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Necessity

I The standard MC for computing I(f) =
∫ 1

0 f(x)dx is

IN (f) =
1

N

N∑
i=1

f(Xi), Xi ∼ i.i.d. U [0, 1].

I The mean square error

E|eN |2 = E(IN (f)− I(f))2 =
1

N
Var (f),

where

Var(f) =

∫ 1

0
(f(x)− I(f))2dx.

I If Var(f)� 1, the accuracy will be very poor!

I Consider the example f(x) = 1/ε1[0,ε](x) for x ∈ [0, 1]. We
have Ef(X) = 1, while Var(f) ∼ 1/ε, where X ∼ U [0, 1].
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Variance reduction

I We see from 1
NVar (f) that there are two factors that affect

the error of Monte Carlo method: the sampling size N and
the variance of f . N is clearly limited by the computational
cost we are willing to afford. But the variance can be
manipulated in order to reduce the size of the error.

I The essence of variance reduction: to utilize some prior
information about the integrand and try to extract the part
which can be efficiently and accurately estimated through
other ways.
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Importance Sampling

I Consider for example the numerical evaluation of∫ 10
−10 e

− 1
2
x2dx. Straightforward application of Monte Carlo

method would give∫ 10

−10
e−

1
2
x2dx ≈ 20

N

N∑
i=1

e−
1
2
X2

i ,

where {Xi}Ni=1 are i.i.d. random variables that are uniformly
distributed on [−10, 10].

I However notice that the integrand e−
1
2
x2 is an extremely

non-uniform function, whose value is very small (and hence
will have little contribution to the integral) everywhere except
a small neighborhood of x = 0, most of the samples will be
wasted in the region where the integrand is small.



Importance Sampling

I Consider for example the numerical evaluation of∫ 10
−10 e

− 1
2
x2dx. Straightforward application of Monte Carlo

method would give∫ 10

−10
e−

1
2
x2dx ≈ 20

N

N∑
i=1

e−
1
2
X2

i ,

where {Xi}Ni=1 are i.i.d. random variables that are uniformly
distributed on [−10, 10].

I However notice that the integrand e−
1
2
x2 is an extremely

non-uniform function, whose value is very small (and hence
will have little contribution to the integral) everywhere except
a small neighborhood of x = 0, most of the samples will be
wasted in the region where the integrand is small.



Importance Sampling
In other words, the uniform distribution ignores the importance of
the integrand and thus the numerical quadrature is inefficient. The
importance sampling embodies this idea by utilizing special
distributions, which is schematically shown in Figure.

p(x) 

f(x) 

0 1 a b 

Figure: Schematics of importance sampling



Importance Sampling
Now if instead the {Xi}’s are distributed, differentially, say with
density function p(x), then we can use the fact that∫

f(x)dx =

∫
f(x)

p(x)
p(x)dx = E

(f
p

(X)
)

= lim
N→∞

1

N

N∑
i=1

f(Xi)

p(Xi)

and approximate
∫
f(x)dx by

IpN (f) =
1

N

N∑
i=1

f(Xi)

p(Xi)
,

where X ∼ p(x). The error can be estimated in the same way as
before, and we get

E(I(f)− IpN (f))2 =
1

N
Var
(f
p

)
=

1

N

(∫ f2(x)

p(x)
dx− I2(f)

)
.



Importance Sampling

The Cauchy-Schwartz inequality shows(∫ f(x)√
p(x)

√
p(x)dx

)2
≤
∫
f2

p
dx

∫
p(x)dx

and the equality holds iff p(x) = cf(x). Now we get an ideal
importance function

p(x) = Z−1f(x)

if f is nonnegative, where Z is the normalization factor
Z =

∫
f(x)dx. In this case

I(f) = IpN (f).

This is not a miracle since all the necessary work has gone into
computing Z which was our original task.



Importance Sampling

I Though the perfect importance function is a mission
impossible, it shows the direction toward which the sampled
distribution should be constructed.

I For the example discussed earlier, we can pick p(x) that

behaves as e−
1
2
x2 and at the same time can be sampled with

a reasonable cost.
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Importance Sampling
Now let us discuss a slight variant of above direct implementation
of the importance sampling (Book: Monte Carlo Strategies in
Scientific Computing). Suppose we are interested in evaluating

I =

∫
f(x)π(x)dx,

we can proceed as the following steps.

I Draw X1, . . . , Xn i.i.d. from a distribution g(x).

I Calculate the importance weight

wj =
π(Xj)

g(Xj)
, for j = 1, 2, . . . , n.

I Approximate the expectation by

Î =

∑n
i=1wif(Xi)∑n

i=1wi
.
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Importance Sampling

Note that the expectation of Î is not I, but we have by SLLN

Ĩ =
1

n

n∑
i=1

wif(Xi)→ µ and
1

n

n∑
i=1

wi → 1

as n→∞. In this sense we call Î a biased estimator. A major
advantage of using Î instead of Ĩ is that in using the former, we
need only the ratio π(x)/g(x) up to a multiplicative constant,
which is a usual case in statistics; whereas in the latter, the ratio
needs to be known explicitly.



Importance Sampling

I Toy example for importance sampling. Suppose we want to
compute

I =

∫ ∫
X
f(x, y)dxdy,

where X = [−1, 1]× [−1, 1] and

f(x, y) =0.5 exp
(
− 90(x− 0.5)2 − 45(y + 0.1)4

)
+ exp

(
− 45(x+ 0.4)2 − 60(y − 0.5)2

)
.

I The integrand resembles some renormalized Gaussian mixture
distribution except the power 4 appearing in the first part for
y variable. So the first step is to choose a suitable “Gaussian”
to approximate the first part suitably.
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Importance Sampling

I Here we take the trial distribution

g(x, y) ∝0.5 exp
(
− 90(x− 0.5)2 − 10(y + 0.1)2

)
+ exp

(
− 45(x+ 0.4)2 − 60(y − 0.5)2

)
.

The reason that we take the number 10 before the y variable
is as follows.

I Suppose we approximate exp(−10) ≈ 0, then from 45y4 = 10
we have the support radius for y is approximately
r = (10/45)1/4. With kr2 = 10 we have k =

√
450 & O(10).

A conservative choice may be k = 10.
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Importance Sampling

I With the constraint (x, y) ∈ X , it corresponds to a truncated
mixture of Gaussian distribution

0.46N

[(
0.5

−0.1

)
,

(
1

180
0

0 1
20

)]
+0.54N

[(
−0.4
0.5

)
,

(
1
90

0
0 1

120

)]
.

I We can sample Xn from this Gaussian mixture and compute
the importance weight as

wi =
f(Xi)

g(Xi)
· 1X (Xi).



Importance Sampling

I With the constraint (x, y) ∈ X , it corresponds to a truncated
mixture of Gaussian distribution

0.46N

[(
0.5

−0.1

)
,

(
1

180
0

0 1
20

)]
+0.54N

[(
−0.4
0.5

)
,

(
1
90

0
0 1

120

)]
.

I We can sample Xn from this Gaussian mixture and compute
the importance weight as

wi =
f(Xi)

g(Xi)
· 1X (Xi).



Importance Sampling
I One particular interesting specification of the importance

sampling is the cross-entropy method. Suppose we want to
compute

I(f) =

∫
f(x)π(x)dx

We assume f ≥ 0. Then the perfect importance function will
be µ(x) ∝ f(x)π(x) but unable to sample in general.

I To compute a good sample average, one can assume a
parameterized pdf with the form µu(x) = µ(x;u) where u are
the prescribed parameters. We choose u to minimize the
cross-entropy (or Kullback-Leibler “distance”, or relative
entropy)

min
u
D(µ||µu) =

∫
µ(x) ln

µ(x)

µu(x)
dx.

Note the order matters here and it is important for the
following derivations.
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Importance Sampling

I We have

D(µ||µu) =

∫
µ(x) lnµ(x)dx−

∫
µ(x) lnµu(x)dx

=

∫
µ(x) lnµ(x)dx− 1

I(f)

∫
f(x)π(x) lnµu(x)dx

So minimizing cross-entropy is equivalent to maximize
F (x) =

∫
f(x)π(x) lnµu(x)dx. The extremal point satisfies

∇F (x) =

∫
f(x)π(x)

µu(x)
∇uµ(x;u)dx = 0.

Solving this equation we obtain u∗, thus have a good
candidate importance distribution µu∗ .



Importance Sampling

The above argument is very useful for estimating the rare events
such as the the small probability p = P(X ≥ γ) = E1{X≥γ}. We
have the relative error√

Var(1{X≥γ})

I
=

√
1− p
p
� 1 when p� 1.

One should introduce a multileveled version of the cross-entropy
method to relax this issue with a step-by-step version.
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Control Variates

Consider another form of I(f)

I(f) =

∫
f(x)dx =

∫
(f(x)− g(x))dx +

∫
g(x)dx.

The idea of control variates is quite simple.

I If g(x) is very similar to f(x), and I(g) is known or can be
obtained in a highly accurate manner, then
Var(f − g) < Var(f), we will obtain a variance reduced
estimator of I(f).

I Similarly, an ideal control variates will be f itself, but we
don’t know I(f)! This is similar to the importance sampling.
Though the perfect control variates is not practical, it tells us
the direction toward which the approximate control variates
should be constructed.
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Control Variates
Another form of control variates is as follows.

I Suppose we have an unbiased estimator

U =
1

N

N∑
i=1

f(Xi)

for the integral I(f), and we have another statistic V with
known expectation EV = µ.

I Define a new static

Ũ = U + c(V − µ)

where c is to be determined. It is obvious that Ũ is also an
unbiased estimator of I(f). We have

Var(Ũ) = Var(U) + c2Var(V ) + 2cCov(U, V ).
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Control Variates

I The optimal parameter for the minimization of the variance is

c∗ = −Cov(U, V )/Var(V ).

In this case
Var(Ũ∗) = (1− ρ2

U,V )Var(U)

where ρU,V is the correlation coefficient between U and V . So
the more the introduced estimator V correlates with U , the
more accurate the result will be. The constant c∗ is usually
computed from simulations in practice, e.g.

C∗N = −
∑N

i=1(Ui − Ū)(Vi − V̄ )∑N
i=1(Vi − V̄ )2

.



Control Variates

There are also nonlinear version of control variates like

X̄ · EY
Ȳ

or X̄ exp(Ȳ − EY )

in estimating EX through X̄.

Example (Toy example for control variates)

Consider the following integral

I(f) =

∫ +∞

−∞

1√
2π

(1 + r)−1e−
x2

2 dx,

where r = eσx, σ � 1.



Control Variates

Notice that

(1 + r)−1 ≈ h(x) =

{
1, x ≤ 0,

0, x > 0,

we have

I(f) =
1√
2π

∫ +∞

−∞

(
(1 + r)−1 − h(x)

)
e−

x2

2 dx+
1

2
.

Here h(x) plays the role of control variates. Applying standard
normal distribution can reduce the variance more.
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Rao-Blackwellization
I This method reflects a basic principle in Monte Carlo

computation: One should carry out analytical computation as
much as possible. Indeed this principle is also embodied in the
idea of control variates.

I Suppose we have n independent samples X1, . . . ,Xn drawn
from pdf π(x) and we are interested in evaluating
I =

∫
f(x)π(x)dx. A straightforward estimator is

Î =
1

n

n∑
i=1

f(Xi).

I Suppose that x can be decomposed into two parts (x(1),x(2))
and the conditional expectation E(f(X)|x(2)) can be
obtained analytically or in a highly accurate manner. We can
define another unbiased estimator of I as

Ĩ =
1

n

n∑
i=1

E(f(X)|X(2)
i ).
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Rao-Blackwellization

If the computational effort for obtaining the two estimates are
similar, then Ĩ should be preferred because of the variance identity
(Book:Probability: Theory and Examples)

Var(f(X)) = Var(E(f(X)|X(2))) + E(Var(f(X)|X(2))),

which implies that

Var(Î) =
Var(f(X))

m
≥ Var(E(f(X)|X(2)))

m
= Var(Ĩ).

The above procedure is called Rao-Blackwellization. The readers
may be referred to (Book: Monte Carlo Strategies in Scientific
Computing) for more details.
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Antithetic Variables

Proposition

Suppose X ∼ U [0, 1], and f(x) is monotone, then

Cov(f(X), f(1−X)) ≤ 0.

Define

IN (f) =
1

2N

N∑
i=1

(f(Xi) + f(1−Xi)), Xi ∼ i.i.d. U [0, 1],

then EIN = I(f),

Var(IN ) =
1

2N
(Var(f) + Cov(f(X), f(1−X))) ≤ 1

2N
Var(f).

The variance is reduced!
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Stratified Sampling
Consider two numerical integration strategies:

1. Monte Carlo: I
(1)
N (f) = 1

N

∑N
i=1 f(Xi), Xi ∼ i.i.d. U [0, 1].

2. Midpoint rule: I
(2)
N (f) = 1

N

∑N
i=1 f(Yi), Yi = 1

2N + i−1
N .

I The error estimate:

|e(1)
N | ∼ O(

1√
N

), |e(2)
N | ∼ O(

1

N2
).

I The comparison of accuracy:

Uniform > Quasi-random > Random.

To improve the accuracy, one applies

Uniform + Adaptive→ Moving Mesh.

Random + Adaptive→ Importance Sampling.
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Stratified Sampling

I Idea: If we combine the uniform and random sample points,
we obtain the stratified sampling, and the accuracy will be
improved.

I Strategy: Divide Ω = [0, 1] into M equi-partitions

Ωk =
[k − 1

M
,
k

M

]
, k = 1, 2, . . . ,M.

Sample Nk = N/M points uniformly in Ωk, denoted as

X
(k)
i , i = 1, . . . , Nk. Define

f̄(x) = f̄k = |Ωk|−1

∫
Ωk

f(x)dx = Ef(X(k)), x ∈ Ωk

and

IN =
1

N

M∑
k=1

Nk∑
i=1

f(X
(k)
i ).
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Stratified Sampling

We have

EIN =
1

N

M∑
k=1

(Nk · f̄k) = I(f),

Var (IN ) =
1

N2

∑
i,k

∑
j,l

E
[(
f(X

(k)
i )− f̄k)(f(X

(l)
j )− f̄l

)]

=
1

N2

M∑
k=1

(
Nk · |Ωk|−1

∫
Ωk

(f(x)− f̄k)2dx
)

=
1

N

∫
Ω

(f(x)− f̄(x))2dx.



Stratified Sampling

Proposition

Define σs =
(∫

Ω(f(x)− f̄(x))2dx
) 1

2
, then

σs ≤ σ =
(∫

Ω
(f(x)− I(f))2dx

) 1
2
.

Proof.
The quadratic function of c, g(c) =

∫
Ωk

(f(x)− c)2dx takes

minimum at c = f̄k, so we have

σ2
s =

∑
k

∫
Ωk

(f(x)− f̄k)2dx ≤
∑
k

∫
Ωk

(f(x)− I(f))2dx = σ2.

The variance is reduced!
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Stratified Sampling

The stratified sampling can be combined with importance
sampling.
Let

Ω =

M⋃
k=1

Ωk,

take Nk points {X(k)
i }

Nk
i=1 in Ωk,

∑M
k=1Nk = N . Assume

{X(k)
i }

Nk
i=1 ∼ i.i.d. p(k)(x) = p(x)/p̄k, x ∈ Ωk, and

p̄k =
∫

Ωk
p(x)dx, then

IN =

M∑
k=1

p̄k
Nk

Nk∑
i=1

f(X
(k)
i ).



Stratified Sampling

Define

f̄(x) = f̄k = Ef(X(k)) = p̄−1
k

∫
Ωk

f(x)p(x)dx, x ∈ Ωk,

we have

EIN =

M∑
k=1

∫
Ωk

f(x)p(x)dx = I(f),

Var (IN ) =

M∑
k=1

p̄k
Nk

∫
Ωk

(f(x)− f̄k)2p(x)dx =

M∑
k=1

p̄k
Nk

σ2
k,

where σ2
k ,

∫
Ωk

(f(x)− f̄k)2p(x)dx.



Stratified Sampling

Proposition

If the balance condition p̄k/Nk = 1
N is satisfied, the variance is

reduced.

I In a nutshell, the stratified sampling can be described as

EY =

K∑
k=1

P(Y ∈ Ak)E(Y |Y ∈ Ak) =

K∑
k=1

pkE(Y |Y ∈ Ak)

=
K∑
k=1

nk
n
E(Y |Y ∈ Ak) ≈

1

n

K∑
k=1

nk∑
j=1

Ykj

where Ykj ∼ Y |Y ∈ Ak, and nk = npk which is enforced in
the partition.
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Stratified Sampling

I When the stratified sampling is applied to the realistic high
dimensional problems, rather than attempt to stratify all the
dimensions, it is better to identify which variables (if any)
carry most of the variation of the integrand and stratify these.

I Significant reduction in the variance can sometimes be
achieved by stratifying a single dimension in a
many-dimensional integral.
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