

= E
(∫ T

S

(φn − φm)2dt

)
. (2.8)

From (2.6), the approximation sequence {φn} is a Cauchy sequence in L2
P (Ω;L2

t [S, T ]). This

implies {
∫ T
S
φndWt} is also a Cauchy sequence in L2

P . From the completeness of L2
P (Ω), it

has a unique limit and we define it as ∫ T

S

f(t, ω)dWt

in the definition (2.7). The independence on the choice of the approximating sequence {φn}
is left as an exercise.

As a natural extension of Lemma 2.2, we have

Theorem 2.3. For f ∈ V [S, T ], the Itô integral satisfies

(1) E
(∫ T

S

f(t, ω)dWt

)
= 0, (2.9)

(2) (Itô isometry) E
(∫ T

S

f(t, ω)dWt

)2

= E
(∫ T

S

f 2(t, ω)dt

)
. (2.10)

Proof. Based on Lemma 2.2, we have∣∣∣∣E(∫ T

S

f(t, ω)dWt

)∣∣∣∣ =

∣∣∣∣E(∫ T

S

f(t, ω)dWt −
∫ T

S

φn(t, ω)dWt

)∣∣∣∣
≤ E

(∫ T

S

f(t, ω)dWt −
∫ T

S

φn(t, ω)dWt

)2

→ 0
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by Hölder’s inequality and the definition (2.7).

It is a standard result that if Xn → X in a Hilbert space H, then |Xn| → |X| and thus

|Xn|2 → |X|2, where | · | is the correspoding norm in Hilbert space H. So we have

E
(∫ T

S

φn(t, ω)dWt

)2

→ E
(∫ T

S

f(t, ω)dWt

)2

in L2
P (Ω)

and

E
(∫ T

S

φ2
n(t, ω)dt

)
→ E

(∫ T

S

f 2(t, ω)dt

)
in L2

P (Ω;L2
t [S, T ])

From the Itô isometry for simple functions, we obtain (2.10) immediately.

The following properties can be proved for the Itô integral easily.

Proposition 2.4. For f, g ∈ V [S, T ] and U ∈ [S, T ], we have

(i)
∫ T
S
fdWt =

∫ U
S
fdWt +

∫ T
U
fdWt a.s..

(ii)
∫ T
S

(f + cg)dWt =
∫ T
S
fdWt + c

∫ T
S
gdWt (c is a constant) a.s..

(iii)
∫ T
S
fdWt is FWt -measurable.

Furthermore, we have the regularity of the path of the process defined via Itô integral,

whose proof may be referred to [5, 8, 10].

Lemma 2.5. For f ∈ V [0, T ], Xt :=
∫ t

0
f(s, ω)dWs has continuous trajectories in the almost

sure sense.

We remark that the class of functions V [0, T ] to make sense of the Itô integral and keep

the above properties can be weakened by replacing the conditions (ii) and (iii) in V [0, T ] as

(ii)’ f is Ft-adapted, where {Ft} is a filtration such that Wt is a Ft-martingale.

(iii)’
∫ T

0
f 2(s, ω)ds <∞ almost surely.

The readers may be referred to [5, 8, 10] for more details. With this weaker setup, one can

define the multi-dimensional Ito integral∫ T

0

σ(t, ω) · dWt,

where Wt is an m-dimensional Wiener process, and σ ∈ Rn×m is FW
t -adapted. To compute

their expectation, We have the similar property as the Ito isometry

E
(∫ T

S

σ(t, ω)dW j
t

)
= 0, E

(∫ T

S

σ(t, ω)dW j
t

)2

= E
(∫ T

S

σ2(t, ω)dt

)
, ∀j.
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and especially the cross product expectation

E
(∫ T

S

σ1(t, ω)dW i
t ·
∫ T

S

σ2(t, ω)dW j
t

)
= 0, ∀i 6= j,

E
(∫ T

S

σ1(t, ω)dW j
t

∫ T

S

σ2(t, ω)dW j
t

)
= E

(∫ T

S

σ1(t, ω)σ2(t, ω)dt

)
, ∀j.

Example 2.6. With Itô integral we have∫ t

0

WsdWs =
W 2
t

2
− t

2
. (2.11)

Proof. From the definition of Itô integral∫ t

0

WsdWs ≈
∑
j

Wtj(Wtj+1
−Wtj) =

∑
j

2WtjWtj+1
− 2W 2

tj

2

=
∑
j

W 2
tj+1
−W 2

tj

2
−
∑
j

W 2
tj+1
− 2Wtj+1

Wtj +W 2
tj

2

=
W 2
t

2
− 1

2

∑
j

(Wtj+1
−Wtj)

2 → W 2
t

2
− t

2
,

where the last limit is due to the fact 〈W,W 〉t = t in Proposition ??.

3 Itô’s formula

Let’s take the differential form of the identity (2.11), then we have

dW 2
t = 2WtdWt + dt.

Note that it is different from the traditional Newton-Leibnitz calculus which suggests dW 2
t =

2WtdWt with chain rule. This exactly manifests the specialty of Itô calculus to be introduced

in this section. To further understand the previous specific example, we consider a more

general situation.

Proposition 3.1. For any bounded and continuous function f(t, ω) in t,

∑
j

f(t∗j , ω)(Wtj+1
−Wtj)

2 →
∫ t

0

f(s, ω)ds, for any t∗j ∈ [tj, tj+1]

in probability when the subdivision size goes to zero.
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Proof. Straightforward calculation shows

E

(∑
j

f(tj)∆W
2
tj
−
∑
j

f(tj)∆tj

)2

= E

(∑
j,k

f(tj)f(tk)(∆W
2
tj
−∆tj)(∆W

2
tk
−∆tk)

)

= E

(∑
j

f 2(tj) · E
(

(∆W 2
tj
−∆tj)

2|Ftj
))

= 2
∑
j

Ef 2(tj)∆t
2
j → 0.

At the same time, we have

|
∑
j

(f(t∗j)− f(tj))∆W
2
tj
| ≤ sup

j
|f(t∗j)− f(tj)| ·

∑
j

∆W 2
tj
.

The first term on the right hand side goes to zero almost surely because of the uniform

continuity of f on [0, t], and the second term converges to the quadratic variation of Wt in

probability. Combining the results above leads to the desired conclusion.

It is exactly this reason that we simply denoted it as

dW 2
t = dt

for calculations. The Itô’s formula to be introduced below gives this a rigorous foundation.

Now let us consider the Itô process defined as

Xt = X0 +

∫ t

0

b(s, ω)ds+

∫ t

0

σ(s, ω)dWs,

which is usually denoted as

dXt = b(t, ω)dt+ σ(t, ω)dWt, Xt|t=0 = X0 (3.1)

for functions

σ ∈ W [0, T ], b is Ft-adapted and

∫ T

0

|b(t, ω)|dt <∞ a.s.

We have the following important result, whose rigorous proof can be referred to [3, 5].

Theorem 3.2 (1D Itô’s formula). If Xt is an Itô process as in Equation (3.1), Yt = f(Xt)

where f is a twice differentiable function. Then Yt is also an Itô process and

dYt = f ′(Xt)dXt +
1

2
f ′′(Xt)(dXt)

2,

where the rule of simplification is dt2 = 0, dtdWt = dWtdt = 0 and (dWt)
2 = dt, i.e.

(dXt)
2 = (bdt+ σdWt)

2 = b2dt2 + 2bσdtdWt + σ2(dWt)
2 = σ2dt.

Thus finally

dYt =

(
b(t, ω)f ′(Xt) +

1

2
σ2(t, ω)f ′′(Xt)

)
dt+ σ(t, ω)f ′(Xt)dWt.
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Sketch of Proof. We will only consider the situation that f, f ′ and f ′′ are bounded and

continuous here. At first, if b and σ are simple functions, we have

Yt − Y0 =
∑
j

(f(Xtj+1
)− f(Xtj)) =

∑
j

(
f ′(Xtj)∆Xtj +

1

2
f ′′(Xtj)∆X

2
tj

+Rj

)
,

where ∆Xtj = Xtj+1
−Xtj and Rj = o(|∆Xtj |2). Without loss of generality we assume the

discontinuity of the step functions are embedded in the current subdivision grid points. We

obtain ∑
j

f ′(Xtj)∆Xtj =
∑
j

f ′(Xtj)b(tj)∆tj +
∑
j

f ′(Xtj)σ(tj)∆Wtj

→
∫ t

0

b(s)f ′(Xs)ds+

∫ t

0

σ(s)f ′(Xs)dWs

and ∑
j

f ′′(Xtj)∆X
2
tj

=
∑
j

f ′′(Xtj)
(
b2(tj)∆t

2
j + 2b(tj)σ(tj)∆tj∆Wtj + σ2(tj)∆W

2
tj

)
.

We have

|
∑
j

f ′′(Xtj)b
2(tj)∆t

2
j | ≤ K

∑
j

∆t2j ≤ KT sup
j

∆tj → 0,

|
∑
j

f ′′(Xtj)b(tj)σ(tj)∆tj∆Wtj | ≤ K
∑
j

|∆tj∆Wtj | ≤ KT sup
j
|∆Wtj | → 0

as the subdivision size goes to zero, where K is the bound of b, σ and f ′′. From Proposition

3.1, we get ∑
j

f ′′(Xtj)σ
2(tj)∆W

2
tj
→
∫ t

0

σ2(s)f ′′(Xs)ds in L2
P .

The general situation can be done by taking approximation through simple functions.

The above result can be generalized to multidimensional case as

Theorem 3.3 (Multidimensional Ito formula). If dXt = b(t, ω)dt + σ(t, ω) · dWt, where

Xt ∈ Rn, σ ∈ Rn×m, W ∈ Rm. Define Yt = f(Xt), where f is a twice differentiable

function. Then

dYt = ∇f(Xt) · dXt +
1

2
(dXt)

T · ∇2f(Xt) · (dXt),

where the rule of simplification is dt2 = 0, dtdW i
t = dW i

t dt = dW i
t dW

j
t = 0 (i 6= j),

(dW i
t )

2 = dt. That is

(dXt)
T · ∇2f(Xt) · (dXt) =

∑
l,k,i,j

dW l
tσil∂

2
ijfσjkdW

k
t

=
∑
k,i,j

σikσjk∂
2
ijfdt = σσT : ∇2fdt,
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where A : B =
∑

ij aijbji is the twice contraction for second order tensors. Finally

dYt = (b · ∇f +
1

2
σσT : ∇2f)dt+∇f · σ · dWt.

Example 3.4. Integration by part∫ t

0

sdWs = tWt −
∫ t

0

Wsds. (3.2)

Proof. Define f(x, y) = xy, Xt = t, Yt = Wt, then from multidimensional Itô’s formula

df(Xt, Yt) = XtdYt + YtdXt + dXtdYt.

With the rule dtdWt = 0, we obtain d(tWt) = tdWt +Wtdt and the result follows.

Example 3.5. Iterated Itô integrals∫ t

0

dWt1

∫ t1

0

dWt2 . . .

∫ tn−1

0

dWtn =
1

n!
t
n
2 hn

(
Wt√
t

)
, (3.3)

where hn(x) is the n-th order Hermite polynomial

hn(x) = (−1)ne
1
2
x2 d

n

dxn

(
e−

1
2
x2
)
.

Proof. It is easy to verify that ∫ t

0

WsdWs =
t

2!
h2

(
Wt√
t

)
,

where h2(x) = x2− 1 is the second order Hermite polynomial. In the same fashion, we have∫ t

0

(∫ s

0

WudWu

)
dWs =

1

2

∫ t

0

(W 2
s − s)dWs.

Using Itô’s formula, we have ∫ t

0

W 2
s dWs =

1

3
W 3
t −

∫ t

0

Wsds.

Hence, using (3.2) we obtain∫ t

0

(∫ s

0

WudWu)dWs =
1

6
W 3
t −

1

2
tWt =

1

3!
t
3
2h3

(
Wt√
t

)
,

where h3(x) = x3− 3x is the third order Hermite polynomial. The general case is left as an

exercise.
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4 SDE

4.1 Wellposed-ness

With the help of Itô’s integral, we can establish the classical well-posedness result for

the stochastic differential equations

dXt = b(Xt, t)dt+ σ(Xt, t) · dWt, (4.1)

through Picard-type iterations.

Theorem 4.1. Let X ∈ Rn,W ∈ Rm. Suppose the coefficients b ∈ Rn,σ ∈ Rn×m satisfy

global Lipschitz and linear growth conditions as

|b(x, t)− b(y, t)|+ |σ(x, t)− σ(y, t)| ≤ K|x− y|, (4.2)

|b(x, t)|2 + |σ(x, t)|2 ≤ K(1 + |x|2) (4.3)

for any x,y ∈ Rn, t ∈ [0, T ], where K is a positive constant and | · | means the Frobenius

norm, that is

|b|2 :=
∑
i

b2
i , |σ|2 :=

∑
i,j

σ2
ij.

Assume the initial value X0 = ξ is a random variable which is independent of FW
∞ and

satisfies E|ξ|2 <∞. Then (4.1) has a unique t-continuous solution Xt ∈ V [0, T ].

The proof can be referred to [5].

4.2 Diffusion process

The SDEs driven by Wiener processes is the typical Markov process which is also called

the diffusion processes in stochastic analysis. Mathematically, the diffusion process is de-

fined for a Markov process {Xt} with continuous trajectory and its transition density

p(x, t|y, s) (t ≥ s) satisfies the following conditions for any ε > 0:

lim
t→s

1

t− s

∫
|x−y|<ε

(x− y)p(x, t|y, s)dx = b(y, s) +O(ε), (4.4)

lim
t→s

1

t− s

∫
|x−y|<ε

(x− y)(x− y)Tp(x, t|y, s)dx = a(y, s) +O(ε), (4.5)

where b(y, s) is called the drift of the considered diffusion process and a(y, s) is called

the diffusion matrix at time s and position y. The conditions (4.4) and (4.5) can also be

represented as

lim
t→s

1

t− s
Ey,s(Xt − y) = b(y, s), (4.6)

11



lim
t→s

1

t− s
Ey,s(Xt − y)(Xt − y) = a(y, s). (4.7)

It is easy to find that the diffusion matrix a = σσT in (4.1).

4.3 Simple SDEs

Example 4.2 (Ornstein-Uhlenbeck process).

dXt = −γXtdt+ σdWt. (4.8)

The Ornstein-Uhlenbeck process (OU process) has fundamental importance in statistical

physics since it serves as the simplest model for many complex diffusion dynamics.

Solution. The equation above is equivalent to

dXt + γXtdt = σdWt. (4.9)

By applying Ito’s formula to eγtXt, we get

d(eγtXt) = γeγtXtdt+ eγtdXt.

Integrating from 0 to t we have

eγtXt −X0 =

∫ t

0

(γeγsXsds+ eγsdXs).

Timing eγt to both sides of (4.9) and taking integration, we get

eγtXt −X0 =

∫ t

0

σeγsdWs.

Thus the solution

Xt = e−γtX0 + σ

∫ t

0

e−γ(t−s)dWs.

If we define Qt :=
∫ t

0
e−γ(t−s)dWs, then it is not difficult to know that Qt is a Gaussion

process with

EQt = 0, EQ2
t =

∫ t

0

Ee−2γ(t−s)ds =
1

2γ
(1− e−2γt).

From this result we can observe that Xt is also a Gaussian process if X0 is Gaussian, and

the limit behavior of Xt is

Xt
d−→ N

(
0,
σ2

2γ

)
, (t→ +∞).

This equation is called the SDE with additive noise since the coefficient of dWt term is just

a constant.
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Example 4.3 (Geometric Brownian motion).

dNt = rNtdt+ αNtdWt, r, α > 0. (4.10)

This model has strong background in mathematical finance, in which Nt represents the asset

price, r is the interest rate and α is called the volatility.

Solution. Divide Nt to both sides we have dNt/Nt = rdt+αdWt. In deterministic calculus

1/NtdNt = d(logNt), so we apply Ito’s formula to logNt, then

d(logNt) =
1

Nt

dNt −
1

2N2
t

(dNt)
2

=
1

Nt

dNt −
1

2N2
t

α2N2
t dt

=
1

Nt

dNt −
α2

2
dt.

Substitute the equation of dNt we get

d(logNt) = (r − α2

2
)dt+ αdWt.

Integrate from 0 to t to both sides

logNt − logN0 = (r − α2

2
)t+ αWt,

Nt = N0 exp

{
(r − α2

2
)t+ αWt

}
.

This equation is called the SDE with multiplicative noise since the coefficient of dWt term

depends on Nt.

4.4 Brownian motion: revisited

Example 4.4 (Langevin equation). Mathematically a mesoscopic particle obeys the follow-

ing well-known Langevin equation by Newton’s Second Law{
dXt = Vtdt,

mdVt =
(
− γVt −∇V (Xt)

)
dt+

√
2σdWt,

where γ is frictional coefficient, V (X) is external potential, Wt is standard Wiener process,

and σ is the strength of fluctuating force.

This example is used to show that the strength of fluctuating force must be related

to the frictional coefficient in a physical setup. In principle the fluctuating force must be

independent of external potential. In the case that the external force is zero, we have

mdVt = −γVtdt+
√

2σdWt.
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This is exactly an Ornstein-Uhlenbeck process for Vt. In the limit t→∞, we have

〈1
2
mV 2〉 =

3σ

2γ
.

From equilibrium thermodynamics, the average kinetic energy must obey the rule

〈1
2
mV 2〉 =

3kBT

2
.

Thus we obtain the well-known fluctuation-dissipation relation:

σ = kBTγ.

It can be proved that in this case the diffusion coefficient

D := lim
t→∞

〈(Xt −X0)2〉
6t

=
kBT

γ
(4.11)

which is called Einstein’s relation.

For more general forms of fluctuation-dissipation relation, the readers may be referred

to [7].

Example 4.5 (Brownian dynamics). In the high γ case, the velocity Vt will always stay at

an equilibrium Gaussian distribution, which means formally we can take dVt = 0. Then the

Langevin equation is approximated by

dXt = −1

γ
∇V (Xt)dt+

√
2kBT

γ
dWt,

which is called Brownian dynamics or Smoluchowski approximation. A mathematically rig-

orous derivation of Brownian dynamics from Langevin equations may be referred to [6] and

the references therein.

5 Stratonovich integral

Another very important definition of the stochastic integral is the so-called Stratonovich

(or Fisk-Stratonovich) integral which is defined as the limit of the following approximation∫ T

0

f(t, ω) ◦ dWt ≈
∑
j

f(tj) + f(tj+1)

2
(Wtj+1

−Wtj).

Note that we use the special notation ◦ for stochastic integral to distinguish the Ito and

Stratonovich integrals. As one can follow the similar way as in the definition for the Ito
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integral, we can also establish a consistent stochastic calculus based on the Stratonovich

integral. It turns out that If Xt satisfies the SDE

dXt = b(Xt, t)dt+ σ(Xt, t) ◦ dWt (5.1)

in the Stratonovich sense, then Xt satisfies the modified Ito SDE

dXt =
(
b(Xt, t) +

1

2
∂xσσ(Xt, t)

)
dt+ σ(Xt, t)dWt. (5.2)

To understand this, we assume the solution Xt of the Stratonovich SDE satisfies

dXt = α(Xt, t)dt+ β(Xt, t)dWt. (5.3)

Then by the definition of the Stratonovich integral∫ t

0

σ(Xs, s) ◦ dWs ≈
∑
j

1

2
(σ(Xtj , tj) + σ(Xtj+1

, tj+1))(Wtj+1
−Wtj).

From (5.3) we have

Xtj+1
= Xtj + α(Xtj , tj)∆tj + β(Xtj , tj)∆Wtj + h.o.t.,

and thus∑
j

σ(Xtj+1
, tj+1)∆Wtj =

∑
j

(
σ(Xtj , tj)∆Wtj + ∂tσ(Xtj , tj)∆tj∆Wtj

+ ∂xσα(Xtj , tj)∆tj∆Wtj + ∂xσβ(Xtj , tj)∆W
2
tj

+ h.o.t.
)

→
∫ t

0

σ(Xs, s)dWs +

∫ t

0

∂xσβ(Xs, s)ds

from the fact dW 2
t = dt. Summarizing the above results we obtain that Xt satisfies

dXt =
(
b(Xt, t) +

1

2
∂xσβ(Xt, t)

)
dt+ σ(Xt, t)dWt. (5.4)

To make (5.3) and (5.3) consistent, we take

β(x, t) = σ(x, t), α(x, t) = b(x, t) +
1

2
∂xσσ(x, t).

In the high dimensions, one can derive similarly

dXt =
(
b(Xt, t) +

1

2
∇xσ : σ(Xt, t)

)
dt+ σ(Xt, t) · dWt (5.5)

where (∇xσ : σ)i :=
∑

jk ∂kσijσkj in the index notation if X satisfies

dXt = b(Xt, t)dt+ σ(Xt, t) ◦ dWt. (5.6)
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With this connection, we can check that the Stratonovich integral satisfies the Newton-

Leibnitz chain rule

df(Xt) = f ′(Xt) ◦ dXt = f ′(Xt)b(Xt, t)dt+ f ′(Xt)σ(Xt, t) ◦ dWt

and its corresponding multi-dimensional form is

df(Xt) = ∇f(Xt) ◦ dXt = ∇f(Xt) · b(Xt, t)dt+∇f(Xt) · σ(Xt, t) ◦ dWt.

We finally remark here that the Ito isometry and mean zero property no longer hold for the

Stratonovich integral, which can be easily observed from (5.2).

One reason that the Stratonovich interpretation is important is due to the following

Wong-Zakai type theorem. The motivation is to intuitively understand the SDE (1.2) in the

pathwise sense, i.e. for each fixed realization ω of Wt, we want to solve Xt by treating W·(ω)

like a deterministic forcing term. But the issue is that the ordinary differential equation

can not be solved in the classical case because of the rough property of the path of the

Brownian motion. Since the C1 functions on [0, T ] are dense in C[0, T ], so if we regularize

the Brownian motion path from the following way

Wm → W in L∞[0, T ] norm as m→∞,

where Wm ∈ C1[0, T ], the differential equation

dXm
t = b(Xm

t , t)dt+ σ(Xm
t , t)dW

m
t

can be solved in the classical sense. We denote the solution as Xm
t . Then it can be proved

that

Xm → X in L∞[0, T ] norm, m→∞, a.s.

and the limit Xt is precisely the Stratonovich solution of the SDE (see [11, 12] for more

details).

Now a rationale for why Stratonovich interpretation is useful in physics may be as fol-

lows. In realistic situations, the noise term Ẇ in (1.1) is usually not “white” but a smoothed

colored noise since the idealistic white noise must be supplied with infinite energy from ex-

ternal environment. This smoothed colored noise exactly corresponds to some regularization

of the white noise, which falls into the regime in the Wong-Zakai type smoothing argument.

Homeworks

1. Prove that with midpoint approximation∫ t

0

WsdWs ≈
∑
j

Wt
j+1

2

(Wtj+1
−Wtj)→

W 2
t

2
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and the rightmost approximation∫ t

0

WsdWs ≈
∑
j

Wtj+1
(Wtj+1

−Wtj)→
W 2
t

2
+
t

2

in L2
P (Ω) as |∆| → 0.

2. Prove the relation (3.3) through the following steps:

(a) Prove that the Hermite polynomials satisfy

∞∑
n=0

un

n!
hn(x) = exp

(
ux− u2

2

)
and

∞∑
n=0

un

n!
Hn(x, a) = exp

(
ux− au2

2

)
,

where Hn(x, a) = an/2hn(x/
√
a) (a > 0) and Hn(x, 0) = xn.

(b) Prove that(
1

2

∂2

∂x2
+

∂

∂a

)
Hn(x, a) = 0 and

∂

∂x
Hn(x, a) = nHn−1(x, a).

(c) Prove the relation (3.3) through Itô’s formula.

3. Solving the SDE

(a) dXt = −Xt/(1 + t)dt+ 1/(1 + t)dWt with initial X0 = 0.

(b) dXt = −Xtdt+ e−tdWt with initial X0.

4. For the multidimensional OU process

dXt = AXtdt+ σ · dWt,

derive the relations that the stationary mean and covariance matrix should satisfy.

5. Prove that if one takes the right-most endpoint integral (backward stochastic integral)

like ∫ T

0

f(t, ω) ∗ dWt ≈
∑
j

f(tj+1)(Wtj+1
−Wtj).

Then the SDE defined as

dXt = b(Xt, t)dt+ σ(Xt, t) ∗ dWt (5.7)

can be related to the Ito SDE as

dXt =
(
b(Xt, t) + ∂xσσ(Xt, t)

)
dt+ σ(Xt, t)dWt.
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