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Discrete Examples: Bernoulli distribution Ber(p)
We will first consider the elementary and intuitive aspects of
probability here. In the discrete case, the function P(X) is called
the probability mass function (pmf).

Bernoulli distribution Ber(p).

I Bernoulli distribution:

P(X) =

{
p, X = 1,
q, X = 0.

where p > 0, q > 0, p+ q = 1.

I If p = q = 1
2 , it is the well-known fair-coin tossing game.

I The mean and variance are

EX = p,Var(X) = pq.
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Discrete Examples: Categorical distribution Cat(p)
Categorical distribution Cat(p).
I A generalization of Bernoulli distribution, in which each trial

results in exactly one of some fixed number r possible
outcomes with probability p1, p2, . . . , pr, where

r∑
i=1

pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , r,

I Denote X = ek = (δkj)j=1:r for k = 1 : r instead of
X ∈ {1, 2, . . . , r} if the outcome is k. And denote

X = (X1, . . . , Xr).

I The pmf is:

P(X = ek) = pk, k ∈ {1, 2, . . . , r}
I The mean and variance are

E(Xi) = pi, Var(Xi) = pi(1− pi).
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Discrete Examples: Binomial distribution B(n, p)

Binomial distribution B(n, p):

I Consider n independent experiments of Bernoulli distribution
Xk

I A binomially distributed random variable X can be viewed as
the sum of n independent Bernoulli trials Xk. Define

X := X1 + . . .+Xn

I Then
P(X = k) = Cknp

kqn−k.

I The mean and variance are

EX = np,Var(X) = npq.
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Discrete Examples: Multinomial distribution M(n,p)
Multinomial distribution M(n,p).

I A generalization of binomial distribution, in which each trial is
a categorically distributed RV with parameter p.

I Let Xi indicate the number of times the i-th outcome was
observed over the n trials. Then

X = (X1, . . . , Xr).

I The pmf of the multinomial distribution is:

P(X1 = x1, . . . , Xr = xr) =
n!

x1! · · ·xr!
px11 · · · p

xr
r ,

where n = x1 + · · ·+ xr.

I The mean, variance and covariance are E(Xi) = npi,

Var(Xi) = npi(1− pi), Cov(Xi, Xj) = −npipj (i 6= j).
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Discrete Examples: Poisson distribution P(λ)

Poisson distribution P(λ).

I The number X of radiated particles in a fixed time τ obeys

P(X = k) =
λk

k!
e−λ,

where λ is the average number of radiated particles each time.

I The mean and variance are

EX = λ,Var(X) = λ.

I Poisson distribution may be viewed as the limit of binomial
distribution (the law of rare events)

Cknp
kqn−k −→ λk

k!
e−λ (n→∞, np = λ).
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Discrete Examples: Poisson distribution P(λ)

I Poisson distribution can also describe the spatial distribution
of randomly scattered points.

P(XA = n) =
(λ ·meas(A))n

n!
e−λ·meas(A).

A: a set in R2,
XA(ω): number of points in A.
λ: scattering density.



Continuous Examples: Uniform distribution U [0, 1]

In continuous case, the function p(x) is called the probability
density function (pdf).

Uniform distribution U [0, 1]:

I The pdf

p(x) =

{
1 if x ∈ [0, 1]
0 otherwise

I The mean and variance are

EX =
1

2
,Var(X) =

1

12
.



Continuous Examples: Uniform distribution U [0, 1]

In continuous case, the function p(x) is called the probability
density function (pdf).

Uniform distribution U [0, 1]:

I The pdf

p(x) =

{
1 if x ∈ [0, 1]
0 otherwise

I The mean and variance are

EX =
1

2
,Var(X) =

1

12
.



Continuous Examples: Exponential distribution: Exp(λ)

Exponential distribution: Exp(λ)

I The pdf with (λ > 0)

p(x) =

{
0 if x < 0
λe−λx if x ≥ 0

I The mean and variance are

EX =
1

λ
,Var(X) =

1

λ2
.

I Waiting time for continuous time Markov process also has
exponential distribution, where λ is the rate of the process.
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Continuous Examples: Gaussian distribution N(µ,Σ)

I Normal distribution(Gaussian distribution)(N(0, 1)):

p(x) =
1√
2π
e−

x2

2

or more generally N(µ, σ)

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

where µ is the mean (expectation), σ2 is the variance.

I High dimensional case (N(µ,Σ2))

p(x) =
1

(2π)n/2(det Σ)1/2
e−(X−µ)TΣ−1(X−µ)

where µ is the mean, Σ is the covariance matrix of X.

I More general Gaussian distribution with det Σ = 0?
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Remarks on Gaussian distribution

I In 1D case, the normal distribution N(np, npq) may be viewed
as the limit of the Binomial distribution B(n, p) when n is
large. This is the famous De Moivre-Laplace limit theorem. It
is a special case of the central limit theorem (CLT). Notice
that

B(n, p)− np
√
npq

−→ N(0, 1) as n→∞.

I In 1D case, the normal distribution N(λ, λ) may be viewed as
the limit of the Poisson distribution P(λ) when λ is large.
Notice the simple fact that the sum of two independent P(λ)
and P(µ) is P(λ+ µ) (why?), we can decompose P(λ) into
the sum of n i.i.d. P(λ/n), we have

P(λ)− λ√
λ

−→ N(0, 1) when λ is large.

Question: What if n→∞?



Remarks on Gaussian distribution

I In 1D case, the normal distribution N(np, npq) may be viewed
as the limit of the Binomial distribution B(n, p) when n is
large. This is the famous De Moivre-Laplace limit theorem. It
is a special case of the central limit theorem (CLT). Notice
that

B(n, p)− np
√
npq

−→ N(0, 1) as n→∞.

I In 1D case, the normal distribution N(λ, λ) may be viewed as
the limit of the Poisson distribution P(λ) when λ is large.
Notice the simple fact that the sum of two independent P(λ)
and P(µ) is P(λ+ µ) (why?), we can decompose P(λ) into
the sum of n i.i.d. P(λ/n), we have

P(λ)− λ√
λ

−→ N(0, 1) when λ is large.

Question: What if n→∞?



Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma



Axiomatic Setup: Probability Space

I Sample space Ω: the set of all outcomes ω.

I Event space: σ-algebra F
F is a collection of subsets of Ω:

1. Ω ∈ F ;
2. If A ∈ F , then Ā = Ω\A ∈ F ;
3. If A1, A2, · · · , An, · · · ∈ F , then

⋃∞
j=1Aj ∈ F .

(Ω,F) is called a measurable space.

I Probability measure P

1. (Positive) ∀A ∈ F , P (A) ≥ 0;
2. (Countably additive) If A1, A2, · · · ∈ F , and they are disjoint,

then P (
⋃∞

j=1Aj) =
∑∞

j=1 P (Aj);
3. (Normalization) P(Ω) = 1.

I Probability space — Triplet (Ω,F ,P)
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3. If A1, A2, · · · , An, · · · ∈ F , then

⋃∞
j=1Aj ∈ F .

(Ω,F) is called a measurable space.

I Probability measure P

1. (Positive) ∀A ∈ F , P (A) ≥ 0;
2. (Countably additive) If A1, A2, · · · ∈ F , and they are disjoint,

then P (
⋃∞

j=1Aj) =
∑∞

j=1 P (Aj);
3. (Normalization) P(Ω) = 1.

I Probability space — Triplet (Ω,F ,P)



Axiomatic Setup: Probability Space

I Sample space Ω: the set of all outcomes ω.

I Event space: σ-algebra F
F is a collection of subsets of Ω:

1. Ω ∈ F ;

2. If A ∈ F , then Ā = Ω\A ∈ F ;
3. If A1, A2, · · · , An, · · · ∈ F , then

⋃∞
j=1Aj ∈ F .

(Ω,F) is called a measurable space.

I Probability measure P

1. (Positive) ∀A ∈ F , P (A) ≥ 0;
2. (Countably additive) If A1, A2, · · · ∈ F , and they are disjoint,

then P (
⋃∞

j=1Aj) =
∑∞

j=1 P (Aj);
3. (Normalization) P(Ω) = 1.

I Probability space — Triplet (Ω,F ,P)



Axiomatic Setup: Probability Space

I Sample space Ω: the set of all outcomes ω.

I Event space: σ-algebra F
F is a collection of subsets of Ω:

1. Ω ∈ F ;
2. If A ∈ F , then Ā = Ω\A ∈ F ;
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Radon-Nikodym Theorem

Theorem
Suppose µ is a σ-finite measure, ν is a signed measure on
measurable space (Ω,F). If ν is absolutely continuous w.r.t. µ 1,
then there exists a measurable function f , such that for any A ∈ F

ν(A) =

∫
A
f(ω)µ(dω),

and f is unique in the µ-a.e. sense.

f is defined as the Radon-Nikodym derivative dν/dµ = f .

1For any A ∈ F , if µ(A) = 0, then ν(A) = 0. It is usually denoted as
ν � µ.



Random Variables
I Random variable: a measurable function X : Ω→ R.

I Distribution (or law): a probability measure µ on R defined
for any set B ⊂ R by

µ(B) = Prob(X ∈ B) = P{ω ∈ Ω : X(ω) ∈ B}.

I Probability density function (pdf): an integrable function p(x)
on R such that for any set B ⊂ R,

µ(B) =

∫
B
p(x)dx.

I Mean (expectation):

Ef(X) =

∫
Ω
f(X(ω))P (dω) =

∫
R
f(x)dµ(x) =

∫
R
f(x)p(x)dx.

I Variance:

Var(X) = E(X − EX)2 = EX2 − (EX)2.
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Moments, Covariance, etc.

I p-th moment: E|X|p.

I Covariance:

Cov(X,Y ) = E(X − EX)(Y − EY ).

I Independence:

Ef(X)g(Y ) = Ef(X)Eg(Y ).

for all continuous functions f and g.
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Notions of Convergence

Probability space (Ω,F ,P), {Xn} — a sequence of random
variables, µn — the distirbution of Xn. X — another random
variable with distribution µ.

Definition (Almost sure convergence)

Xn converges to X almost surely as n→∞, (Xn → X, a.s.) if

P{ω ∈ Ω, Xn(ω)→ X(ω)} = 1

Definition (Convergence in probability)

Xn converges to X in probability if for any ε > 0,

P{ω|Xn(ω)−X(ω)| > ε} → 0

as n→ +∞.
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Notions of Convergence

Definition (Convergence in distribution)

Xn converges to X in distribution (Xn
d−→ X) (i.e. µn ⇀ µ or

µn
d−→ µ, weak convergence), if for any bounded continuous

function f
Ef(Xn)→ Ef(X).

Definition (Convergence in Lp)

If Xn, X ∈ Lp, and
E|Xn −X|p → 0.

If p = 1, that is convergence in mean; if p = 2, that is convergence
in mean square.
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Relation between different convergence concepts

Relation:

Almost sure convergence GGGGGBFGGGGG

subsequence
Converge in probability → Converge in distribution

⇑
Lp convergence
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Conditional Expectation: Naive definition

I Let X and Y be two discrete random variables with joint
probability

p(i, j) = P(X = i, Y = j).

I The conditional probability that X = i given that Y = j is
given by

p(i|j) =
p(i, j)∑
i p(i, j)

=
p(i, j)

P(Y = j)

if
∑

i p(i, j) > 0 and conventionaly taken to be zero if∑
i p(i, j) = 0.

I The natural definition of the conditional expectation of f(X)
given that Y = j is

E(f(X)|Y = j) =
∑
i

f(i)p(i|j).
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Conditional Expectation: Abstract definition

I The axiomatic definition of the conditional expectation
Z = E(X|G) is defined with respect to a sub-σ-algebra
G ⊂ F as follows.

Definition (Conditional expectation)

For any random variable X with E|X| <∞, the conditional
expectation Z of X given G is defined as

(i) Z is a random variable which is measurable with respect to G;

(ii) for any set A ∈ G,∫
A
Z(ω)P(dω) =

∫
A
X(ω)P(dω).
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Conditional Expectation: Existence

I The existence of Z = E(X|G) comes from the
Radon-Nikodym theorem by considering the measure µ on G
defined by µ(A) =

∫
AX(ω)P(dω) (see Billingsley: Probability

and measure).

I One can easily find that µ is absolutely continuous with
respect to the measure P|G , the probability measure confined
in G. Thus Z exists and is unique up to the almost sure
equivalence in P|G .

I For the conditional expectation of a random variable X with
respect to another random variable Y , it is natural to define it
as

E(X|Y ) := E(X|G)

where G is the σ-algebra Y −1(B) generated by Y .
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Conditional Expectation: Properties

Theorem (Properties of conditional expectation)

Suppose X, Y are random variables with E|X|,E|Y | <∞,
a, b ∈ R. Then

(i) E(aX + bY |G) = aE(X|G) + bE(Y |G)

(ii) E(E(X|G)) = E(X)

(iii) E(X|G) = X, if X is G-measurable

(iv) E(X|G) = EX, if X is independent of G
(v) E(XY |G) = Y E(X|G), if Y is G-measurable

(vi) E(X|G) = E(E(X|H)|G) for the sub-σ-algebras G ⊂ H.
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Conditional ensen’s inequality

Lemma (Conditional Jensen’s inequality)

Let X be a random variable such that E|X| <∞ and φ : R→ R
is a convex function such that E|φ(X)| <∞. Then

E(φ(X)|G) ≥ φ(E(X|G)).

I The readers may be referred to (K.L. Chung: A course in
probability theory) for the details of the proof.



Conditional Expectation: Abstract vs Naive definition

I To realize the equivalence between the abstract definition
E(X|Y ) := E(X|G) and E(f(X)|Y = j) =

∑
i f(i)p(i|j)

when Y only takes finitely discrete values, we suppose the
following decomposition

Ω =

n⋃
j=1

Ωj

and Ωj = {ω : Y (ω) = j}. Then the σ-algebra G is simply the
sets of all possible unions of Ωj .

I The measurability of conditional expectation E(X|Y ) with
respect to G means E(X|Y ) takes constant on each Ωj ,
which exactly corresponds to E(X|Y = j) as we will see.
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Conditional Expectation: Abstract vs Naive definition

By definition, we have∫
Ωj

E(X|Y )P(dω) =

∫
Ωj

X(ω)P(dω)

which implies

E(X|Y ) =
1

P(Ωj)

∫
Ωj

X(ω)P(dω).

This is exactly E(X|Y = j) when f(X) = X and X also takes
discrete values.



Conditional Expectation: Optimal Approximation

The conditional expectation has the following important property
as the optimal approximation in L2 norm among all of the
Y -measurable functions.

Proposition

Let g(Y ) be any measurable function of Y , then

E(X − E(X|Y ))2 ≤ E(X − g(Y ))2.



Conditional Expectation: Optimal Approximation

Proof.
We have

E(X − g(Y ))2 = E(X − E(X|Y ))2 + E(E(X|Y )− g(Y ))2

+ 2E
[
(X − E(X|Y )(E(X|Y )− g(Y ))

]
.

and

E
[
(X − E(X|Y )(E(X|Y )− g(Y ))

]
=E
[
E
[
(X − E(X|Y )(E(X|Y )− g(Y ))|Y

]]
=E
[
(E(X|Y )− E(X|Y ))(E(X|Y )− g(Y ))

]
= 0

by properties (ii),(iii) and (v) in properties of conditional
expectation. The proof is done.
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Characteristic Function

The characteristic function of a random variable X or its
distribution µ is defined as

f(ξ) = EeiξX =

∫
R
eiξxµ(dx).

Obviously, when X, Y are independent and has characteristic
functions f(ξ), g(ξ), then we have the characteristic function for
Z = X + Y

h(ξ) = EeiξZ = Eeiξ(X+Y ) = f(ξ)g(ξ).
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Characteristic Function: Examples

The characteristic functions of some typical distributions are as
below.

I Bernoulli distribution: f(ξ) = q + peiξ.

I Binomial distribution B(n, p): f(ξ) = (q + peiξ)n.

I Poisson distribtion P(λ): f(ξ) = eλ(eiξ−1).

I Exponential distribution Exp(λ): f(ξ) = (1− λ−1iξ)−1.

I Normal distribution N(µ, σ2): f(ξ) = exp
(
iµξ − σ2ξ2

2

)
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Characteristic Function: Property

Proposition

The characteristic function has the following properties:

1. ∀ξ ∈ R, |f(ξ)| ≤ 1, f(ξ) = f(−ξ), f(0) = 1;

2. f is uniformly continuous on R;

3. f (n)(0) = inEXn provided E|X|n <∞.

Proof.
The proof of statements 1 and 3 are straightforward. The second
statement is valid by
|f(ξ1)− f(ξ2)| = |E(eiξ1X − eiξ2X)| = |E(eiξ1X(1− ei(ξ2−ξ1)X))|

≤ E|1− ei(ξ2−ξ1)X |.
Dominated convergence theorem concludes the proof.
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Dominated convergence theorem concludes the proof.
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Lévy’s continuity theorem

Theorem (Lévy’s continuity theorem)

Let {µn}n∈N be a sequence of probability measures, and {fn}n∈N
be their corresponding characteristic functions.

Assume that

1. fn converges everywhere on R to a limiting function f .

2. f is continuous at ξ = 0.

Then there exists a probability distribution µ such that µu
d→ µ.

Moreover f is the characteristic function of µ.

Conversely, if µn
d→ µ, where µ is some probability distribution

then fn converges to f uniformly in every finite interval, where f is
the characteristic function of µ.

For a proof, see K.L. Chung: A course in probability theory.
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Characteristic Function: Positive Semi-definite Function

As in Fourier transforms, one can also define the inverse transform

ρ(x) =
1

2π

∫
R
e−iξxf(ξ)dξ.

An interesting question arises as to when this gives the density of a
probability measure. To answer this we define

Definition
A function f is called positive semi-definite if for any finite set of
values {ξ1, . . . , ξn}, n ∈ N, the matrix (f(ξi − ξj))ni,j=1 is positive
semi-definite, i.e. ∑

i,j

f(ξi − ξj)viv̄j ≥ 0,

for any v1, . . . , vn ∈ C.



Bochner’s Theorem

Theorem (Bochner’s Theorem)

A function f is the characteristic function of a probability measure
if and only if it is a positive semi-definite and continuous at 0 with
f(0) = 1.

Proof.
We only gives the necessity part. Suppose f is a characteristic
function, then

n∑
i,j=1

f(ξi − ξj)viv̄j =

∫
R

∣∣∣ n∑
i=1

vie
iξix
∣∣∣2µ(dx) ≥ 0.

The sufficiency part is difficult and the readers may be referred to
(K.L. Chung: A course in probability theory).
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Generating function

For discrete R.V. taking integer values, the generating function has
the central importance

G(x) =

∞∑
k=0

P (k)xk.

One immediately has the formula:

P (k) =
1

k!
G(k)(x)

∣∣∣
x=0

.

Some generating functions:

I Bernoulli distribution: G(x) = q + px.

I Binomial distribution: G(x) = (q + px)n.

I Poisson distribution: G(x) = e−λ+λx.
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Generating function

Definition
Define the convolution of two sequences {ak}, {bk} as
{ck} = {ak} ∗ {bk}, the components are defined as

ck =

k∑
j=0

ajbk−j .

Theorem
Consider two independent R.V. X and Y with PMF

P (X = j) = aj , P (Y = k) = bk

and {ck} = {ak} ∗ {bk}. Suppose the generating functions are
A(x), B(x) and C(x), respectively, then the generating function of
X + Y is C(x).
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Moment Generating Function
I The moment generating function of a random variable X is

defined for all values of t by

M(t) = EetX =


∑
x

p(x)etx, X is discrete-valued∫
R
p(x)etxdx, X is continuous

provided that etX is integrable. It is obvious M(0) = 1.

I Once M(t) can be defined, one can show M(t) ∈ C∞ in its
domain and its relation to the nth moments

M (n)(t) = E(XnetX) and µn := EXn = M (n)(0), n ∈ N.

This gives

M(t) =

∞∑
n=0

µn
tn

n!
,

which tells why M(t) is called the moment generating
function.
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Moment Generating Function: Property

Theorem
Denote MX(t),MY (t) and MX+Y (t) the moment generating
functions of random variables X,Y and X + Y , respectively. If
X,Y are independent, we have

MX+Y (t) = MX(t)MY (t).

The proof is straightforward.



Moment Generating Function: Examples

The following moment generating functions of typical random
variables can be obtained by direct calculations.

(a) Binomial distribution: M(t) = (pet + 1− p)n.

(b) Poisson distribution: M(t) = exp[λ(et − 1)].

(c) Exponential distribution: M(t) = λ/(λ− t) for t < λ.

(d) Normal distribution N(µ, σ2): M(t) = exp
(
µt+ σ2t2

2

)
.
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Cumulants Generating Function
I The cumulant generating function K(t) is defined based on
M(t) by

K(t) = lnM(t) = lnEetX =

∞∑
n=1

κn
tn

n!
.

With such definition, we have the cumulants κ0 = 0 and

κn = K(n)(0), n ∈ N.

I The moment and cumulant generating functions have explicit
meaning in statistical physics, in which

Z(β) = Ee−βE , F (β) = −β−1 lnZ(β)

are called partition function and Helmholtz free energy,
respectively. They can be connected to M and K by

Z(β) = MX(−β), F (β) = −β−1KX(−β)

if X is taken as E, the energy of the system.
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i.o. Set

Let {An} be a sequence of events, An ∈ F . Define

lim sup
n→∞

(An) = {ω ∈ Ω, ω ∈ An infinitely often (i.o.)}

=

∞⋂
n=1

∞⋃
k=n

Ak

Question: What is the set

lim inf
n→∞

(An) :=

∞⋃
n=1

∞⋂
k=n

Ak?



First Borel-Cantelli Lemma

Lemma (First Borel-Cantelli Lemma)

If
∑∞

n=1 P(An) < +∞, then

P(lim sup
n→∞

An) = P{ω : ω ∈ An, i.o.} = 0.

Proof.
We have

P{
∞⋂
n=1

∞⋃
k=n

Ak} ≤ P{
∞⋃
k=n

Ak} ≤
∞∑
k=n

P(Ak)

for any n, but the last term goes to 0, as n→∞.
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Borel-Cantelli Lemma: An Application

As an example of the application of this result, we prove

Proposition (BCL-Application)

Let {Xn} be a sequence of identically distributed (not necessarily
independent) random variables, such that

E|Xn| < +∞.

Then

lim
n→∞

Xn

n
= 0 a.s.



Chebyshev Inequality

Lemma (Chebyshev Inequality)

Let X be a random variable such that E|X|k < +∞, for some
integer k. Then

P{|X| > λ} ≤ 1

λk
E|X|k

for any positive constant λ.

Proof. For any λ > 0,

E|X|k =

∫ ∞
−∞
|x|kdµ ≥

∫
|X|≥λ

|X|kdµ

≥ λk
∫
|X|≥λ

dµ = λkP{|X| ≥ λ}.



Proof of Proposition BCL-Application

Proof. For any ε > 0, define

An = {ω ∈ Ω :

∣∣∣∣Xn(ω)

n

∣∣∣∣ > ε}∑
n

P (An) =
∑
n

P{|Xn| > nε}

=
∑
n

∑
k=n

P{kε < |Xn| < (k + 1)ε}

=
∑
k

kP{kε < |Xn| < (k + 1)ε}

≤ 1

ε
E|X| < +∞



Proof of Proposition BCL-Application: Continued

Therefore if we define

Bε = {ω ∈ Ω, ω ∈ An i.o.}

then P (Bε) = 0. Let B =
⋃∞
n=1B 1

n
. Then P (B) = 0, and

lim
n→∞

Xn(ω)

n
= 0, if ω /∈ B.

The proof is done.



Convergence in Probability implies A.S. Convergence in
subsequence: Proof

Here we give the proof by 1st BCL lemma. Without loss of
generality (W.L.G.), we assume X = 0.

I Convergence in probability implies that for any k, we can
choose subsequence Xnk (nk is increasing in k) such that

P(Xnk ≥ 1/k) ≤ 1/2k

I For any ε > 0, we have

∞∑
k=1

P(|Xnk | ≥ ε) =

kε∑
k=1

+
∞∑
k=kε

P(|Xnk | ≥ ε) <∞, 1/kε ≤ ε

I From the 1st BCL lemma, we have

P(|Xnk | ≥ ε, i.o.) = 0 for any ε > 0

I With similar argument as before, we have the almost sure
convergence of {Xnk} to 0.
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Second Borel-Cantelli Lemma

Lemma (Second Borel-Cantelli Lemma)

If
∑∞

n=1 P (An) = +∞, and An are mutually independent, then

P{ω ∈ Ω, ω ∈ An i.o.} = 1.
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