Lecture 2. Random Variables

Tiejun $\mathrm{Li}^{1,2}$

${ }^{1}$ School of Mathematical Sciences (SMS), \&
${ }^{2}$ Center for Machine Learning Research (CMLR),
Peking University,
Beijing 100871,
P.R. China
tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma

Discrete Examples: Bernoulli distribution $\mathcal{B e r}(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B e r}(p)$.

- Bernoulli distribution:

$$
\mathbb{P}(X)= \begin{cases}p, & X=1 \\ q, & X=0\end{cases}
$$

where $p>0, q>0, p+q=1$.

Discrete Examples: Bernoulli distribution $\mathcal{B e r}(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B e r}(p)$.

- Bernoulli distribution:

$$
\mathbb{P}(X)= \begin{cases}p, & X=1 \\ q, & X=0\end{cases}
$$

where $p>0, q>0, p+q=1$.

- If $p=q=\frac{1}{2}$, it is the well-known fair-coin tossing game.

Discrete Examples: Bernoulli distribution $\mathcal{B e r}(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B e r}(p)$.

- Bernoulli distribution:

$$
\mathbb{P}(X)= \begin{cases}p, & X=1 \\ q, & X=0\end{cases}
$$

where $p>0, q>0, p+q=1$.

- If $p=q=\frac{1}{2}$, it is the well-known fair-coin tossing game.
- The mean and variance are

$$
\mathbb{E} X=p, \operatorname{Var}(X)=p q
$$

Discrete Examples: Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$

Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$.

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability $p_{1}, p_{2}, \ldots, p_{r}$, where

$$
\sum_{i=1}^{r} p_{i}=1, \quad 0 \leq p_{i} \leq 1, i=1, \ldots, r
$$

Discrete Examples: Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$

Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$.

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability $p_{1}, p_{2}, \ldots, p_{r}$, where

$$
\sum_{i=1}^{r} p_{i}=1, \quad 0 \leq p_{i} \leq 1, i=1, \ldots, r
$$

- Denote $X=\boldsymbol{e}_{k}=\left(\delta_{k j}\right)_{j=1: r}$ for $k=1: r$ instead of $X \in\{1,2, \ldots, r\}$ if the outcome is k. And denote

$$
X=\left(X_{1}, \ldots, X_{r}\right)
$$

Discrete Examples: Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$

Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$.

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability $p_{1}, p_{2}, \ldots, p_{r}$, where

$$
\sum_{i=1}^{r} p_{i}=1, \quad 0 \leq p_{i} \leq 1, i=1, \ldots, r
$$

- Denote $X=\boldsymbol{e}_{k}=\left(\delta_{k j}\right)_{j=1: r}$ for $k=1: r$ instead of $X \in\{1,2, \ldots, r\}$ if the outcome is k. And denote

$$
X=\left(X_{1}, \ldots, X_{r}\right)
$$

- The pmf is:

$$
\mathbb{P}\left(X=\boldsymbol{e}_{k}\right)=p_{k}, \quad k \in\{1,2, \ldots, r\}
$$

Discrete Examples: Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$

Categorical distribution $\operatorname{Cat}(\boldsymbol{p})$.

- A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability $p_{1}, p_{2}, \ldots, p_{r}$, where

$$
\sum_{i=1}^{r} p_{i}=1, \quad 0 \leq p_{i} \leq 1, i=1, \ldots, r,
$$

- Denote $X=\boldsymbol{e}_{k}=\left(\delta_{k j}\right)_{j=1: r}$ for $k=1: r$ instead of $X \in\{1,2, \ldots, r\}$ if the outcome is k. And denote

$$
X=\left(X_{1}, \ldots, X_{r}\right) .
$$

- The pmf is:

$$
\mathbb{P}\left(X=\boldsymbol{e}_{k}\right)=p_{k}, \quad k \in\{1,2, \ldots, r\}
$$

- The mean and variance are

$$
\mathbb{E}\left(X_{i}\right)=p_{i}, \quad \operatorname{Var}\left(X_{i}\right)=p_{i}\left(1-p_{i}\right) .
$$

Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_{k}

Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_{k}
- A binomially distributed random variable X can be viewed as the sum of n independent Bernoulli trials X_{k}. Define

$$
X:=X_{1}+\ldots+X_{n}
$$

Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_{k}
- A binomially distributed random variable X can be viewed as the sum of n independent Bernoulli trials X_{k}. Define

$$
X:=X_{1}+\ldots+X_{n}
$$

- Then

$$
\mathbb{P}(X=k)=C_{n}^{k} p^{k} q^{n-k}
$$

Discrete Examples: Binomial distribution $B(n, p)$

Binomial distribution $B(n, p)$:

- Consider n independent experiments of Bernoulli distribution X_{k}
- A binomially distributed random variable X can be viewed as the sum of n independent Bernoulli trials X_{k}. Define

$$
X:=X_{1}+\ldots+X_{n}
$$

- Then

$$
\mathbb{P}(X=k)=C_{n}^{k} p^{k} q^{n-k}
$$

- The mean and variance are

$$
\mathbb{E} X=n p, \operatorname{Var}(X)=n p q
$$

Discrete Examples: Multinomial distribution $M(n, \boldsymbol{p})$

Multinomial distribution $M(n, \boldsymbol{p})$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter \boldsymbol{p}.

Discrete Examples: Multinomial distribution $M(n, \boldsymbol{p})$

Multinomial distribution $M(n, \boldsymbol{p})$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter \boldsymbol{p}.
- Let X_{i} indicate the number of times the i-th outcome was observed over the n trials. Then

$$
X=\left(X_{1}, \ldots, X_{r}\right)
$$

Discrete Examples: Multinomial distribution $M(n, \boldsymbol{p})$

Multinomial distribution $M(n, \boldsymbol{p})$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter \boldsymbol{p}.
- Let X_{i} indicate the number of times the i-th outcome was observed over the n trials. Then

$$
X=\left(X_{1}, \ldots, X_{r}\right)
$$

- The pmf of the multinomial distribution is:

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{r}=x_{r}\right)=\frac{n!}{x_{1}!\cdots x_{r}!} p_{1}^{x_{1}} \cdots p_{r}^{x_{r}}
$$

where $n=x_{1}+\cdots+x_{r}$.

Discrete Examples: Multinomial distribution $M(n, \boldsymbol{p})$

Multinomial distribution $M(n, \boldsymbol{p})$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter \boldsymbol{p}.
- Let X_{i} indicate the number of times the i-th outcome was observed over the n trials. Then

$$
X=\left(X_{1}, \ldots, X_{r}\right)
$$

- The pmf of the multinomial distribution is:

$$
\mathbb{P}\left(X_{1}=x_{1}, \ldots, X_{r}=x_{r}\right)=\frac{n!}{x_{1}!\cdots x_{r}!} p_{1}^{x_{1}} \cdots p_{r}^{x_{r}}
$$

where $n=x_{1}+\cdots+x_{r}$.

- The mean, variance and covariance are $\mathbb{E}\left(X_{i}\right)=n p_{i}$,

$$
\operatorname{Var}\left(X_{i}\right)=n p_{i}\left(1-p_{i}\right), \quad \operatorname{Cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}(i \neq j)
$$

Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

Poisson distribution $\mathcal{P}(\lambda)$.

- The number X of radiated particles in a fixed time τ obeys

$$
\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda},
$$

where λ is the average number of radiated particles each time.

Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

Poisson distribution $\mathcal{P}(\lambda)$.

- The number X of radiated particles in a fixed time τ obeys

$$
\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda},
$$

where λ is the average number of radiated particles each time.

- The mean and variance are

$$
\mathbb{E} X=\lambda, \operatorname{Var}(X)=\lambda
$$

Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

Poisson distribution $\mathcal{P}(\lambda)$.

- The number X of radiated particles in a fixed time τ obeys

$$
\mathbb{P}(X=k)=\frac{\lambda^{k}}{k!} e^{-\lambda},
$$

where λ is the average number of radiated particles each time.

- The mean and variance are

$$
\mathbb{E} X=\lambda, \operatorname{Var}(X)=\lambda
$$

- Poisson distribution may be viewed as the limit of binomial distribution (the law of rare events)

$$
C_{n}^{k} p^{k} q^{n-k} \longrightarrow \frac{\lambda^{k}}{k!} e^{-\lambda} \quad(n \rightarrow \infty, n p=\lambda)
$$

Discrete Examples: Poisson distribution $\mathcal{P}(\lambda)$

- Poisson distribution can also describe the spatial distribution of randomly scattered points.

$$
\mathbb{P}\left(X_{A}=n\right)=\frac{(\lambda \cdot \operatorname{meas}(A))^{n}}{n!} e^{-\lambda \cdot \operatorname{meas}(A)}
$$

A : a set in R^{2}, $X_{A}(\omega)$: number of points in A.
λ : scattering density.

Continuous Examples: Uniform distribution $\mathcal{U}[0,1]$

In continuous case, the function $p(x)$ is called the probability density function (pdf).

Uniform distribution $\mathcal{U}[0,1]$:

- The pdf

$$
p(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Continuous Examples: Uniform distribution $\mathcal{U}[0,1]$

In continuous case, the function $p(x)$ is called the probability density function (pdf).

Uniform distribution $\mathcal{U}[0,1]$:

- The pdf

$$
p(x)= \begin{cases}1 & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

- The mean and variance are

$$
\mathbb{E} X=\frac{1}{2}, \operatorname{Var}(X)=\frac{1}{12} .
$$

Continuous Examples: Exponential distribution: $\mathcal{E} x p(\lambda)$

Exponential distribution: $\mathcal{E} x p(\lambda)$

- The pdf with $(\lambda>0)$

$$
p(x)= \begin{cases}0 & \text { if } x<0 \\ \lambda e^{-\lambda x} & \text { if } x \geq 0\end{cases}
$$

Continuous Examples: Exponential distribution: $\mathcal{E} x p(\lambda)$

Exponential distribution: $\mathcal{E x p}(\lambda)$

- The pdf with $(\lambda>0)$

$$
p(x)= \begin{cases}0 & \text { if } x<0 \\ \lambda e^{-\lambda x} & \text { if } x \geq 0\end{cases}
$$

- The mean and variance are

$$
\mathbb{E} X=\frac{1}{\lambda}, \operatorname{Var}(X)=\frac{1}{\lambda^{2}} .
$$

Continuous Examples: Exponential distribution: $\mathcal{E x p}(\lambda)$

Exponential distribution: $\mathcal{E} x p(\lambda)$

- The pdf with $(\lambda>0)$

$$
p(x)= \begin{cases}0 & \text { if } x<0 \\ \lambda e^{-\lambda x} & \text { if } x \geq 0\end{cases}
$$

- The mean and variance are

$$
\mathbb{E} X=\frac{1}{\lambda}, \operatorname{Var}(X)=\frac{1}{\lambda^{2}} .
$$

- Waiting time for continuous time Markov process also has exponential distribution, where λ is the rate of the process.

Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

- Normal distribution(Gaussian distribution)($N(0,1)$):

$$
p(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

or more generally $N(\mu, \sigma)$

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where μ is the mean (expectation), σ^{2} is the variance.

Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

- Normal distribution(Gaussian distribution)($N(0,1)$):

$$
p(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

or more generally $N(\mu, \sigma)$

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where μ is the mean (expectation), σ^{2} is the variance.

- High dimensional case $\left(N\left(\mu, \Sigma^{2}\right)\right)$

$$
p(x)=\frac{1}{(2 \pi)^{n / 2}(\operatorname{det} \Sigma)^{1 / 2}} e^{-(\boldsymbol{X}-\mu)^{T} \Sigma^{-1}(\boldsymbol{X}-\mu)}
$$

where μ is the mean, Σ is the covariance matrix of \boldsymbol{X}.

Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

- Normal distribution(Gaussian distribution)($N(0,1)$):

$$
p(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

or more generally $N(\mu, \sigma)$

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

where μ is the mean (expectation), σ^{2} is the variance.

- High dimensional case $\left(N\left(\mu, \Sigma^{2}\right)\right)$

$$
p(x)=\frac{1}{(2 \pi)^{n / 2}(\operatorname{det} \Sigma)^{1 / 2}} e^{-(\boldsymbol{X}-\mu)^{T} \Sigma^{-1}(\boldsymbol{X}-\mu)}
$$

where μ is the mean, Σ is the covariance matrix of \boldsymbol{X}.

- More general Gaussian distribution with $\operatorname{det} \Sigma=0$?

Remarks on Gaussian distribution

- In 1D case, the normal distribution $N(n p, n p q)$ may be viewed as the limit of the Binomial distribution $B(n, p)$ when n is large. This is the famous De Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT). Notice that

$$
\frac{B(n, p)-n p}{\sqrt{n p q}} \longrightarrow N(0,1) \text { as } n \rightarrow \infty
$$

Remarks on Gaussian distribution

- In 1D case, the normal distribution $N(n p, n p q)$ may be viewed as the limit of the Binomial distribution $B(n, p)$ when n is large. This is the famous De Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT). Notice that

$$
\frac{B(n, p)-n p}{\sqrt{n p q}} \longrightarrow N(0,1) \text { as } n \rightarrow \infty
$$

- In 1D case, the normal distribution $N(\lambda, \lambda)$ may be viewed as the limit of the Poisson distribution $\mathcal{P}(\lambda)$ when λ is large. Notice the simple fact that the sum of two independent $\mathcal{P}(\lambda)$ and $\mathcal{P}(\mu)$ is $\mathcal{P}(\lambda+\mu)$ (why?), we can decompose $\mathcal{P}(\lambda)$ into the sum of n i.i.d. $\mathcal{P}(\lambda / n)$, we have

$$
\frac{\mathcal{P}(\lambda)-\lambda}{\sqrt{\lambda}} \longrightarrow N(0,1) \text { when } \lambda \text { is large. }
$$

Question: What if $n \rightarrow \infty$?

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;
3. If $A_{1}, A_{2}, \cdots, A_{n}, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$.

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;
3. If $A_{1}, A_{2}, \cdots, A_{n}, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$. (Ω, \mathcal{F}) is called a measurable space.

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;
3. If $A_{1}, A_{2}, \cdots, A_{n}, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$. (Ω, \mathcal{F}) is called a measurable space.

- Probability measure P

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;
3. If $A_{1}, A_{2}, \cdots, A_{n}, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$. (Ω, \mathcal{F}) is called a measurable space.

- Probability measure P

1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0$;

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;
3. If $A_{1}, A_{2}, \cdots, A_{n}, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$. (Ω, \mathcal{F}) is called a measurable space.

- Probability measure P

1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0$;
2. (Countably additive) If $A_{1}, A_{2}, \cdots \in \mathcal{F}$, and they are disjoint, then $P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)$;

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;
3. If $A_{1}, A_{2}, \cdots, A_{n}, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$. (Ω, \mathcal{F}) is called a measurable space.

- Probability measure P

1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0$;
2. (Countably additive) If $A_{1}, A_{2}, \cdots \in \mathcal{F}$, and they are disjoint, then $P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)$;
3. $($ Normalization) $\mathbb{P}(\Omega)=1$.

Axiomatic Setup: Probability Space

- Sample space Ω : the set of all outcomes ω.
- Event space: σ-algebra \mathcal{F} \mathcal{F} is a collection of subsets of Ω :

1. $\Omega \in \mathcal{F}$;
2. If $A \in \mathcal{F}$, then $\bar{A}=\Omega \backslash A \in \mathcal{F}$;
3. If $A_{1}, A_{2}, \cdots, A_{n}, \cdots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{F}$. (Ω, \mathcal{F}) is called a measurable space.

- Probability measure P

1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0$;
2. (Countably additive) If $A_{1}, A_{2}, \cdots \in \mathcal{F}$, and they are disjoint, then $P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)$;
3. $($ Normalization) $\mathbb{P}(\Omega)=1$.

- Probability space $-\operatorname{Triplet}(\Omega, \mathcal{F}, \mathbb{P})$

Radon-Nikodym Theorem

Theorem
Suppose μ is a σ-finite measure, ν is a signed measure on measurable space (Ω, \mathcal{F}). If ν is absolutely continuous w.r.t. μ^{1}, then there exists a measurable function f, such that for any $A \in \mathcal{F}$

$$
\nu(A)=\int_{A} f(\omega) \mu(d \omega)
$$

and f is unique in the μ-a.e. sense.
f is defined as the Radon-Nikodym derivative $d \nu / d \mu=f$.
${ }^{1}$ For any $A \in \mathcal{F}$, if $\mu(A)=0$, then $\nu(A)=0$. It is usually denoted as $\nu \ll \mu$.

Random Variables

- Random variable: a measurable function $X: \Omega \rightarrow \mathbb{R}$.

Random Variables

- Random variable: a measurable function $X: \Omega \rightarrow \mathbb{R}$.
- Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$
\mu(B)=\operatorname{Prob}(X \in B)=\mathbb{P}\{\omega \in \Omega: X(\omega) \in B\} .
$$

Random Variables

- Random variable: a measurable function $X: \Omega \rightarrow \mathbb{R}$.
- Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$
\mu(B)=\operatorname{Prob}(X \in B)=\mathbb{P}\{\omega \in \Omega: X(\omega) \in B\}
$$

- Probability density function (pdf): an integrable function $p(x)$ on R such that for any set $B \subset R$,

$$
\mu(B)=\int_{B} p(x) d x
$$

Random Variables

- Random variable: a measurable function $X: \Omega \rightarrow \mathbb{R}$.
- Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$
\mu(B)=\operatorname{Prob}(X \in B)=\mathbb{P}\{\omega \in \Omega: X(\omega) \in B\}
$$

- Probability density function (pdf): an integrable function $p(x)$ on R such that for any set $B \subset R$,

$$
\mu(B)=\int_{B} p(x) d x
$$

- Mean (expectation):

$$
\mathbb{E} f(X)=\int_{\Omega} f(X(\omega)) P(d \omega)=\int_{R} f(x) d \mu(x)=\int_{R} f(x) p(x) d x
$$

Random Variables

- Random variable: a measurable function $X: \Omega \rightarrow \mathbb{R}$.
- Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$
\mu(B)=\operatorname{Prob}(X \in B)=\mathbb{P}\{\omega \in \Omega: X(\omega) \in B\}
$$

- Probability density function (pdf): an integrable function $p(x)$ on R such that for any set $B \subset R$,

$$
\mu(B)=\int_{B} p(x) d x .
$$

- Mean (expectation):

$$
\mathbb{E} f(X)=\int_{\Omega} f(X(\omega)) P(d \omega)=\int_{R} f(x) d \mu(x)=\int_{R} f(x) p(x) d x
$$

- Variance:

$$
\operatorname{Var}(X)=\mathbb{E}(X-\mathbb{E} X)^{2}=\mathbb{E} X^{2}-(\mathbb{E} X)^{2}
$$

Moments, Covariance, etc.

- p-th moment: $\mathbb{E}|X|^{p}$.

Moments, Covariance, etc.

- p-th moment: $\mathbb{E}|X|^{p}$.
- Covariance:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)
$$

Moments, Covariance, etc.

- p-th moment: $\mathbb{E}|X|^{p}$.
- Covariance:

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)
$$

- Independence:

$$
\mathbb{E} f(X) g(Y)=\mathbb{E} f(X) \mathbb{E} g(Y)
$$

for all continuous functions f and g.

Notions of Convergence

Probability space $(\Omega, \mathcal{F}, \mathbb{P}),\left\{X_{n}\right\}$ - a sequence of random variables, μ_{n} - the distirbution of $X_{n} . X$ - another random variable with distribution μ.
Definition (Almost sure convergence)
X_{n} converges to X almost surely as $n \rightarrow \infty,\left(X_{n} \rightarrow X\right.$, a.s. $)$ if

$$
\mathbb{P}\left\{\omega \in \Omega, \quad X_{n}(\omega) \rightarrow X(\omega)\right\}=1
$$

Notions of Convergence

Probability space $(\Omega, \mathcal{F}, \mathbb{P}),\left\{X_{n}\right\}$ - a sequence of random variables, μ_{n} - the distirbution of $X_{n} . X$ - another random variable with distribution μ.
Definition (Almost sure convergence)
X_{n} converges to X almost surely as $n \rightarrow \infty,\left(X_{n} \rightarrow X\right.$, a.s. $)$ if

$$
\mathbb{P}\left\{\omega \in \Omega, \quad X_{n}(\omega) \rightarrow X(\omega)\right\}=1
$$

Definition (Convergence in probability)
X_{n} converges to X in probability if for any $\epsilon>0$,

$$
\mathbb{P}\left\{\omega\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\} \rightarrow 0
$$

as $n \rightarrow+\infty$.

Notions of Convergence

Definition (Convergence in distribution)
X_{n} converges to X in distribution ($X_{n} \xrightarrow{d} X$) (i.e. $\mu_{n} \rightharpoonup \mu$ or $\mu_{n} \xrightarrow{d} \mu$, weak convergence), if for any bounded continuous function f

$$
\mathbb{E} f\left(X_{n}\right) \rightarrow \mathbb{E} f(X)
$$

Notions of Convergence

Definition (Convergence in distribution)
X_{n} converges to X in distribution ($X_{n} \xrightarrow{d} X$) (i.e. $\mu_{n} \rightharpoonup \mu$ or $\mu_{n} \xrightarrow{d} \mu$, weak convergence), if for any bounded continuous function f

$$
\mathbb{E} f\left(X_{n}\right) \rightarrow \mathbb{E} f(X)
$$

Definition (Convergence in L^{p})
If $X_{n}, X \in L^{p}$, and

$$
\mathbb{E}\left|X_{n}-X\right|^{p} \rightarrow 0
$$

If $p=1$, that is convergence in mean; if $p=2$, that is convergence in mean square.

Relation between different convergence concepts

Relation:

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma

Conditional Expectation: Naive definition

- Let X and Y be two discrete random variables with joint probability

$$
p(i, j)=\mathbb{P}(X=i, Y=j)
$$

Conditional Expectation: Naive definition

- Let X and Y be two discrete random variables with joint probability

$$
p(i, j)=\mathbb{P}(X=i, Y=j)
$$

- The conditional probability that $X=i$ given that $Y=j$ is given by

$$
p(i \mid j)=\frac{p(i, j)}{\sum_{i} p(i, j)}=\frac{p(i, j)}{\mathbb{P}(Y=j)}
$$

if $\sum_{i} p(i, j)>0$ and conventionaly taken to be zero if $\sum_{i} p(i, j)=0$.

Conditional Expectation: Naive definition

- Let X and Y be two discrete random variables with joint probability

$$
p(i, j)=\mathbb{P}(X=i, Y=j)
$$

- The conditional probability that $X=i$ given that $Y=j$ is given by

$$
p(i \mid j)=\frac{p(i, j)}{\sum_{i} p(i, j)}=\frac{p(i, j)}{\mathbb{P}(Y=j)}
$$

if $\sum_{i} p(i, j)>0$ and conventionaly taken to be zero if $\sum_{i} p(i, j)=0$.

- The natural definition of the conditional expectation of $f(X)$ given that $Y=j$ is

$$
\mathbb{E}(f(X) \mid Y=j)=\sum_{i} f(i) p(i \mid j)
$$

Conditional Expectation: Abstract definition

- The axiomatic definition of the conditional expectation $Z=E(X \mid \mathcal{G})$ is defined with respect to a sub- σ-algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Conditional Expectation: Abstract definition

- The axiomatic definition of the conditional expectation $Z=E(X \mid \mathcal{G})$ is defined with respect to a sub- σ-algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)
For any random variable X with $\mathbb{E}|X|<\infty$, the conditional expectation Z of X given \mathcal{G} is defined as

Conditional Expectation: Abstract definition

- The axiomatic definition of the conditional expectation $Z=E(X \mid \mathcal{G})$ is defined with respect to a sub- σ-algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)
For any random variable X with $\mathbb{E}|X|<\infty$, the conditional expectation Z of X given \mathcal{G} is defined as
(i) Z is a random variable which is measurable with respect to \mathcal{G};

Conditional Expectation: Abstract definition

- The axiomatic definition of the conditional expectation $Z=E(X \mid \mathcal{G})$ is defined with respect to a sub- σ-algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)

For any random variable X with $\mathbb{E}|X|<\infty$, the conditional expectation Z of X given \mathcal{G} is defined as
(i) Z is a random variable which is measurable with respect to \mathcal{G};
(ii) for any set $A \in \mathcal{G}$,

$$
\int_{A} Z(\omega) \mathbb{P}(d \omega)=\int_{A} X(\omega) \mathbb{P}(d \omega)
$$

Conditional Expectation: Existence

- The existence of $Z=E(X \mid \mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A)=\int_{A} X(\omega) \mathbb{P}(d \omega)$ (see Billingsley: Probability and measure).

Conditional Expectation: Existence

- The existence of $Z=E(X \mid \mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A)=\int_{A} X(\omega) \mathbb{P}(d \omega)$ (see Billingsley: Probability and measure).
- One can easily find that μ is absolutely continuous with respect to the measure $\left.\mathbb{P}\right|_{\mathcal{G}}$, the probability measure confined in \mathcal{G}. Thus Z exists and is unique up to the almost sure equivalence in $\left.\mathbb{P}\right|_{\mathcal{G}}$.

Conditional Expectation: Existence

- The existence of $Z=E(X \mid \mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A)=\int_{A} X(\omega) \mathbb{P}(d \omega)$ (see Billingsley: Probability and measure).
- One can easily find that μ is absolutely continuous with respect to the measure $\left.\mathbb{P}\right|_{\mathcal{G}}$, the probability measure confined in \mathcal{G}. Thus Z exists and is unique up to the almost sure equivalence in $\left.\mathbb{P}\right|_{\mathcal{G}}$.
- For the conditional expectation of a random variable X with respect to another random variable Y, it is natural to define it as

$$
\mathbb{E}(X \mid Y):=\mathbb{E}(X \mid \mathcal{G})
$$

where \mathcal{G} is the σ-algebra $Y^{-1}(\mathcal{B})$ generated by Y.

Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y|<\infty$, $a, b \in \mathbb{R}$. Then

Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y|<\infty$, $a, b \in \mathbb{R}$. Then
(i) $\mathbb{E}(a X+b Y \mid \mathcal{G})=a \mathbb{E}(X \mid \mathcal{G})+b \mathbb{E}(Y \mid \mathcal{G})$

Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y|<\infty$, $a, b \in \mathbb{R}$. Then
(i) $\mathbb{E}(a X+b Y \mid \mathcal{G})=a \mathbb{E}(X \mid \mathcal{G})+b \mathbb{E}(Y \mid \mathcal{G})$
(ii) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$

Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y|<\infty$, $a, b \in \mathbb{R}$. Then
(i) $\mathbb{E}(a X+b Y \mid \mathcal{G})=a \mathbb{E}(X \mid \mathcal{G})+b \mathbb{E}(Y \mid \mathcal{G})$
(ii) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$
(iii) $\mathbb{E}(X \mid \mathcal{G})=X$, if X is \mathcal{G}-measurable

Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y|<\infty$, $a, b \in \mathbb{R}$. Then
(i) $\mathbb{E}(a X+b Y \mid \mathcal{G})=a \mathbb{E}(X \mid \mathcal{G})+b \mathbb{E}(Y \mid \mathcal{G})$
(ii) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$
(iii) $\mathbb{E}(X \mid \mathcal{G})=X$, if X is \mathcal{G}-measurable
(iv) $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E} X$, if X is independent of \mathcal{G}

Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y|<\infty$, $a, b \in \mathbb{R}$. Then
(i) $\mathbb{E}(a X+b Y \mid \mathcal{G})=a \mathbb{E}(X \mid \mathcal{G})+b \mathbb{E}(Y \mid \mathcal{G})$
(ii) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$
(iii) $\mathbb{E}(X \mid \mathcal{G})=X$, if X is \mathcal{G}-measurable
(iv) $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E} X$, if X is independent of \mathcal{G}
(v) $\mathbb{E}(X Y \mid \mathcal{G})=Y \mathbb{E}(X \mid \mathcal{G})$, if Y is \mathcal{G}-measurable

Conditional Expectation: Properties

Theorem (Properties of conditional expectation)
Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y|<\infty$, $a, b \in \mathbb{R}$. Then
(i) $\mathbb{E}(a X+b Y \mid \mathcal{G})=a \mathbb{E}(X \mid \mathcal{G})+b \mathbb{E}(Y \mid \mathcal{G})$
(ii) $\mathbb{E}(\mathbb{E}(X \mid \mathcal{G}))=\mathbb{E}(X)$
(iii) $\mathbb{E}(X \mid \mathcal{G})=X$, if X is \mathcal{G}-measurable
(iv) $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E} X$, if X is independent of \mathcal{G}
(v) $\mathbb{E}(X Y \mid \mathcal{G})=Y \mathbb{E}(X \mid \mathcal{G})$, if Y is \mathcal{G}-measurable
(vi) $\mathbb{E}(X \mid \mathcal{G})=\mathbb{E}(\mathbb{E}(X \mid \mathcal{H}) \mid \mathcal{G})$ for the sub- σ-algebras $\mathcal{G} \subset \mathcal{H}$.

Conditional ensen's inequality

Lemma (Conditional Jensen's inequality)
Let X be a random variable such that $\mathbb{E}|X|<\infty$ and $\phi: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function such that $\mathbb{E}|\phi(X)|<\infty$. Then

$$
\mathbb{E}(\phi(X) \mid \mathcal{G}) \geq \phi(\mathbb{E}(X \mid \mathcal{G})) .
$$

- The readers may be referred to (K.L. Chung: A course in probability theory) for the details of the proof.

Conditional Expectation: Abstract vs Naive definition

- To realize the equivalence between the abstract definition $\mathbb{E}(X \mid Y):=\mathbb{E}(X \mid \mathcal{G})$ and $\mathbb{E}(f(X) \mid Y=j)=\sum_{i} f(i) p(i \mid j)$ when Y only takes finitely discrete values, we suppose the following decomposition

$$
\Omega=\bigcup_{j=1}^{n} \Omega_{j}
$$

and $\Omega_{j}=\{\omega: Y(\omega)=j\}$. Then the σ-algebra \mathcal{G} is simply the sets of all possible unions of Ω_{j}.

Conditional Expectation: Abstract vs Naive definition

- To realize the equivalence between the abstract definition $\mathbb{E}(X \mid Y):=\mathbb{E}(X \mid \mathcal{G})$ and $\mathbb{E}(f(X) \mid Y=j)=\sum_{i} f(i) p(i \mid j)$ when Y only takes finitely discrete values, we suppose the following decomposition

$$
\Omega=\bigcup_{j=1}^{n} \Omega_{j}
$$

and $\Omega_{j}=\{\omega: Y(\omega)=j\}$. Then the σ-algebra \mathcal{G} is simply the sets of all possible unions of Ω_{j}.

- The measurability of conditional expectation $\mathbb{E}(X \mid Y)$ with respect to \mathcal{G} means $E(X \mid Y)$ takes constant on each Ω_{j}, which exactly corresponds to $E(X \mid Y=j)$ as we will see.

Conditional Expectation: Abstract vs Naive definition

By definition, we have

$$
\int_{\Omega_{j}} \mathbb{E}(X \mid Y) \mathbb{P}(d \omega)=\int_{\Omega_{j}} X(\omega) \mathbb{P}(d \omega)
$$

which implies

$$
\mathbb{E}(X \mid Y)=\frac{1}{\mathbb{P}\left(\Omega_{j}\right)} \int_{\Omega_{j}} X(\omega) \mathbb{P}(d \omega)
$$

This is exactly $\mathbb{E}(X \mid Y=j)$ when $f(X)=X$ and X also takes discrete values.

Conditional Expectation: Optimal Approximation

The conditional expectation has the following important property as the optimal approximation in L^{2} norm among all of the Y-measurable functions.

Proposition
Let $g(Y)$ be any measurable function of Y, then

$$
\mathbb{E}(X-\mathbb{E}(X \mid Y))^{2} \leq \mathbb{E}(X-g(Y))^{2}
$$

Conditional Expectation: Optimal Approximation

Proof.
We have

$$
\begin{aligned}
\mathbb{E}(X-g(Y))^{2} & =\mathbb{E}(X-E(X \mid Y))^{2}+\mathbb{E}(E(X \mid Y)-g(Y))^{2} \\
& +2 \mathbb{E}[(X-E(X \mid Y)(E(X \mid Y)-g(Y))] .
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{E}[(X-\mathbb{E}(X \mid Y)(\mathbb{E}(X \mid Y)-g(Y))] \\
= & \mathbb{E}[\mathbb{E}[(X-\mathbb{E}(X \mid Y)(E(X \mid Y)-g(Y)) \mid Y]] \\
= & \mathbb{E}[(\mathbb{E}(X \mid Y)-\mathbb{E}(X \mid Y))(E(X \mid Y)-g(Y))]=0
\end{aligned}
$$

by properties (ii),(iii) and (v) in properties of conditional expectation. The proof is done.

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma

Characteristic Function

The characteristic function of a random variable X or its distribution μ is defined as

$$
f(\xi)=\mathbb{E} e^{i \xi X}=\int_{\mathbb{R}} e^{i \xi x} \mu(d x)
$$

Characteristic Function

The characteristic function of a random variable X or its distribution μ is defined as

$$
f(\xi)=\mathbb{E} e^{i \xi X}=\int_{\mathbb{R}} e^{i \xi x} \mu(d x)
$$

Obviously, when X, Y are independent and has characteristic functions $f(\xi), g(\xi)$, then we have the characteristic function for $Z=X+Y$

$$
h(\xi)=\mathbb{E} e^{i \xi Z}=\mathbb{E} e^{i \xi(X+Y)}=f(\xi) g(\xi)
$$

Characteristic Function: Examples

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi)=q+p e^{i \xi}$.

Characteristic Function: Examples

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi)=q+p e^{i \xi}$.
- Binomial distribution $B(n, p): f(\xi)=\left(q+p e^{i \xi}\right)^{n}$.

Characteristic Function: Examples

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi)=q+p e^{i \xi}$.
- Binomial distribution $B(n, p): f(\xi)=\left(q+p e^{i \xi}\right)^{n}$.
- Poisson distribtion $\mathcal{P}(\lambda): f(\xi)=e^{\lambda\left(e^{i \xi}-1\right)}$.

Characteristic Function: Examples

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi)=q+p e^{i \xi}$.
- Binomial distribution $B(n, p): f(\xi)=\left(q+p e^{i \xi}\right)^{n}$.
- Poisson distribtion $\mathcal{P}(\lambda): f(\xi)=e^{\lambda\left(e^{i \xi}-1\right)}$.
- Exponential distribution $\mathcal{E} x p(\lambda): f(\xi)=\left(1-\lambda^{-1} i \xi\right)^{-1}$.

Characteristic Function: Examples

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi)=q+p e^{i \xi}$.
- Binomial distribution $B(n, p): f(\xi)=\left(q+p e^{i \xi}\right)^{n}$.
- Poisson distribtion $\mathcal{P}(\lambda): f(\xi)=e^{\lambda\left(e^{i \xi}-1\right)}$.
- Exponential distribution $\mathcal{E} x p(\lambda): f(\xi)=\left(1-\lambda^{-1} i \xi\right)^{-1}$.
- Normal distribution $N\left(\mu, \sigma^{2}\right): f(\xi)=\exp \left(i \mu \xi-\frac{\sigma^{2} \xi^{2}}{2}\right)$.

Characteristic Function: Property

Proposition
The characteristic function has the following properties:

Characteristic Function: Property

Proposition

The characteristic function has the following properties:

1. $\forall \xi \in \mathbb{R},|f(\xi)| \leq 1, f(\xi)=\overline{f(-\xi)}, f(0)=1$;

Characteristic Function: Property

Proposition

The characteristic function has the following properties:

1. $\forall \xi \in \mathbb{R},|f(\xi)| \leq 1, f(\xi)=\overline{f(-\xi)}, f(0)=1$;
2. f is uniformly continuous on \mathbb{R};

Characteristic Function: Property

Proposition

The characteristic function has the following properties:

1. $\forall \xi \in \mathbb{R},|f(\xi)| \leq 1, f(\xi)=\overline{f(-\xi)}, f(0)=1$;
2. f is uniformly continuous on \mathbb{R};
3. $f^{(n)}(0)=i^{n} \mathbb{E} X^{n}$ provided $\mathbb{E}|X|^{n}<\infty$.

Characteristic Function: Property

Proposition

The characteristic function has the following properties:

1. $\forall \xi \in \mathbb{R},|f(\xi)| \leq 1, f(\xi)=\overline{f(-\xi)}, f(0)=1$;
2. f is uniformly continuous on \mathbb{R};
3. $f^{(n)}(0)=i^{n} \mathbb{E} X^{n}$ provided $\mathbb{E}|X|^{n}<\infty$.

Proof.

The proof of statements 1 and 3 are straightforward. The second statement is valid by

$$
\begin{aligned}
\left|f\left(\xi_{1}\right)-f\left(\xi_{2}\right)\right| & =\left|\mathbb{E}\left(e^{i \xi_{1} X}-e^{i \xi_{2} X}\right)\right|=\left|\mathbb{E}\left(e^{i \xi_{1} X}\left(1-e^{i\left(\xi_{2}-\xi_{1}\right) X}\right)\right)\right| \\
& \leq \mathbb{E}\left|1-e^{i\left(\xi_{2}-\xi_{1}\right) X}\right|
\end{aligned}
$$

Dominated convergence theorem concludes the proof.

Lévy's continuity theorem

Theorem (Lévy's continuity theorem)
Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of probability measures, and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be their corresponding characteristic functions.

Lévy's continuity theorem

Theorem (Lévy's continuity theorem)
Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of probability measures, and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be their corresponding characteristic functions.Assume that

1. f_{n} converges everywhere on \mathbb{R} to a limiting function f.

Lévy's continuity theorem

Theorem (Lévy's continuity theorem)
Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of probability measures, and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be their corresponding characteristic functions.Assume that

1. f_{n} converges everywhere on \mathbb{R} to a limiting function f.
2. f is continuous at $\xi=0$.

Lévy's continuity theorem

Theorem (Lévy's continuity theorem)
Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of probability measures, and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be their corresponding characteristic functions. Assume that

1. f_{n} converges everywhere on \mathbb{R} to a limiting function f.
2. f is continuous at $\xi=0$.

Then there exists a probability distribution μ such that $\mu_{u} \xrightarrow{d} \mu$. Moreover f is the characteristic function of μ.

Lévy's continuity theorem

Theorem (Lévy's continuity theorem)

Let $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of probability measures, and $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be their corresponding characteristic functions. Assume that

1. f_{n} converges everywhere on \mathbb{R} to a limiting function f.
2. f is continuous at $\xi=0$.

Then there exists a probability distribution μ such that $\mu_{u} \xrightarrow{d} \mu$. Moreover f is the characteristic function of μ. Conversely, if $\mu_{n} \xrightarrow{d} \mu$, where μ is some probability distribution then f_{n} converges to f uniformly in every finite interval, where f is the characteristic function of μ.

For a proof, see K.L. Chung: A course in probability theory.

Characteristic Function: Positive Semi-definite Function

As in Fourier transforms, one can also define the inverse transform

$$
\rho(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} e^{-i \xi x} f(\xi) d \xi
$$

An interesting question arises as to when this gives the density of a probability measure. To answer this we define

Definition

A function f is called positive semi-definite if for any finite set of values $\left\{\xi_{1}, \ldots, \xi_{n}\right\}, n \in \mathbb{N}$, the matrix $\left(f\left(\xi_{i}-\xi_{j}\right)\right)_{i, j=1}^{n}$ is positive semi-definite, i.e.

$$
\sum_{i, j} f\left(\xi_{i}-\xi_{j}\right) v_{i} \bar{v}_{j} \geq 0
$$

for any $v_{1}, \ldots, v_{n} \in \mathbb{C}$.

Bochner's Theorem

Theorem (Bochner's Theorem)
A function f is the characteristic function of a probability measure if and only if it is a positive semi-definite and continuous at 0 with $f(0)=1$.

Bochner's Theorem

Theorem (Bochner's Theorem)

A function f is the characteristic function of a probability measure if and only if it is a positive semi-definite and continuous at 0 with $f(0)=1$.

Proof.
We only gives the necessity part. Suppose f is a characteristic function, then

$$
\sum_{i, j=1}^{n} f\left(\xi_{i}-\xi_{j}\right) v_{i} \bar{v}_{j}=\int_{\mathbb{R}}\left|\sum_{i=1}^{n} v_{i} e^{i \xi_{i} x}\right|^{2} \mu(d x) \geq 0
$$

The sufficiency part is difficult and the readers may be referred to (K.L. Chung: A course in probability theory).

Generating function

For discrete R.V. taking integer values, the generating function has the central importance

$$
G(x)=\sum_{k=0}^{\infty} P(k) x^{k} .
$$

One immediately has the formula:

$$
P(k)=\left.\frac{1}{k!} G^{(k)}(x)\right|_{x=0}
$$

Some generating functions:

- Bernoulli distribution: $G(x)=q+p x$.

Generating function

For discrete R.V. taking integer values, the generating function has the central importance

$$
G(x)=\sum_{k=0}^{\infty} P(k) x^{k}
$$

One immediately has the formula:

$$
P(k)=\left.\frac{1}{k!} G^{(k)}(x)\right|_{x=0}
$$

Some generating functions:

- Bernoulli distribution: $G(x)=q+p x$.
- Binomial distribution: $G(x)=(q+p x)^{n}$.

Generating function

For discrete R.V. taking integer values, the generating function has the central importance

$$
G(x)=\sum_{k=0}^{\infty} P(k) x^{k}
$$

One immediately has the formula:

$$
P(k)=\left.\frac{1}{k!} G^{(k)}(x)\right|_{x=0}
$$

Some generating functions:

- Bernoulli distribution: $G(x)=q+p x$.
- Binomial distribution: $G(x)=(q+p x)^{n}$.
- Poisson distribution: $G(x)=e^{-\lambda+\lambda x}$.

Generating function

Definition

Define the convolution of two sequences $\left\{a_{k}\right\},\left\{b_{k}\right\}$ as $\left\{c_{k}\right\}=\left\{a_{k}\right\} *\left\{b_{k}\right\}$, the components are defined as

$$
c_{k}=\sum_{j=0}^{k} a_{j} b_{k-j}
$$

Generating function

Definition

Define the convolution of two sequences $\left\{a_{k}\right\},\left\{b_{k}\right\}$ as $\left\{c_{k}\right\}=\left\{a_{k}\right\} *\left\{b_{k}\right\}$, the components are defined as

$$
c_{k}=\sum_{j=0}^{k} a_{j} b_{k-j}
$$

Theorem
Consider two independent R.V. X and Y with PMF

$$
P(X=j)=a_{j}, \quad P(Y=k)=b_{k}
$$

and $\left\{c_{k}\right\}=\left\{a_{k}\right\} *\left\{b_{k}\right\}$. Suppose the generating functions are $A(x), B(x)$ and $C(x)$, respectively, then the generating function of $X+Y$ is $C(x)$.

Moment Generating Function

- The moment generating function of a random variable X is defined for all values of t by

$$
M(t)=\mathbb{E} e^{t X}= \begin{cases}\sum_{x} p(x) e^{t x}, & X \text { is discrete-valued } \\ \int_{\mathbb{R}} p(x) e^{t x} d x, & X \text { is continuous }\end{cases}
$$

provided that $e^{t X}$ is integrable. It is obvious $M(0)=1$.

Moment Generating Function

- The moment generating function of a random variable X is defined for all values of t by

$$
M(t)=\mathbb{E} e^{t X}= \begin{cases}\sum_{x} p(x) e^{t x}, & X \text { is discrete-valued } \\ \int_{\mathbb{R}} p(x) e^{t x} d x, & X \text { is continuous }\end{cases}
$$

provided that $e^{t X}$ is integrable. It is obvious $M(0)=1$.

- Once $M(t)$ can be defined, one can show $M(t) \in C^{\infty}$ in its domain and its relation to the nth moments

$$
M^{(n)}(t)=\mathbb{E}\left(X^{n} e^{t X}\right) \text { and } \mu_{n}:=\mathbb{E} X^{n}=M^{(n)}(0), n \in \mathbb{N}
$$

This gives

$$
M(t)=\sum_{n=0}^{\infty} \mu_{n} \frac{t^{n}}{n!},
$$

which tells why $M(t)$ is called the moment generating function.

Moment Generating Function: Property

Theorem
Denote $M_{X}(t), M_{Y}(t)$ and $M_{X+Y}(t)$ the moment generating functions of random variables X, Y and $X+Y$, respectively. If X, Y are independent, we have

$$
M_{X+Y}(t)=M_{X}(t) M_{Y}(t)
$$

The proof is straightforward.

Moment Generating Function: Examples

The following moment generating functions of typical random variables can be obtained by direct calculations.
(a) Binomial distribution: $M(t)=\left(p e^{t}+1-p\right)^{n}$.

Moment Generating Function: Examples

The following moment generating functions of typical random variables can be obtained by direct calculations.
(a) Binomial distribution: $M(t)=\left(p e^{t}+1-p\right)^{n}$.
(b) Poisson distribution: $M(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.

Moment Generating Function: Examples

The following moment generating functions of typical random variables can be obtained by direct calculations.
(a) Binomial distribution: $M(t)=\left(p e^{t}+1-p\right)^{n}$.
(b) Poisson distribution: $M(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.
(c) Exponential distribution: $M(t)=\lambda /(\lambda-t)$ for $t<\lambda$.

Moment Generating Function: Examples

The following moment generating functions of typical random variables can be obtained by direct calculations.
(a) Binomial distribution: $M(t)=\left(p e^{t}+1-p\right)^{n}$.
(b) Poisson distribution: $M(t)=\exp \left[\lambda\left(e^{t}-1\right)\right]$.
(c) Exponential distribution: $M(t)=\lambda /(\lambda-t)$ for $t<\lambda$.
(d) Normal distribution $N\left(\mu, \sigma^{2}\right): M(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)$.

Cumulants Generating Function

- The cumulant generating function $K(t)$ is defined based on $M(t)$ by

$$
K(t)=\ln M(t)=\ln \mathbb{E} e^{t X}=\sum_{n=1}^{\infty} \kappa_{n} \frac{t^{n}}{n!}
$$

With such definition, we have the cumulants $\kappa_{0}=0$ and

$$
\kappa_{n}=K^{(n)}(0), \quad n \in \mathbb{N} .
$$

Cumulants Generating Function

- The cumulant generating function $K(t)$ is defined based on $M(t)$ by

$$
K(t)=\ln M(t)=\ln \mathbb{E} e^{t X}=\sum_{n=1}^{\infty} \kappa_{n} \frac{t^{n}}{n!}
$$

With such definition, we have the cumulants $\kappa_{0}=0$ and

$$
\kappa_{n}=K^{(n)}(0), \quad n \in \mathbb{N} .
$$

- The moment and cumulant generating functions have explicit meaning in statistical physics, in which

$$
Z(\beta)=\mathbb{E} e^{-\beta E}, \quad F(\beta)=-\beta^{-1} \ln Z(\beta)
$$

are called partition function and Helmholtz free energy, respectively. They can be connected to M and K by

$$
Z(\beta)=M_{X}(-\beta), \quad F(\beta)=-\beta^{-1} K_{X}(-\beta)
$$

if X is taken as E, the energy of the system.

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma

i.o. Set

Let $\left\{A_{n}\right\}$ be a sequence of events, $A_{n} \in \mathcal{F}$. Define
$\limsup \left(A_{n}\right)=\left\{\omega \in \Omega, \quad \omega \in A_{n}\right.$ infinitely often (i.o.) $\}$
$n \rightarrow \infty$

$$
=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}
$$

Question: What is the set

$$
\liminf _{n \rightarrow \infty}\left(A_{n}\right):=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} ?
$$

First Borel-Cantelli Lemma

Lemma (First Borel-Cantelli Lemma)
 If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<+\infty$, then

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\mathbb{P}\left\{\omega: \omega \in A_{n}, \text { i.o. }\right\}=0
$$

First Borel-Cantelli Lemma

Lemma (First Borel-Cantelli Lemma)
If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)<+\infty$, then

$$
\mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=\mathbb{P}\left\{\omega: \omega \in A_{n}, i . o .\right\}=0
$$

Proof.
We have

$$
\mathbb{P}\left\{\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}\right\} \leq \mathbb{P}\left\{\bigcup_{k=n}^{\infty} A_{k}\right\} \leq \sum_{k=n}^{\infty} \mathbb{P}\left(A_{k}\right)
$$

for any n, but the last term goes to 0 , as $n \rightarrow \infty$.

Borel-Cantelli Lemma: An Application

As an example of the application of this result, we prove

Proposition (BCL-Application)

Let $\left\{X_{n}\right\}$ be a sequence of identically distributed (not necessarily independent) random variables, such that

$$
\mathbb{E}\left|X_{n}\right|<+\infty
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{X_{n}}{n}=0 \quad \text { a.s. }
$$

Chebyshev Inequality

Lemma (Chebyshev Inequality)
Let X be a random variable such that $\mathbb{E}|X|^{k}<+\infty$, for some integer k. Then

$$
P\{|X|>\lambda\} \leq \frac{1}{\lambda^{k}} \mathbb{E}|X|^{k}
$$

for any positive constant λ.
Proof. For any $\lambda>0$,

$$
\begin{aligned}
\mathbb{E}|X|^{k} & =\int_{-\infty}^{\infty}|x|^{k} d \mu \geq \int_{|X| \geq \lambda}|X|^{k} d \mu \\
& \geq \lambda^{k} \int_{|X| \geq \lambda} d \mu=\lambda^{k} P\{|X| \geq \lambda\} .
\end{aligned}
$$

Proof of Proposition BCL-Application

Proof. For any $\epsilon>0$, define

$$
\begin{aligned}
A_{n} & =\left\{\omega \in \Omega:\left|\frac{X_{n}(\omega)}{n}\right|>\epsilon\right\} \\
\sum_{n} P\left(A_{n}\right) & =\sum_{n} P\left\{\left|X_{n}\right|>n \epsilon\right\} \\
& =\sum_{n} \sum_{k=n} P\left\{k \epsilon<\left|X_{n}\right|<(k+1) \epsilon\right\} \\
& =\sum_{k} k P\left\{k \epsilon<\left|X_{n}\right|<(k+1) \epsilon\right\} \\
& \leq \frac{1}{\epsilon} \mathbb{E}|X|<+\infty
\end{aligned}
$$

Proof of Proposition BCL-Application: Continued

Therefore if we define

$$
B_{\epsilon}=\left\{\omega \in \Omega, \quad \omega \in A_{n} \text { i.o. }\right\}
$$

then $P\left(B_{\epsilon}\right)=0$. Let $B=\bigcup_{n=1}^{\infty} B_{\frac{1}{n}}$. Then $P(B)=0$, and

$$
\lim _{n \rightarrow \infty} \frac{X_{n}(\omega)}{n}=0, \quad \text { if } \omega \notin B
$$

The proof is done.

Convergence in Probability implies A.S. Convergence in

 subsequence: ProofHere we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume $X=0$.

Convergence in Probability implies A.S. Convergence in

 subsequence: ProofHere we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume $X=0$.

- Convergence in probability implies that for any k, we can choose subsequence $X_{n_{k}}$ (n_{k} is increasing in k) such that

$$
\mathbb{P}\left(X_{n_{k}} \geq 1 / k\right) \leq 1 / 2^{k}
$$

Convergence in Probability implies A.S. Convergence in

 subsequence: ProofHere we give the proof by 1 st BCL lemma. Without loss of generality (W.L.G.), we assume $X=0$.

- Convergence in probability implies that for any k, we can choose subsequence $X_{n_{k}}$ (n_{k} is increasing in k) such that

$$
\mathbb{P}\left(X_{n_{k}} \geq 1 / k\right) \leq 1 / 2^{k}
$$

- For any $\epsilon>0$, we have

$$
\sum_{k=1}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon\right)=\sum_{k=1}^{k_{\epsilon}}+\sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon\right)<\infty, \quad 1 / k_{\epsilon} \leq \epsilon
$$

Convergence in Probability implies A.S. Convergence in

 subsequence: ProofHere we give the proof by 1 st BCL lemma. Without loss of generality (W.L.G.), we assume $X=0$.

- Convergence in probability implies that for any k, we can choose subsequence $X_{n_{k}}$ (n_{k} is increasing in k) such that

$$
\mathbb{P}\left(X_{n_{k}} \geq 1 / k\right) \leq 1 / 2^{k}
$$

- For any $\epsilon>0$, we have

$$
\sum_{k=1}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon\right)=\sum_{k=1}^{k_{\epsilon}}+\sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon\right)<\infty, \quad 1 / k_{\epsilon} \leq \epsilon
$$

- From the 1st BCL lemma, we have

$$
\mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon, \text { i.o. }\right)=0 \quad \text { for any } \epsilon>0
$$

Convergence in Probability implies A.S. Convergence in subsequence: Proof

Here we give the proof by 1 st BCL lemma. Without loss of generality (W.L.G.), we assume $X=0$.

- Convergence in probability implies that for any k, we can choose subsequence $X_{n_{k}}$ (n_{k} is increasing in k) such that

$$
\mathbb{P}\left(X_{n_{k}} \geq 1 / k\right) \leq 1 / 2^{k}
$$

- For any $\epsilon>0$, we have

$$
\sum_{k=1}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon\right)=\sum_{k=1}^{k_{\epsilon}}+\sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon\right)<\infty, \quad 1 / k_{\epsilon} \leq \epsilon
$$

- From the 1st BCL lemma, we have

$$
\mathbb{P}\left(\left|X_{n_{k}}\right| \geq \epsilon, \text { i.o. }\right)=0 \quad \text { for any } \epsilon>0
$$

- With similar argument as before, we have the almost sure convergence of $\left\{X_{n_{k}}\right\}$ to 0 .

Second Borel-Cantelli Lemma

Lemma (Second Borel-Cantelli Lemma)
If $\sum_{n=1}^{\infty} P\left(A_{n}\right)=+\infty$, and A_{n} are mutually independent, then

$$
P\left\{\omega \in \Omega, \quad \omega \in A_{n} \text { i.o. }\right\}=1
$$

