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Gibbs sampling is not always efficient

I For the numerical computation of the Ising model, a
commonly used approach is the Gibbs sampling to flip a single
site at each step.

I However, the correlation length tends to infinity when the
temperature T → Tc. In this case, the single-flip proposal is
usually rejected due to the low temperature.

I Swendsen and Wang introduced a powerful clustering
algorithm which together with an implementation
modification by Wolff, almost completely eliminates the
critical slowing down. 1

1R.H. Swendsen and J.S. Wang, Phys. Rev. Lett. 58 (1987), 86-88.
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Ising Lattice Configuration at Different Temperature

Figure: Ising lattice configuration at different temperature. Leftmost:
T � Tc, Middle: T = Tc, Rightmost: T � Tc



Swendsen-Wang algorithm

I Below explanation to Swendsen-Wang algorithm is from data
augmentation viewpoint by Higdon. 2

I Only consider the case h = 0. We have the Gibbs distribution
for Ising model

π(x) ∝ exp
{
βJ

∑
<i,j>

xixj

}
∝

∏
<i,j>

exp
{
βJ(1 + xixj)

}
.

I Note that 1 + xixj is equal to either 0 or 2. Hence if we
introduce an auxiliary variable u on each edge such that

π(x,u) ∝
∏
<i,j>

I
[
0 ≤ uij ≤ exp{βJ(1 + xixj)}

]
.

Then the marginal distribution of x is the Gibbs distribution.

2D.M. Higdon, J. Amer. Stat. Assoc. 93 (1998), 585-595.
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Swendsen-Wang algorithm: Conditional sampling

Recall that

π(x,u) ∝
∏
<i,j>

I
[
0 ≤ uij ≤ exp{βJ(1 + xixj)}

]
.

Under this joint distribution:

I The conditional distribution u|x is a product of uniform
distributions with ranges depending on two neighboring spins.

I Conversely, the conditional distribution x|u is: if uij > 1,
then xi = xj ; otherwise there is no constraint on xi’s.

I Thus u affects x only through the event I[uij > 1].Based on
the configuration u, we cluster those lattice sites according to
whether they have a mutual bond (uij > 1).
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Swendsen-Wang algorithm: Configurations



Swendsen-Wang Algorithm

Swendsen-Wang Algorithm (Alternating conditional sampling):

I Step 1: Sample u|x. For a given configuration of the spins,
form the bond variable by giving every edge of the lattice
< i, j >, between two “like spins” (xi = xj) a bond value of 1
with probability 1− exp(−2βJ), and a bond value of 0
otherwise.

I Step 2: Sample x|u. Conditional on the bond variable u,
update the spin variable x by drawing from π(x|u), which is
uniform on all compatible spin configurations; that is, clusters
are produced by connecting neighboring sites with bond value
1. Each cluster is flipped with probability 0.5.

Further extension to Wolff’s modification can be referred to 3.

3U. Wolff, Phys. Rev. Lett. 62 (1989), 361-364.
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Simulated tempering

Problem: To sample the distribution

p(x) ∝ exp
(
− U(x)

T

)
or compute the ensemble average with the type

〈H〉 =

∫
H(x)

1

Z
exp

(
− U(x)

T

)
dx,

I one usually apply the Metropolis-Hastings MCMC algorithm.

I But when the temperature T is very low, that is, we have
many high peaks in the pdf p(x), which may cause the
acceptance probability small thus decrease the mixing.
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Tempering idea

Strategy: In order to let a MCMC scheme move more freely in the
sate space, Marinari and Parasi proposed a data augmentation
strategy to increase the mixing, which is called simulated
tempering. 4
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Low

temperature

−8 −6 −4 −2 0 2 4 6 8 10

High temperature

Figure: Sketch of the Gibbs distribution at low and high temperature.

4E. Marinari and G. Parisi, Europhys. Lett. 19 (1992), 451-458.



Simulated tempering
I Algorithmically, their basic idea is to extend the state space
x ∈ X into (x, i) ∈ X × I and perform conditional sampling
in this extended space.

I Physically, to approach the low temperature case, they
consider the pdf at the heated temperature, which can give
high acceptance ratio for traversing the state space X , and
then jump in the different ensembles.

I Mathematically, choose

I = {1, 2, . . . , L}, T1 < T2 < . . . < TL

and T1 = T , TL = Thigh. Then we ask the stationary
distribution in the extended space as

πst(x, i) ∝ πi exp
(
− U(x)

Ti

)
,

where πi is called pseudopriors which is set up a priori.
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Simulated tempering

From this form, we know the conditional distribution

f(x|i) ∝ exp
(
− U(x)

Ti

)
which is the standard Gibbs distribution. The marginal distribution

f(i) ∝
∫
πi exp

(
− U(x)

Ti

)
dx = πiZi.

To make the transition in different ensembles more uniformly, the
best choice for the parameter πi ∝ 1/Zi. But in the computations,
it is not feasible and only updated with the time.



Algorithm: Simulated tempering

To do the conditional sampling in the extended space, we list a
mixture-type transition kernel here.
Mixture type of the simulated tempering:

I Step 1. With the current state (xn, in) = (x, i), we draw
u ∼ U [0, 1].

I Step 2. If u < α0, perform state updates. We let in+1 = i
and let xn+1 be drawn from a MCMC transition Ti(x, xn+1)
that leaves f(x|i) invariant (this is also Metropolis-Hastings
strategy).

I Step 3. If u > α0, perform temperature switching. We let
xn+1 = x and propose a level transtion i→ j, from a
transition function α(i, j), and let in+1 = j with probability

min
(

1,
πst(x, j)α(j, i)

πst(x, i)α(i, j)

)
.

Otherwise let in+1 = i.



Algorithm: Simulated tempering

To do the conditional sampling in the extended space, we list a
mixture-type transition kernel here.
Mixture type of the simulated tempering:

I Step 1. With the current state (xn, in) = (x, i), we draw
u ∼ U [0, 1].

I Step 2. If u < α0, perform state updates. We let in+1 = i
and let xn+1 be drawn from a MCMC transition Ti(x, xn+1)
that leaves f(x|i) invariant (this is also Metropolis-Hastings
strategy).

I Step 3. If u > α0, perform temperature switching. We let
xn+1 = x and propose a level transtion i→ j, from a
transition function α(i, j), and let in+1 = j with probability

min
(

1,
πst(x, j)α(j, i)

πst(x, i)α(i, j)

)
.

Otherwise let in+1 = i.



Algorithm: Simulated tempering

To do the conditional sampling in the extended space, we list a
mixture-type transition kernel here.
Mixture type of the simulated tempering:

I Step 1. With the current state (xn, in) = (x, i), we draw
u ∼ U [0, 1].

I Step 2. If u < α0, perform state updates. We let in+1 = i
and let xn+1 be drawn from a MCMC transition Ti(x, xn+1)
that leaves f(x|i) invariant (this is also Metropolis-Hastings
strategy).

I Step 3. If u > α0, perform temperature switching. We let
xn+1 = x and propose a level transtion i→ j, from a
transition function α(i, j), and let in+1 = j with probability

min
(

1,
πst(x, j)α(j, i)

πst(x, i)α(i, j)

)
.

Otherwise let in+1 = i.



Strategy — Connection with Random Walk

I A commonly used strategy for α(i, j) is the random walk
proposal with reflecting barrier, that is,

α(i, i± 1) = 1/2, i = 2, . . . , L− 1

and α(1, 2) = α(L,L− 1) = 1.

I The idea of simulated tempering is further generalized by Liu
and Sabatti into the so called “simulated sintering” scheme.
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Parallel tempering

The parallel tempering is first proposed by Geyer in 1991. 5

I Instead of augmenting X into X × I, Geyer suggested directly
dealing with the product space X1 × · · · × XL, where the Xi
are identical copies of X , suppose

(x1, . . . , xL) ∈ X1 × · · · × XL,

I we define the stationary distribution

πst(x1, . . . , xL) =
∏
i∈I

πi(xi)

where πi(xi) = 1/Zi exp(−U(xi)/Ti) the Gibbs distribution
at T = Ti.

I The parallel tempering is run on all of the Xi.

5C.J. Geyer, Markov chain Monte Carlo maximum likelihood, in E.
Keramigas (ed.), Interface Foundation, Fairfax, 156-163, 1991.
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Algorithm: Parallel tempering

An “index swapping” operation is conducted in place of the
temperature transition. The algorithm is defined as follows:

I Step 1: Let the current state be (x
(n)
1 , . . . , x

(n)
L ). Draw

u ∼ U [0, 1].

I Step 2: If u ≤ α0, we conduct the parallel step. That is, we

update each x
(n)
i to x

(n+1)
i via their respective MCMCM

scheme.

I Step 3: If u > α0, we conduct the swapping step. That is, we
randomly choose a neighboring pair, say i and i+ 1, and

propose “swapping” x
(n)
i and x

(n)
i+1. Accept this swap with

probability

min

{
1,
πi(x

(n)
i+1)πi+1(x

(n)
i )

πi(x
(n)
i )πi+1(x

(n)
i+1)

}
.
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Algorithm: Parallel tempering
Choose a proper number of temperature levels

I In computations, T1 < T2 < . . . < TL, and it is very
important to choose a proper number of temperature levels.

I A rough guideline is to choose Ti such that( 1

Ti
− 1

Ti+1

)
|∆U | ≈ − log pa,

where |∆U | is the typical energy difference (e.g., the mean
energy change under the target distribution) and pa is the
lower bound for the acceptance rate. (The temperature
difference can not be too large.)

I The rationale behind the choice of temperature Ti is to make
the acceptance probability is relatively large since

πi(x
(n)
i+1)πi+1(x

(n)
i )

πi(x
(n)
i )πi+1(x

(n)
i+1)

∼ exp

(
−
(

1

Ti
− 1

Ti+1

)
∆U

)
.
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Drawbacks of standard MC

Kinetic Monte Carlo is also called BKL algorithm. 6

It is widely used in simulating crystal growth.

I Drawbacks of standard MC:
At the metastable state σm, suppose the proposal state is σ′,
then

r = e−β∆H , ∆H = H(σ′)−H(σm).

If r � 1, rejection occurred very often! The sample sequence
will be like

σm, σm, . . . , σm, σnew . . . .

That’s very inefficient!

I KMC aims to setup a rejection free algorithm.

6A.B. Bortz, M.H. Kalos and J.L. Lebowitz, J. Comp. Phys. 17(1975),
10-18.
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Kinetic Monte Carlo: Ten-fold way
I Generation of new state:

Consider 2D Ising model: (ten-fold way in BKL algorithm)
For a given state σ, there are 10 kinds of flips (single flip
proposal):

Class Spin
Number of spins up
(nearest neighbors)

1 ↑ 4
2 ↑ 3
3 ↑ 2
4 ↑ 1
5 ↑ 0
6 ↓ 4
7 ↓ 3
8 ↓ 2
9 ↓ 1
10 ↓ 0

Table 1: Classification of spins in the 10-fold way



Kinetic Monte Carlo

There are 10 kinds of flipping probability

Pj = min(1, exp(−β∆Hj)), j = 1, . . . , 10.

Suppose there are nj sites at the jth class j = 1, . . . , 10. Define

Qi =
i∑

j=1

njPj , i = 1, . . . , 10,

BKL Algorithm:

I Step 1. Generate R ∼ U [0, Q10);

I Step 2. Identify Qi−1 ≤ R < Qi, (Q0 = 0);

I Step 3. Randomly choose one site to flip in class i.
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Kinetic Monte Carlo: Waiting time

Time increment between two flips.

I Suppose on the average there is one attempted flip per lattice
site in time τ (physical time), (# of sites = N = M2) then

Q10

N
: Probability of flipping for a spin on a given attempt.

I Note that the above procedure has homogenized the
successful flipping probability to each site. We have the
successful flipping probability for one site in unit time

Q10

N

/
τ

N
=
Q10

τ
: Flip one spin unit time.
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Kinetic Monte Carlo: Waiting time

I Define P (∆t) is the probability that no flip occurs before time
∆t has elapsed since the previous flip, then

P (∆t)− P (∆t+ dt) = P (∆t) · Q10

τ
dt,

so one has

P (∆t) = exp(−Q10∆t

τ
), P (0) = 1.

i.e. the time increment

∆t = − τ

Q10
lnR, R ∼ U [0, 1], 0 ≤ R ≤ 1.



Mathematical Basis of KMC

I Essence of KMC: A continuous time Q-process with Q-matrix

qij = 1QijAij

in KMC, where 1Qij is defined as 1Qij = 1 if Qij > 0 and
1Qij = 0 otherwise. Aij is the acceptance probability P
shown above.

I If one applies KMC to compute the ensemble average, the
time increment occurs as a weight for different states.

I KMC can simulate the non-equilibrium process such as crystal
growth, but the connection between the process and the real
physics is not clear!
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