
Lecture 11 Stochastic Process and Brownian Motion ∗

Tiejun Li

1 Axiomatic Construction of Stochastic Process

Example 1.1. Consider the independent fair coin tossing process described by the sequence

X = (X1, X2, . . . , Xn, . . .) ∈ {0, 1}N,

where Xn = 0 or 1 if the nth output is ‘Tail’ (T) or ‘Head’ (H), respectively. Different trials

are assumed to be independent and P(Xn = 0) = P(Xn = 1) = 1/2.

Notice that for this process the number of all possible outputs is uncountable. One can

not define the probability of an event through summation of the probability of each atom

as the case of discrete random variables. In fact, if we define Ω = {H,T}N, the probability

of an atom ω = (ω1, ω2, . . . , ωn, . . .) ∈ {H,T}N is 0, i.e.

P(X1(ω) = k1, X2(ω) = k2, . . . , Xn(ω) = kn, . . .) = lim
n→∞

(1

2

)n
= 0, kj ∈ {0, 1}, j = 1, 2, . . .

and events like {Xn(ω) = 1} involve uncountably many atoms.

To set up a probability space (Ω,F ,P) for this process, it is natural to take Ω = {H,T}N

and the σ-algebra F as the smallest σ-algebra containing all events of the form:

C =
{
ω|ω ∈ Ω, (ωj)j=1:m ∈ Cm, Cm ⊂ {H,T}m

}
(1.1)

for any m ∈ N, i.e. the sets whose finite time projections are specified. These sets are called

cylinder sets, which is meaningful from the experimental observation point of view. The

probability measure P of an event of the form (1.1) is defined to be

P(C) =
1

2m
|C|.

Denote C the set of cylinder sets. One can easily show that C is an algebra which is only

closed under finite union/intersection operation. To extend the probability measure P from

C to F , we need to verify that P is countably additive on C.
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Lemma 1.2. If An ↓ A and An ∈ C is non-empty, then A is non-empty.

With Lemma 1.2, we obtain if An ↓ ∅, then P(An) ↓ 0, which is equivalent to the

countable additivity. From the extension theorem of measures, this probability measure P
is well-defined on F .

Proof of Lemma 1.2. Denote

An = {ω|(ω1, ω2, . . . , ωmn) ∈ Cn}

where ωk ∈ {H,T}. From the non-empty condition of An, there exists ωn ∈ An. Consider

ω1
1 ω2

1 ω3
1 · · ·

ω1
2 ω2

2 ω3
2 · · ·

ω1
3 ω2

3 ω3
3 · · ·

...
...

...
. . . ,

there exist infinite superscripts n1
k such that ω

n1
k

1 = H or T always in the 1st row. Similar

argument can be applied to the continued rows by an subsequence trick. Take the diagonal

indices and define nk := nkk and uk := ωnkk for k = 1, 2, . . .. Denote u = (u1, u2, . . .).

For any r, if k ≥ r, one has ωnkj = uj for 1 ≤ j ≤ r. For any n, if k ≥ n, then nk ≥ n,

and ωnk ∈ Ank ⊂ An. So (ωnk1 , ωnk2 , . . . , ωnkmn) ∈ Cn. Take k ≥ mn. We get ωnkj = uj for

1 ≤ j ≤ mn, i.e. u ∈ An for any n.

In summary, u ∈ A and we are done.

It is straightforward to check that for any cylinder set F ∈ {0, 1}N, the probability

P(X(ω) ∈ F ) coincides with the definition we made in Example 1.1 for independent coin

tossing process. We remark that the probability space (Ω,F ,P) is not uniquely defined.

Another natural way is to take Ω = {0, 1}N, F the smallest σ-algebra containing all cylinder

sets in Ω, and similar probability measure P on F . With this choice we have

Xn(ω) = ωn, ω ∈ Ω = {0, 1}N

which is called a coordinate process in the sense that Xn(ω) is just the nth coordinate of ω.

In general, a stochastic process is a parameterized random variables {Xt}t∈T defined on

a probability space (Ω,F ,P) taking values in R, the parameter set T can be N, [0,+∞) or

some finite interval. For any fixed t ∈ T, we have a random variable

Xt : Ω→ R ω � Xt(ω).

For any fixed ω ∈ Ω, we have a real-valued measurable function on T

X·(ω) : T→ R t� Xt(ω),
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which is called a trajectory or sample path of X. As a bi-variate function, a stochastic

process can also be viewed as a measurable function from Ω×T to R

(ω, t) � X(ω, t) := Xt(ω),

with the σ-algebra in Ω×T been chosen as F × T , and T is the Borel σ-algebra on T.

The largest probability space that one can take is the infinite product space Ω = RT,

i.e. Ω is the space of all real-valued functions on T. F can be taken as the infinite product

σ-algebra BT, which is the smallest σ-algebra containing all cylinder sets

C = {ω ∈ RT|(ω(t1), ω(t2), . . . , ω(tk)) ∈ A}, A ∈ Bk, ti ∈ T for i = 1, . . . , k,

where B,Bk is the Borel σ-algebra on R and Rk, respectively. When T = N and Xt only

takes values in {0, 1}, we are back to the setting of Example 1.1.

Finite dimensional distributions are particularly interesting for a stochastic process, since

they are the ones we can really observe. Let

µt1,...,tk(F1 × F2 × · · · × Fk) = P[Xt1 ∈ F1, . . . , Xtk ∈ Fk]

for all F1, F2, . . . , Fk ∈ B. µt1,...,tk is called the finite dimensional distributions of {Xt}t∈T at

the time slice (t1, . . . , tk), where ti ∈ T for i = 1, 2, . . . , k.

The following theorem of Kolmogorov states that an abstract probability space (Ω,F ,P)

can be established for a stochastic process X by knowing its all finite dimensional distribu-

tions with suitable consistency conditions.

Theorem 1.3 (Kolmogorov’s extension theorem). Assume that a family of finite dimen-

sional distributions {µt1,...,tk} satisfy the following two consistency conditions for arbitrary

sets of t1, t2, . . . , tk ∈ T, k ∈ N:

(i) For any permutation σ of {1, 2, . . . , k},

µtσ(1),...,tσ(k)(F1 × F2 × · · · × Fk) = µt1,...,tk(Fσ−1(1) × Fσ−1(2) × · · · × Fσ−1(k)).

(ii) For any m ∈ N,

µt1,...,tk(F1 × F2 × · · · × Fk) = µt1,...,tk,tk+1,...,tk+m(F1 × · · · × Fk × R× · · · × R).

Then there exists a probability space (Ω,F ,P) and a stochastic process {Xt}t∈T such that

µt1,...,tk(F1 × F2 × · · · × Fm) = P(Xt1 ∈ F1, Xt2 ∈ F2, . . . , Xtm ∈ Fm)

for any t1, t2, . . . , tm ∈ T, m ∈ N.

The proof the Kolmogorov extension theorem may be referred to [4, 5]. The advantage

of the Kolmogorov theorem is that it is very general. The problem is that the probability

space Ω is too big, so big that we can not say anything about features of paths on this space.

Therefore the real challenge is to define probability measures on smaller spaces.
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2 Filtration

The more we observe about a stochastic process, the more information we have at our

disposal. This gives rise to a family of increasingly larger σ-algebras, which we call the filtra-

tion associated with the stochastic process. The filtration is the main conceptual difference

between the random variables and and stochastic processes.

Definition 2.1 (Filtration). Given the probability space (Ω,F ,P), the filtration is a nonde-

creasing family of σ-algebras {Ft}t≥0 such that Fs ⊂ Ft ⊂ F for any 0 ≤ s < t.

A stochastic process {Xt} is called Ft-adapted if Xt is Ft-measurable, i.e. X−1t (B) ∈ Ft,
for any t ≥ 0 and B ∈ B. Given a stochastic process {Xt}, one can define the filtration

generated by this process by: FXt = σ(Xs, s ≤ t), which is the smallest σ-algebra such that

the {Xs}s≤t are measurable. FXt is the smallest filtration such that the process {Xt} is

adapted. The filtration FXt can be thought of as the information supplied by the process

up to time t. Taking again the independent coin tossing as the example and Ω = {H,T}N.

In this case, T = N and the filtration is {FXn }n≥0. When n = 0, the σ-algebra is trivial

FX0 = {∅,Ω},

which means that we do not know any information about the output of the coin tossing.

When n = 1, the σ-algebra is

FX1 = {∅,Ω, {H}, {T}}

since the first output gives either Head or Tail and we only know this information about

the first output. When n = 2, we have

FX2 = {∅,Ω, {H·}, {T ·}, {·H}, {·T}, {HH}, {HT}, {TH}, {TT}, . . .},

which contains all possible combinations of the outputs for the first two rounds of experi-

ments. Sets like

{HH · · ·T} or {HH · · ·H}

are not contained in FX0 , FX1 or FX2 since the first two outputs can not tell such information.

It is obvious that FXn becomes finer and finer as n increases.

3 Gaussian Process

In order to study Wiener process or Brownian motion (Brownian motion is also called

Wiener process because its first rigorous mathematical foundation was established by N.

Wiener in 1923 [11]), we will first introduce the Gaussian process on the continuous state

space R.
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Definition 3.1. A Gaussian process means that all of the finite dimensional distributions

µt1,...,tk are Gaussian for any t1, t2, . . . , tk ∈ T .

We know that any Gaussian vector X = (X1, X2, . . . , Xn)T is completely determined by

its first moment m = EX and second moment K = E(X −m)(X −m)T , where mi = EXi

and Kij = E(Xi −mi)(Xj −mj)
T . The corresponding pdf is

p(x) =
1

Z
e−

1
2
(x−m)TK−1(x−m)

if K is invertible, where Z is a normalization constant. For the general case, we need to

represent X via the characteristic function

Eeiξ·X = eiξ·m−
1
2
ξTKξ.

From the above interpretation, a Gaussian process is uniquely determined by the mean

function m(t) = EXt and the covariance function K(s, t) = E(Xs −m(s))(Xt −m(t)). We

have K(s, t) = K(t, s) by definition. If we consider the finite dimensional distribution at

the time slice (t1, t2, . . . , tn), then m(t) and K(s, t) give the first moment

M =
(
m(t1),m(t2), . . . ,m(tn)

)
and second moment

K =


K(t1, t1) K(t1, t2) · · · K(t1, tn)

K(t2, t1) K(t2, t2) · · · K(t2, tn)
...

...
. . .

...

K(tn, t1) K(tn, t2) · · · K(tn, tn)

 .
It is straightforward to observe that for any x = (x1, x2, . . . , xn) we have∑

i,j

K(ti, tj)xixj =
∑
i,j

E(Xti −m(ti))(Xtj −m(tj))xixj

= E
(∑

i

(Xti −m(ti))xi

)2
≥ 0.

Thus we may view m(t) as an infinite dimensional vector, and K(s, t) as an infinite di-

mensional positive semi-definite matrix. From the characteristic function point of view,

the Gaussian process X can be explained as a Gaussian random element in an infinite

dimensional space L2(T ) since we have at least formally in the current stage

Eei(ξ,X) = ei(ξ,m)− 1
2
(ξ,Kξ),

where (ξ,m) =
∫ b
a
ξ(t)m(t)dt is the inner-product in L2(T ), and (Kξ)(t) =

∫ b
a
K(t, s)ξ(s)ds

is the action of the kernel function K on the function ξ. Based on the Kolmogorov’s
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extension theorem, we can construct a Gaussian process X from a given mean function

m(t) and covariance function K(s, t).

The covariance function K is obviously symmetric, i.e. K(t, s) = K(s, t), by definition.

In addition, we have the semi-positivity of K in the following sense.

Theorem 3.2. Assume the Gaussian process (Xt)t∈[0,T ] possesses the regularity X ∈ L2
ωL

2
t

in the sense that X ∈ L2(Ω;L2[0, T ]), i.e.

E
∫ T

0

X2
t dt <∞.

We have m ∈ L2
t and the operator

Kf(s) :=

∫ T

0

K(s, t)f(t)dt, s ∈ [0, T ]

is a positive compact operator on L2
t .

Proof. The mean function m ∈ L2
t is obvious since∫ T

0

m2(t)dt =

∫ T

0

(EXt)
2dt ≤

∫ T

0

EX2
t dt <∞.

In addition, we have∫ T

0

∫ T

0

K2(s, t)dsdt =

∫ T

0

∫ T

0

(
E(Xt −m(t))(Xs −m(s))

)2
dsdt

≤
∫ T

0

∫ T

0

E(Xt −m(t))2E(Xs −m(s))2dsdt ≤
(∫ T

0

EX2
t dt
)2
,

which means K ∈ L2([0, T ]× [0, T ]). Thus K is a compact operator on L2
t (c.f. [6]).

It is easy to find that the adjoint operator of K is

K∗f(s) :=

∫ T

0

K(t, s)f(t)dt, s ∈ [0, T ].

From the symmetry of K(s, t), we know that K is self-adjoint.

To show the positivity of K, we have

(Kf, f) =

∫ T

0

∫ T

0

E(Xt −m(t))(Xs −m(s))f(t)f(s)dsdt

= E
(∫ T

0

(Xt −m(t))f(t)dt
)2
≥ 0.

The proof is completed.
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The following important closure property for a collection of Gaussian random variables

will be used frequently in this chapter.

Theorem 3.3. Suppose X1, X2, . . . are a sequence of Gaussian random variables and Xn

converges to X in probability. Then X is also Gaussian.

Proof. Let us denote

mk = EXk, σ2
k = varXk.

Then by dominated convergence theorem we have

eiξmk−
1
2
σ2
kξ

2

= EeiξXk → EeiξX for any ξ ∈ R.

From the existence of the limit of the above equation, there are numbers m and σ2 such

that

m = limmk, σ2 = limσ2
k

and EeiξX = eiξm−
1
2
σ2ξ2 . The proof is completed.

4 Wiener Process

The rigorous mathematical definition of the Brownian motion, or the Wiener Process, is

defined as follows.

Definition 4.1. (Brownian motion) The one dimensional Brownian motion Wt is defined

as

1. It is a Gaussian process.

2. It has mean function m(t) = 0, and covariance function K(s, t) = s ∧ t = min(s, t).

3. With probability one, t 7→ Wt is continuous.

The m-dimensional Brownian motion Wt has the form Wt = (W 1
t ,W

2
t , . . . ,W

m
t ), where

each component W j
t is a Brownian motion and they are independent each other. The Brow-

nian motion (m-dimensional Brownian motion) is usually denoted as Wt or Bt (Wt or

Bt).

It is not difficult to prove that the above three conditions are equivalent to the following

definition.

1′. For any t0 < t1 < · · · < tn, the random variables Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are

independent.
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2′. For any s, t ≥ 0, Ws+t −Ws ∼ N(0, t).

3. With probability one, t 7→ Wt is continuous.

One straightforward implication of the second equivalent definition is that we can imme-

diately write down the joint probability distribution density for (Wt1 ,Wt2 , . . . ,Wtn) (t1 <

t2 < · · · < tn) as

pn(w1, w2, . . . , wn) =
1√
2πt1

e
− w2

1
2t1

1√
2π(t2 − t1)

e
− (w2−w1)

2

2(t2−t1) · · · 1√
2π(tn − tn−1)

e
− (wn−wn−1)

2

2(tn−tn−1) .

More compactly

pn(w1, w2, . . . , wn) =
1

Zn
exp(−In(w)),

where

In(w) =
1

2

n∑
j=1

(wj − wj−1
tj − tj−1

)2
(tj − tj−1), t0 := 0, w0 := 0,

Zn = (2π)
n
2

[
t1(t2 − t1) · · · (tn − tn−1)

] 1
2 .

This also explicitly shows the stationarity and Markovianity of the Brownian motion with

transition kernel function p(x, t|y, s)

P(Wt ∈ B|Ws = y) =

∫
B

1√
2π(t− s)

e−
(x−y)2
2(t−s) dx =

∫
B

p(x, t|y, s)dx

where s < t and B is a Borel set on R. The transition probability density p(x, t|y, s) satisfies

the stationarity p(x, t|y, s) = p(x− y, t− s|0, 0) and p(x, t|0, 0) satisfies the PDE

∂p

∂t
=

1

2

∂2p

∂x2
, p(x, 0|0, 0) = δ(x).

Now mathematically the first question is “Is there a process with these properties?”.

Though from Kolmogorov’s extension theorem we can construct a probability space on

(R[0,∞),R[0,∞)) by the consistency of the finite dimensional distributions, it is not straight-

forward that the condition 3 in Definition 4.1 must be satisfied automatically. In fact, if we

define the set

C = {ω|ω ∈ RT , ω is continuous on T}, (4.1)

we will show that C is not a measurable set in RT ! To understand this, one needs the

following theorem

Theorem 4.2. For any family of real functions Xt : Ω→ R, t ∈ T .

(i) If A ∈ σ{Xt, t ∈ T} and ω ∈ A, and if Xt(ω
′) = Xt(ω) for all t ∈ T , then we have

ω′ ∈ A.
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(ii) If A ∈ σ{Xt, t ∈ T}, then A ∈ σ{Xt, t ∈ S} for some countable subset S ⊂ T .

The proof of this theorem may be referred to [2]. To apply the above theorem, we take

T = [0,∞) and S a countable dense subset of T . We will have C ∈ RS if C ∈ RT by the

second statement. From the first statement, C should contain all functions which have the

same value with some f ∈ C on S. This should contain lots of discontinuous functions.

This contradicts with that C is the set of continuous functions.

To handle this issue, we need the concept “modification” of a process.

Definition 4.3 (Modification). Two processes X and X ′ defined on the same probability

space are said to be modifications of each other if for each t,

Xt = X ′t a.s.

They are called indistinguishable if for almost all ω

Xt(ω) = X ′t(ω) for every t.

It is clear that if X and X ′ are modifications of each other, they have the same finite

dimensional distribution. If X and X ′ are modifications of each other and are almost surely

continuous, they are indistinguishable.

Theorem 4.4 (Kolmogorov’s continuity theorem). A real-valued process X for which there

exist three strictly positive constants γ, β, C such that

E(|Xt −Xs|α) ≤ C|t− s|1+β

for any s, t ≥ 0, then there is a modification X̃ of X which is almost-surely continuous.

For Brownian motion, one has α = 4, β = 1, thus the condition of the above theorem is

satisfied and the continuity of Brownian motion can be ensured in the sense of modifications.

5 Homeworks

• HW1. Let {ξn}n∈N be a sequence of i.i.d. random variables taking values +1 with

probability 2
3

and −1 with probability 1
3
. Consider the (asymmetric) random walk on

Z defined as

Sn =
n∑
j=1

ξj.

We wish to construct a stochastic process Zt defined for t ∈ [0, 1] by appropriate

rescaling of Sn (similar to what we did to construct the Wiener process). That is we
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want to show that there exists α ∈ R such that the sequence of piecewise constant

functions (here bzc denotes the biggest integer smaller or equal to z ∈ R)

ZN
t =

SbNtc
Nα

converge as N → +∞ to some nontrivial Zt. What is the α you need to chose for this

to be the case? And what is Zt?

• HW2. Let Wt be a Wiener process. Compute

(a) EW 4
t .

(b) E(Wt −Ws +Wz)
2 (t, s, z ∈ [0, 1]).

• HW3. Let X ∈ Rn be a n-dimensional Gaussian R.V. with mean zero and covariance

matrix A (i.e. EXiXj = Aij). Suppose B is another strictly positive definite symmetric

n× n matrix. Compute

E exp(−1

2
XTBX).

• HW4. Prove the equivalence of the two definitions for Brownian motion.
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