Lecture 2. Random Variables

Tiejun Li^{1,2}

¹School of Mathematical Sciences (SMS), & ²Center for Machine Learning Research (CMLR), Peking University, Beijing 100871, P.R. China *tieli@pku.edu.cn*

Office: No. 1 Science Building, Room 1376E

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Borel-Cantelli Lemma

Discrete Examples: Bernoulli distribution $\mathcal{B}er(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B}er(p)$.

Bernoulli distribution:

$$\mathbb{P}(X) = \begin{cases} p, & X = 1, \\ q, & X = 0. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where p > 0, q > 0, p + q = 1.

Discrete Examples: Bernoulli distribution $\mathcal{B}er(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B}er(p)$.

Bernoulli distribution:

$$\mathbb{P}(X) = \begin{cases} p, & X = 1, \\ q, & X = 0. \end{cases}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where p > 0, q > 0, p + q = 1. If $p = q = \frac{1}{2}$, it is the well-known fair-coin tossing game.

Discrete Examples: Bernoulli distribution $\mathcal{B}er(p)$

We will first consider the elementary and intuitive aspects of probability here. In the discrete case, the function $\mathbb{P}(X)$ is called the probability mass function (pmf).

Bernoulli distribution $\mathcal{B}er(p)$.

Bernoulli distribution:

$$\mathbb{P}(X) = \begin{cases} p, & X = 1, \\ q, & X = 0. \end{cases}$$

where p > 0, q > 0, p + q = 1.

- If $p = q = \frac{1}{2}$, it is the well-known fair-coin tossing game.
- The mean and variance are

$$\mathbb{E}X = p, \operatorname{Var}(X) = pq.$$

Discrete Examples: Categorical distribution $Cat(\mathbf{p})$

Categorical distribution Cat(p).

A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability p₁, p₂,..., p_r, where

$$\sum_{i=1}^{r} p_i = 1, \quad 0 \le p_i \le 1, \ i = 1, \dots, r,$$

Discrete Examples: Categorical distribution $Cat(\mathbf{p})$ Categorical distribution $Cat(\mathbf{p})$.

A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability p₁, p₂, ..., p_r, where

$$\sum_{i=1}^{r} p_i = 1, \quad 0 \le p_i \le 1, \ i = 1, \dots, r,$$

• Denote $X = e_k = (\delta_{kj})_{j=1:r}$ for k = 1:r instead of $X \in \{1, 2, ..., r\}$ if the outcome is k. And denote

$$X = (X_1, \ldots, X_r).$$

Discrete Examples: Categorical distribution $Cat(\mathbf{p})$ Categorical distribution $Cat(\mathbf{p})$.

A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability p₁, p₂, ..., p_r, where

$$\sum_{i=1}^{r} p_i = 1, \quad 0 \le p_i \le 1, \ i = 1, \dots, r,$$

• Denote $X = e_k = (\delta_{kj})_{j=1:r}$ for k = 1:r instead of $X \in \{1, 2, ..., r\}$ if the outcome is k. And denote

$$X = (X_1, \ldots, X_r).$$

The pmf is:

$$\mathbb{P}(X = \boldsymbol{e}_k) = p_k, \quad k \in \{1, 2, \dots, r\}$$

Discrete Examples: Categorical distribution $Cat(\mathbf{p})$ Categorical distribution $Cat(\mathbf{p})$.

A generalization of Bernoulli distribution, in which each trial results in exactly one of some fixed number r possible outcomes with probability p₁, p₂,..., p_r, where

$$\sum_{i=1}^{r} p_i = 1, \quad 0 \le p_i \le 1, \ i = 1, \dots, r,$$

• Denote $X = e_k = (\delta_{kj})_{j=1:r}$ for k = 1:r instead of $X \in \{1, 2, ..., r\}$ if the outcome is k. And denote

$$X = (X_1, \ldots, X_r).$$

The pmf is:

$$\mathbb{P}(X = \boldsymbol{e}_k) = p_k, \quad k \in \{1, 2, \dots, r\}$$

The mean and variance are

$$\mathbb{E}(X_i) = p_i, \quad \operatorname{Var}(X_i) = p_i(1 - p_i).$$

Binomial distribution B(n, p):

• Consider n independent experiments of Bernoulli distribution X_k

Binomial distribution B(n, p):

- Consider n independent experiments of Bernoulli distribution X_k
- ▶ A binomially distributed random variable *X* can be viewed as the sum of *n* independent Bernoulli trials *X_k*. Define

 $X := X_1 + \ldots + X_n$

Binomial distribution B(n, p):

- Consider n independent experiments of Bernoulli distribution X_k
- ▶ A binomially distributed random variable *X* can be viewed as the sum of *n* independent Bernoulli trials *X_k*. Define

$$X := X_1 + \ldots + X_n$$

Then

$$\mathbb{P}(X=k) = C_n^k p^k q^{n-k}$$

Binomial distribution B(n, p):

- Consider n independent experiments of Bernoulli distribution X_k
- ▶ A binomially distributed random variable *X* can be viewed as the sum of *n* independent Bernoulli trials *X_k*. Define

$$X := X_1 + \ldots + X_n$$

Then

$$\mathbb{P}(X=k) = C_n^k p^k q^{n-k}$$

The mean and variance are

$$\mathbb{E}X = np, \operatorname{Var}(X) = npq.$$

A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter p.
- Let X_i indicate the number of times the *i*-th outcome was observed over the n trials. Then

$$X = (X_1, \ldots, X_r).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter p.
- Let X_i indicate the number of times the *i*-th outcome was observed over the n trials. Then

$$X = (X_1, \ldots, X_r).$$

The pmf of the multinomial distribution is:

$$\mathbb{P}(X_1 = x_1, \dots, X_r = x_r) = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r},$$

where $n = x_1 + \cdots + x_r$.

- A generalization of binomial distribution, in which each trial is a categorically distributed RV with parameter p.
- Let X_i indicate the number of times the i-th outcome was observed over the n trials. Then

$$X = (X_1, \ldots, X_r).$$

The pmf of the multinomial distribution is:

$$\mathbb{P}(X_1 = x_1, \dots, X_r = x_r) = \frac{n!}{x_1! \cdots x_r!} p_1^{x_1} \cdots p_r^{x_r},$$

where $n = x_1 + \cdots + x_r$.

- ▶ The mean, variance and covariance are $\mathbb{E}(X_i) = np_i$,

$$Var(X_i) = np_i(1 - p_i), Cov(X_i, X_j) = -np_ip_j \ (i \neq j).$$

Poisson distribution $\mathcal{P}(\lambda)$.

 \blacktriangleright The number X of radiated particles in a fixed time τ obeys

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

where λ is the average number of radiated particles each time.

Poisson distribution $\mathcal{P}(\lambda)$.

 \blacktriangleright The number X of radiated particles in a fixed time τ obeys

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

where λ is the average number of radiated particles each time. \blacktriangleright The mean and variance are

$$\mathbb{E}X = \lambda, \operatorname{Var}(X) = \lambda.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Poisson distribution $\mathcal{P}(\lambda)$.

 \blacktriangleright The number X of radiated particles in a fixed time τ obeys

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!} e^{-\lambda},$$

where λ is the average number of radiated particles each time. The mean and variance are

$$\mathbb{E}X = \lambda, \operatorname{Var}(X) = \lambda.$$

 Poisson distribution may be viewed as the limit of binomial distribution (the law of rare events)

$$C_n^k p^k q^{n-k} \longrightarrow \frac{\lambda^k}{k!} e^{-\lambda} \quad (n \to \infty, np = \lambda).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

 Poisson distribution can also describe the spatial distribution of randomly scattered points.

$$\mathbb{P}(X_A = n) = \frac{(\lambda \cdot \mathsf{meas}(A))^n}{n!} e^{-\lambda \cdot \mathsf{meas}(A)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A: a set in R^2 , $X_A(\omega)$: number of points in A. λ : scattering density. Continuous Examples: Uniform distribution $\mathcal{U}[0,1]$

In continuous case, the function p(x) is called the probability density function (pdf).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Uniform distribution $\mathcal{U}[0,1]$:

Continuous Examples: Uniform distribution $\mathcal{U}[0,1]$

In continuous case, the function p(x) is called the probability density function (pdf).

Uniform distribution $\mathcal{U}[0,1]$:

The pdf

$$p(x) = \begin{cases} 1 & \text{if } x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

The mean and variance are

$$\mathbb{E}X = \frac{1}{2}, \operatorname{Var}(X) = \frac{1}{12}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Continuous Examples: Exponential distribution: $\mathcal{E}xp(\lambda)$

Exponential distribution: $\mathcal{E}xp(\lambda)$

► The pdf with $(\lambda > 0)$

$$p(x) = \begin{cases} 0 & \text{if } x < 0\\ \lambda e^{-\lambda x} & \text{if } x \ge 0 \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Continuous Examples: Exponential distribution: $\mathcal{E}xp(\lambda)$

Exponential distribution: $\mathcal{E}xp(\lambda)$

► The pdf with $(\lambda > 0)$

$$p(x) = \left\{ \begin{array}{ll} 0 & \text{if } x < 0 \\ \lambda e^{-\lambda x} & \text{if } x \ge 0 \end{array} \right.$$

The mean and variance are

$$\mathbb{E}X = \frac{1}{\lambda}, \operatorname{Var}(X) = \frac{1}{\lambda^2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Continuous Examples: Exponential distribution: $\mathcal{E}xp(\lambda)$

Exponential distribution: $\mathcal{E}xp(\lambda)$

▶ The pdf with $(\lambda > 0)$

$$p(x) = \begin{cases} 0 & \text{if } x < 0\\ \lambda e^{-\lambda x} & \text{if } x \ge 0 \end{cases}$$

The mean and variance are

$$\mathbb{E}X = \frac{1}{\lambda}, \operatorname{Var}(X) = \frac{1}{\lambda^2}.$$

Waiting time for continuous time Markov process also has exponential distribution, where λ is the rate of the process.

Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

• Normal distribution (Gaussian distribution) (N(0,1)):

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

or more generally $N(\mu,\sigma)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where μ is the mean (expectation), σ^2 is the variance.

Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

▶ Normal distribution(Gaussian distribution)(N(0,1)):

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

or more generally $N(\mu,\sigma)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean (expectation), σ^2 is the variance. • High dimensional case $(N(\mu, \Sigma^2))$

$$p(x) = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} e^{-(\mathbf{X} - \mu)^T \Sigma^{-1} (\mathbf{X} - \mu)}$$

where μ is the mean, Σ is the covariance matrix of X.

Continuous Examples: Gaussian distribution $N(\mu, \Sigma)$

▶ Normal distribution(Gaussian distribution)(N(0,1)):

$$p(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

or more generally $N(\mu,\sigma)$

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ is the mean (expectation), σ^2 is the variance.

• High dimensional case $(N(\mu, \Sigma^2))$

$$p(x) = \frac{1}{(2\pi)^{n/2} (\det \Sigma)^{1/2}} e^{-(\mathbf{X} - \mu)^T \Sigma^{-1} (\mathbf{X} - \mu)}$$

where μ is the mean, Σ is the covariance matrix of X.

• More general Gaussian distribution with $\det \Sigma = 0$?

Remarks on Gaussian distribution

In 1D case, the normal distribution N(np, npq) may be viewed as the limit of the Binomial distribution B(n, p) when n is large. This is the famous De Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT). Notice that

$${B(n,p)-np\over \sqrt{npq}} \longrightarrow N(0,1) \ {\rm as} \ n \to \infty.$$

Remarks on Gaussian distribution

In 1D case, the normal distribution N(np, npq) may be viewed as the limit of the Binomial distribution B(n, p) when n is large. This is the famous De Moivre-Laplace limit theorem. It is a special case of the central limit theorem (CLT). Notice that

$$\frac{B(n,p)-np}{\sqrt{npq}} \longrightarrow N(0,1) \text{ as } n \to \infty.$$

In 1D case, the normal distribution N(λ, λ) may be viewed as the limit of the Poisson distribution P(λ) when λ is large. Notice the simple fact that the sum of two independent P(λ) and P(μ) is P(λ + μ) (why?), we can decompose P(λ) into the sum of n i.i.d. P(λ/n), we have

$$\frac{\mathcal{P}(\lambda) - \lambda}{\sqrt{\lambda}} \longrightarrow N(0, 1) \text{ when } \lambda \text{ is large.}$$

Question: What if $n \to \infty$?

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Borel-Cantelli Lemma

Sample space Ω : the set of all outcomes ω .

Sample space Ω : the set of all outcomes ω .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Event space: σ-algebra F
 F is a collection of subsets of Ω:

Sample space Ω : the set of all outcomes ω .

Event space: σ-algebra F
 F is a collection of subsets of Ω:

1. $\Omega \in \mathcal{F}$;

Sample space Ω : the set of all outcomes ω .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Event space: σ-algebra F
 F is a collection of subsets of Ω:
 1. Ω ∈ F:
 - 2. If $A \in \mathcal{F}$, then $\bar{A} = \Omega \setminus A \in \mathcal{F}$;
Sample space Ω : the set of all outcomes ω .

Event space: σ-algebra F
F is a collection of subsets of Ω:
1. Ω ∈ F;
2. If A ∈ F, then Ā = Ω\A ∈ F;
3. If A₁, A₂, ..., A_n, ... ∈ F, then ⋃_{i=1}[∞] A_j ∈ F.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Sample space Ω : the set of all outcomes ω .
- Event space: σ-algebra F
 F is a collection of subsets of Ω:
 1. Ω ∈ F;
 2. If A ∈ F, then Ā = Ω\A ∈ F;
 3. If A ∈ A = A ∈ F = Ω → A ∈ F;
 - 3. If $A_1, A_2, \dots, A_n, \dots \in \mathcal{F}$, then $\bigcup_{j=1}^{\infty} A_j \in \mathcal{F}$. (Ω, \mathcal{F}) is called a measurable space.

Probability measure P

- Sample space Ω : the set of all outcomes ω .
- Event space: σ-algebra F
 F is a collection of subsets of Ω:

 Ω ∈ F;
 If A ∈ F, then Ā = Ω\A ∈ F;
 If A₁, A₂, ..., A_n, ... ∈ F, then ⋃_{j=1}[∞] A_j ∈ F. (Ω, F) is called a measurable space.

 Probability measure P

1. (Positive) $\forall A \in \mathcal{F}, P(A) \ge 0$;

- Sample space Ω : the set of all outcomes ω .
- Event space: σ-algebra F
 F is a collection of subsets of Ω:
 1. Ω ∈ F;
 2. If A ∈ F, then Ā = Ω\A ∈ F;
 3. If A₁, A₂, ..., A_n, ... ∈ F, then ⋃_{j=1}[∞] A_j ∈ F. (Ω, F) is called a measurable space.
- Probability measure P
 - 1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0;$
 - 2. (Countably additive) If $A_1, A_2, \dots \in \mathcal{F}$, and they are disjoint, then $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$;

- Sample space Ω : the set of all outcomes ω .
- Event space: σ-algebra F
 F is a collection of subsets of Ω:
 1. Ω ∈ F;
 2. If A ∈ F, then Ā = Ω\A ∈ F;
 3. If A₁, A₂, ..., A_n, ... ∈ F, then ⋃_{j=1}[∞] A_j ∈ F. (Ω, F) is called a measurable space.
- Probability measure P
 - 1. (Positive) $\forall A \in \mathcal{F}, P(A) \geq 0$;
 - 2. (Countably additive) If $A_1, A_2, \dots \in \mathcal{F}$, and they are disjoint, then $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. (Normalization) $\mathbb{P}(\Omega) = 1$.

- Sample space Ω : the set of all outcomes ω .
- Event space: σ-algebra F
 F is a collection of subsets of Ω:
 1. Ω ∈ F;
 2. If A ∈ F, then Ā = Ω\A ∈ F;
 3. If A₁, A₂, ..., A_n, ... ∈ F, then ⋃_{j=1}[∞] A_j ∈ F. (Ω, F) is called a measurable space.
 Probability measure P
 - 1. (Positive) $\forall A \in \mathcal{F}, P(A) \ge 0$;
 - 2. (Countably additive) If $A_1, A_2, \dots \in \mathcal{F}$, and they are disjoint, then $P(\bigcup_{j=1}^{\infty} A_j) = \sum_{j=1}^{\infty} P(A_j)$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. (Normalization) $\mathbb{P}(\Omega) = 1$.

• Probability space — Triplet $(\Omega, \mathcal{F}, \mathbb{P})$

Radon-Nikodym Theorem

Theorem

Suppose μ is a σ -finite measure, ν is a signed measure on measurable space (Ω, \mathcal{F}) . If ν is absolutely continuous w.r.t. μ^{-1} , then there exists a measurable function f, such that for any $A \in \mathcal{F}$

$$\nu(A) = \int_A f(\omega) \mu(d\omega),$$

and f is unique in the μ -a.e. sense.

f is defined as the Radon-Nikodym derivative $d\nu/d\mu = f$.

¹For any $A \in \mathcal{F}$, if $\mu(A) = 0$, then $\nu(A) = 0$. It is usually denoted as $\nu \ll \mu$.

▶ Random variable: a measurable function $X : \Omega \to \mathbb{R}$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

- ▶ Random variable: a measurable function $X : \Omega \to \mathbb{R}$.
- ▶ Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$\mu(B) = \operatorname{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Random variable: a measurable function $X : \Omega \to \mathbb{R}$.
- ▶ Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$\mu(B) = \operatorname{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.$$

Probability density function (pdf): an integrable function p(x) on R such that for any set B ⊂ R,

$$\mu(B) = \int_B p(x) dx.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Random variable: a measurable function $X : \Omega \to \mathbb{R}$.
- ▶ Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$\mu(B) = \operatorname{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.$$

Probability density function (pdf): an integrable function p(x) on R such that for any set B ⊂ R,

$$\mu(B) = \int_B p(x) dx.$$

Mean (expectation):

$$\mathbb{E}f(X) = \int_{\Omega} f(X(\omega))P(d\omega) = \int_{R} f(x)d\mu(x) = \int_{R} f(x)p(x)dx.$$

- Random variable: a measurable function $X : \Omega \to \mathbb{R}$.
- ▶ Distribution (or law): a probability measure μ on \mathbb{R} defined for any set $B \subset R$ by

$$\mu(B) = \operatorname{Prob}(X \in B) = \mathbb{P}\{\omega \in \Omega : X(\omega) \in B\}.$$

Probability density function (pdf): an integrable function p(x) on R such that for any set B ⊂ R,

$$\mu(B) = \int_B p(x) dx.$$

Mean (expectation):

$$\mathbb{E}f(X) = \int_{\Omega} f(X(\omega))P(d\omega) = \int_{R} f(x)d\mu(x) = \int_{R} f(x)p(x)dx$$

Variance:

$$\operatorname{Var}(X) = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

Moments, Covariance, etc.

▶ *p*-th moment: $\mathbb{E}|X|^p$.

Moments, Covariance, etc.

▶ *p*-th moment: $\mathbb{E}|X|^p$.

Covariance:

$$\operatorname{Cov}(X,Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Moments, Covariance, etc.

▶ *p*-th moment: $\mathbb{E}|X|^p$.

Covariance:

$$Cov(X,Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$$

Independence:

$$\mathbb{E}f(X)g(Y) = \mathbb{E}f(X)\mathbb{E}g(Y).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

for all continuous functions f and g.

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, $\{X_n\}$ — a sequence of random variables, μ_n — the distibution of X_n . X — another random variable with distribution μ .

Definition (Almost sure convergence)

 X_n converges to X almost surely as $n \to \infty$, $(X_n \to X, \text{ a.s.})$ if

$$\mathbb{P}\{\omega \in \Omega, \quad X_n(\omega) \to X(\omega)\} = 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Probability space $(\Omega, \mathcal{F}, \mathbb{P})$, $\{X_n\}$ — a sequence of random variables, μ_n — the distibution of X_n . X — another random variable with distribution μ .

Definition (Almost sure convergence)

 X_n converges to X almost surely as $n \to \infty$, $(X_n \to X, \text{ a.s.})$ if

$$\mathbb{P}\{\omega \in \Omega, \quad X_n(\omega) \to X(\omega)\} = 1$$

Definition (Convergence in probability)

 X_n converges to X in probability if for any $\epsilon > 0$,

$$\mathbb{P}\{\omega|X_n(\omega) - X(\omega)| > \epsilon\} \to 0$$

A D N A 目 N A E N A E N A B N A C N

as $n \to +\infty$.

Definition (Convergence in distribution)

 X_n converges to X in distribution $(X_n \xrightarrow{d} X)$ (i.e. $\mu_n \xrightarrow{} \mu$ or $\mu_n \xrightarrow{d} \mu$, weak convergence), if for any bounded continuous function f

 $\mathbb{E}f(X_n) \to \mathbb{E}f(X).$

A D N A 目 N A E N A E N A B N A C N

Definition (Convergence in distribution)

 X_n converges to X in distribution $(X_n \xrightarrow{d} X)$ (i.e. $\mu_n \xrightarrow{} \mu$ or $\mu_n \xrightarrow{d} \mu$, weak convergence), if for any bounded continuous function f

 $\mathbb{E}f(X_n) \to \mathbb{E}f(X).$

Definition (Convergence in L^p) If $X_n, X \in L^p$, and $\mathbb{E}|X_n - X|^p \to 0.$

If p = 1, that is convergence in mean; if p = 2, that is convergence in mean square.

Relation between different convergence concepts

Relation:

Almost sure convergence $\underset{\text{subsequence}}{\longleftarrow}$ Converge in probability \rightarrow Converge in distribution $\stackrel{\wedge}{\pitchfork}$ L^p convergence

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Borel-Cantelli Lemma

Conditional Expectation: Naive definition

Let X and Y be two discrete random variables with joint probability

$$p(i,j) = \mathbb{P}(X = i, Y = j).$$

Conditional Expectation: Naive definition

Let X and Y be two discrete random variables with joint probability

$$p(i,j) = \mathbb{P}(X = i, Y = j).$$

The conditional probability that X = i given that Y = j is given by

$$p(i|j) = \frac{p(i,j)}{\sum_i p(i,j)} = \frac{p(i,j)}{\mathbb{P}(Y=j)}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

if $\sum_i p(i,j) > 0$ and conventionaly taken to be zero if $\sum_i p(i,j) = 0.$

Conditional Expectation: Naive definition

Let X and Y be two discrete random variables with joint probability

$$p(i,j) = \mathbb{P}(X = i, Y = j).$$

The conditional probability that X = i given that Y = j is given by

$$p(i|j) = \frac{p(i,j)}{\sum_i p(i,j)} = \frac{p(i,j)}{\mathbb{P}(Y=j)}$$

if $\sum_i p(i,j) > 0$ and conventionaly taken to be zero if $\sum_i p(i,j) = 0.$

The natural definition of the conditional expectation of f(X) given that Y = j is

$$\mathbb{E}(f(X)|Y=j) = \sum_{i} f(i)p(i|j).$$

• The axiomatic definition of the conditional expectation $Z = E(X|\mathcal{G})$ is defined with respect to a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

• The axiomatic definition of the conditional expectation $Z = E(X|\mathcal{G})$ is defined with respect to a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)

For any random variable X with $\mathbb{E}|X| < \infty$, the conditional expectation Z of X given \mathcal{G} is defined as

• The axiomatic definition of the conditional expectation $Z = E(X|\mathcal{G})$ is defined with respect to a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)

For any random variable X with $\mathbb{E}|X|<\infty,$ the conditional expectation Z of X given $\mathcal G$ is defined as

(i) Z is a random variable which is measurable with respect to \mathcal{G} ;

• The axiomatic definition of the conditional expectation $Z = E(X|\mathcal{G})$ is defined with respect to a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$ as follows.

Definition (Conditional expectation)

For any random variable X with $\mathbb{E}|X|<\infty,$ the conditional expectation Z of X given $\mathcal G$ is defined as

(i) Z is a random variable which is measurable with respect to \mathcal{G} ; (ii) for any set $A \in \mathcal{G}$,

$$\int_A Z(\omega) \mathbb{P}(d\omega) = \int_A X(\omega) \mathbb{P}(d\omega).$$

Conditional Expectation: Existence

▶ The existence of $Z = E(X|\mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A) = \int_A X(\omega) \mathbb{P}(d\omega)$ (see Billingsley: Probability and measure).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conditional Expectation: Existence

- ▶ The existence of $Z = E(X|\mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A) = \int_A X(\omega) \mathbb{P}(d\omega)$ (see Billingsley: Probability and measure).
- One can easily find that µ is absolutely continuous with respect to the measure P|g, the probability measure confined in G. Thus Z exists and is unique up to the almost sure equivalence in P|g.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conditional Expectation: Existence

- ▶ The existence of $Z = E(X|\mathcal{G})$ comes from the Radon-Nikodym theorem by considering the measure μ on \mathcal{G} defined by $\mu(A) = \int_A X(\omega) \mathbb{P}(d\omega)$ (see Billingsley: Probability and measure).
- One can easily find that µ is absolutely continuous with respect to the measure P|g, the probability measure confined in G. Thus Z exists and is unique up to the almost sure equivalence in P|g.
- For the conditional expectation of a random variable X with respect to another random variable Y, it is natural to define it as

$$\mathbb{E}(X|Y) := \mathbb{E}(X|\mathcal{G})$$

(日)((1))

where \mathcal{G} is the σ -algebra $Y^{-1}(\mathcal{B})$ generated by Y.

Theorem (Properties of conditional expectation) Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then

Theorem (Properties of conditional expectation) Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(i) $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$

Theorem (Properties of conditional expectation) Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then (i) $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(ii) $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$

Theorem (Properties of conditional expectation) Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(i)
$$\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$$

(ii)
$$\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$$

(iii)
$$\mathbb{E}(X|\mathcal{G}) = X$$
, if X is \mathcal{G} -measurable
Conditional Expectation: Properties

Theorem (Properties of conditional expectation) Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then (i) $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$ (ii) $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- (iii) $\mathbb{E}(X|\mathcal{G}) = X$, if X is \mathcal{G} -measurable
- (iv) $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}X$, if X is independent of \mathcal{G}

Conditional Expectation: Properties

Theorem (Properties of conditional expectation) Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then (i) $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$ (ii) $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$ (iii) $\mathbb{E}(X|\mathcal{G}) = X$, if X is \mathcal{G} -measurable (iv) $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}X$, if X is independent of \mathcal{G} (v) $\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G})$, if Y is \mathcal{G} -measurable

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conditional Expectation: Properties

Theorem (Properties of conditional expectation) Suppose X, Y are random variables with $\mathbb{E}|X|, \mathbb{E}|Y| < \infty$, $a, b \in \mathbb{R}$. Then (i) $\mathbb{E}(aX + bY|\mathcal{G}) = a\mathbb{E}(X|\mathcal{G}) + b\mathbb{E}(Y|\mathcal{G})$ (ii) $\mathbb{E}(\mathbb{E}(X|\mathcal{G})) = \mathbb{E}(X)$ (iii) $\mathbb{E}(X|\mathcal{G}) = X$, if X is \mathcal{G} -measurable (iv) $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}X$, if X is independent of \mathcal{G} (v) $\mathbb{E}(XY|\mathcal{G}) = Y\mathbb{E}(X|\mathcal{G})$, if Y is \mathcal{G} -measurable (vi) $\mathbb{E}(X|\mathcal{G}) = \mathbb{E}(\mathbb{E}(X|\mathcal{H})|\mathcal{G})$ for the sub- σ -algebras $\mathcal{G} \subset \mathcal{H}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Lemma (Conditional Jensen's inequality) Let X be a random variable such that $\mathbb{E}|X| < \infty$ and $\phi : \mathbb{R} \to \mathbb{R}$

Let X be a random variable such that $\mathbb{E}|X| < \infty$ and $\phi : \mathbb{R} \to \mathbb{R}$ is a convex function such that $\mathbb{E}|\phi(X)| < \infty$. Then

 $\mathbb{E}(\phi(X)|\mathcal{G}) \geq \phi(\mathbb{E}(X|\mathcal{G})).$

The readers may be referred to (K.L. Chung: A course in probability theory) for the details of the proof.

Conditional Expectation: Abstract vs Naive definition

▶ To realize the equivalence between the abstract definition $\mathbb{E}(X|Y) := \mathbb{E}(X|\mathcal{G})$ and $\mathbb{E}(f(X)|Y = j) = \sum_i f(i)p(i|j)$ when Y only takes finitely discrete values, we suppose the following decomposition

$$\Omega = \bigcup_{j=1}^{n} \Omega_j$$

and $\Omega_j = \{\omega : Y(\omega) = j\}$. Then the σ -algebra \mathcal{G} is simply the sets of all possible unions of Ω_j .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Conditional Expectation: Abstract vs Naive definition

▶ To realize the equivalence between the abstract definition $\mathbb{E}(X|Y) := \mathbb{E}(X|\mathcal{G})$ and $\mathbb{E}(f(X)|Y = j) = \sum_i f(i)p(i|j)$ when Y only takes finitely discrete values, we suppose the following decomposition

$$\Omega = \bigcup_{j=1}^{n} \Omega_j$$

and $\Omega_j = \{\omega : Y(\omega) = j\}$. Then the σ -algebra \mathcal{G} is simply the sets of all possible unions of Ω_j .

The measurability of conditional expectation 𝔅(X|Y) with respect to 𝔅 means 𝔅(X|Y) takes constant on each Ω_j, which exactly corresponds to 𝔅(X|Y = j) as we will see.

Conditional Expectation: Abstract vs Naive definition

By definition, we have

$$\int_{\Omega_j} \mathbb{E}(X|Y) \mathbb{P}(d\omega) = \int_{\Omega_j} X(\omega) \mathbb{P}(d\omega)$$

which implies

$$\mathbb{E}(X|Y) = \frac{1}{\mathbb{P}(\Omega_j)} \int_{\Omega_j} X(\omega) \mathbb{P}(d\omega).$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

This is exactly $\mathbb{E}(X|Y=j)$ when f(X) = X and X also takes discrete values.

The conditional expectation has the following important property as the optimal approximation in L^2 norm among all of the Y-measurable functions.

Proposition

Let g(Y) be any measurable function of Y, then

$$\mathbb{E}(X - \mathbb{E}(X|Y))^2 \le \mathbb{E}(X - g(Y))^2.$$

Conditional Expectation: Optimal Approximation

Proof. We have

$$\mathbb{E}(X - g(Y))^{2} = \mathbb{E}(X - E(X|Y))^{2} + \mathbb{E}(E(X|Y) - g(Y))^{2} + 2\mathbb{E}\Big[(X - E(X|Y)(E(X|Y) - g(Y))\Big].$$

and

$$\begin{split} & \mathbb{E}\Big[(X - \mathbb{E}(X|Y)(\mathbb{E}(X|Y) - g(Y))\Big] \\ = & \mathbb{E}\Big[\mathbb{E}\big[(X - \mathbb{E}(X|Y)(E(X|Y) - g(Y))|Y\big]\Big] \\ = & \mathbb{E}\Big[(\mathbb{E}(X|Y) - \mathbb{E}(X|Y))(E(X|Y) - g(Y))\Big] = 0 \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

by properties (ii),(iii) and (v) in properties of conditional expectation. The proof is done.

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Characteristic Function

The *characteristic function* of a random variable X or its distribution μ is defined as

$$f(\xi) = \mathbb{E}e^{i\xi X} = \int_{\mathbb{R}} e^{i\xi x} \mu(dx).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Characteristic Function

The *characteristic function* of a random variable X or its distribution μ is defined as

$$f(\xi) = \mathbb{E}e^{i\xi X} = \int_{\mathbb{R}} e^{i\xi x} \mu(dx).$$

Obviously, when X, Y are independent and has characteristic functions $f(\xi), g(\xi)$, then we have the characteristic function for Z = X + Y

$$h(\xi) = \mathbb{E}e^{i\xi Z} = \mathbb{E}e^{i\xi(X+Y)} = f(\xi)g(\xi).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The characteristic functions of some typical distributions are as below.

• Bernoulli distribution: $f(\xi) = q + pe^{i\xi}$.

The characteristic functions of some typical distributions are as below.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Bernoulli distribution: $f(\xi) = q + pe^{i\xi}$.
- Binomial distribution B(n,p): $f(\xi) = (q + pe^{i\xi})^n$.

The characteristic functions of some typical distributions are as below.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Bernoulli distribution: $f(\xi) = q + pe^{i\xi}$.
- ► Binomial distribution B(n,p): $f(\xi) = (q + pe^{i\xi})^n$.
- Poisson distribution $\mathcal{P}(\lambda)$: $f(\xi) = e^{\lambda(e^{i\xi}-1)}$.

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi) = q + pe^{i\xi}$.
- ► Binomial distribution B(n,p): $f(\xi) = (q + pe^{i\xi})^n$.
- Poisson distribution $\mathcal{P}(\lambda)$: $f(\xi) = e^{\lambda(e^{i\xi}-1)}$.
- Exponential distribution $\mathcal{E}xp(\lambda)$: $f(\xi) = (1 \lambda^{-1}i\xi)^{-1}$.

The characteristic functions of some typical distributions are as below.

- Bernoulli distribution: $f(\xi) = q + pe^{i\xi}$.
- ► Binomial distribution B(n,p): $f(\xi) = (q + pe^{i\xi})^n$.
- Poisson distribution $\mathcal{P}(\lambda)$: $f(\xi) = e^{\lambda(e^{i\xi}-1)}$.
- Exponential distribution $\mathcal{E}xp(\lambda)$: $f(\xi) = (1 \lambda^{-1}i\xi)^{-1}$.
- Normal distribution $N(\mu, \sigma^2)$: $f(\xi) = \exp\left(i\mu\xi \frac{\sigma^2\xi^2}{2}\right)$.

Proposition

The characteristic function has the following properties:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proposition

The characteristic function has the following properties:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.
$$\forall \xi \in \mathbb{R}, |f(\xi)| \le 1, f(\xi) = \overline{f(-\xi)}, f(0) = 1;$$

Proposition

The characteristic function has the following properties:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1.
$$\forall \xi \in \mathbb{R}, |f(\xi)| \le 1, f(\xi) = \overline{f(-\xi)}, f(0) = 1;$$

2. f is uniformly continuous on \mathbb{R} ;

Proposition

The characteristic function has the following properties:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1.
$$\forall \xi \in \mathbb{R}, |f(\xi)| \le 1, f(\xi) = \overline{f(-\xi)}, f(0) = 1;$$

2. f is uniformly continuous on \mathbb{R} ;

3.
$$f^{(n)}(0) = i^n \mathbb{E} X^n$$
 provided $\mathbb{E} |X|^n < \infty$.

Proposition

The characteristic function has the following properties:

1.
$$\forall \xi \in \mathbb{R}, |f(\xi)| \le 1, f(\xi) = \overline{f(-\xi)}, f(0) = 1;$$

2. f is uniformly continuous on \mathbb{R} ;

3.
$$f^{(n)}(0) = i^n \mathbb{E} X^n$$
 provided $\mathbb{E} |X|^n < \infty$.

Proof.

The proof of statements 1 and 3 are straightforward. The second statement is valid by

$$|f(\xi_1) - f(\xi_2)| = |\mathbb{E}(e^{i\xi_1 X} - e^{i\xi_2 X})| = |\mathbb{E}(e^{i\xi_1 X}(1 - e^{i(\xi_2 - \xi_1)X}))|$$

$$\leq \mathbb{E}|1 - e^{i(\xi_2 - \xi_1)X}|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dominated convergence theorem concludes the proof.

Theorem (Lévy's continuity theorem)

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures, and $\{f_n\}_{n\in\mathbb{N}}$ be their corresponding characteristic functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Lévy's continuity theorem)

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures, and $\{f_n\}_{n\in\mathbb{N}}$ be their corresponding characteristic functions. Assume that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. f_n converges everywhere on \mathbb{R} to a limiting function f.

Theorem (Lévy's continuity theorem)

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures, and $\{f_n\}_{n\in\mathbb{N}}$ be their corresponding characteristic functions. Assume that

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1. f_n converges everywhere on \mathbb{R} to a limiting function f.
- 2. f is continuous at $\xi = 0$.

Theorem (Lévy's continuity theorem)

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures, and $\{f_n\}_{n\in\mathbb{N}}$ be their corresponding characteristic functions. Assume that

- 1. f_n converges everywhere on \mathbb{R} to a limiting function f.
- 2. f is continuous at $\xi = 0$.

Then there exists a probability distribution μ such that $\mu_u \xrightarrow{d} \mu$. Moreover f is the characteristic function of μ .

Theorem (Lévy's continuity theorem)

Let $\{\mu_n\}_{n\in\mathbb{N}}$ be a sequence of probability measures, and $\{f_n\}_{n\in\mathbb{N}}$ be their corresponding characteristic functions. Assume that

- 1. f_n converges everywhere on \mathbb{R} to a limiting function f.
- 2. f is continuous at $\xi = 0$.

Then there exists a probability distribution μ such that $\mu_u \xrightarrow{d} \mu$. Moreover f is the characteristic function of μ .

Conversely, if $\mu_n \xrightarrow{d} \mu$, where μ is some probability distribution then f_n converges to f uniformly in every finite interval, where f is the characteristic function of μ .

For a proof, see K.L. Chung: A course in probability theory.

Characteristic Function: Positive Semi-definite Function

As in Fourier transforms, one can also define the inverse transform

$$\rho(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\xi x} f(\xi) d\xi.$$

An interesting question arises as to when this gives the density of a probability measure. To answer this we define

Definition

A function f is called positive semi-definite if for any finite set of values $\{\xi_1, \ldots, \xi_n\}$, $n \in \mathbb{N}$, the matrix $(f(\xi_i - \xi_j))_{i,j=1}^n$ is positive semi-definite, i.e.

$$\sum_{i,j} f(\xi_i - \xi_j) v_i \bar{v}_j \ge 0,$$

for any $v_1, \ldots, v_n \in \mathbb{C}$.

Bochner's Theorem

Theorem (Bochner's Theorem)

A function f is the characteristic function of a probability measure if and only if it is a positive semi-definite and continuous at 0 with f(0) = 1.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bochner's Theorem

Theorem (Bochner's Theorem)

A function f is the characteristic function of a probability measure if and only if it is a positive semi-definite and continuous at 0 with f(0) = 1.

Proof.

We only gives the necessity part. Suppose f is a characteristic function, then

$$\sum_{i,j=1}^{n} f(\xi_i - \xi_j) v_i \bar{v}_j = \int_{\mathbb{R}} \Big| \sum_{i=1}^{n} v_i e^{i\xi_i x} \Big|^2 \mu(dx) \ge 0.$$

The sufficiency part is difficult and the readers may be referred to (K.L. Chung: A course in probability theory).

For discrete R.V. taking integer values, the generating function has the central importance

$$G(x) = \sum_{k=0}^{\infty} P(k) x^k.$$

One immediately has the formula:

$$P(k) = \frac{1}{k!} G^{(k)}(x) \Big|_{x=0}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some generating functions:

• Bernoulli distribution: G(x) = q + px.

For discrete R.V. taking integer values, the generating function has the central importance

$$G(x) = \sum_{k=0}^{\infty} P(k) x^k.$$

One immediately has the formula:

$$P(k) = \frac{1}{k!} G^{(k)}(x) \Big|_{x=0}.$$

Some generating functions:

- Bernoulli distribution: G(x) = q + px.
- Binomial distribution: $G(x) = (q + px)^n$.

For discrete R.V. taking integer values, the generating function has the central importance

$$G(x) = \sum_{k=0}^{\infty} P(k) x^k.$$

One immediately has the formula:

$$P(k) = \frac{1}{k!} G^{(k)}(x) \Big|_{x=0}.$$

Some generating functions:

- Bernoulli distribution: G(x) = q + px.
- Binomial distribution: $G(x) = (q + px)^n$.

• Poisson distribution:
$$G(x) = e^{-\lambda + \lambda x}$$
.

Definition

Define the convolution of two sequences $\{a_k\}$, $\{b_k\}$ as $\{c_k\} = \{a_k\} * \{b_k\}$, the components are defined as

$$c_k = \sum_{j=0}^k a_j b_{k-j}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Define the convolution of two sequences $\{a_k\}$, $\{b_k\}$ as $\{c_k\} = \{a_k\} * \{b_k\}$, the components are defined as

$$c_k = \sum_{j=0}^k a_j b_{k-j}.$$

Theorem

Consider two independent R.V. X and Y with PMF

$$P(X = j) = a_j, \quad P(Y = k) = b_k$$

and $\{c_k\} = \{a_k\} * \{b_k\}$. Suppose the generating functions are A(x), B(x) and C(x), respectively, then the generating function of X + Y is C(x).

Moment Generating Function

The moment generating function of a random variable X is defined for all values of t by

$$M(t) = \mathbb{E}e^{tX} = \begin{cases} \sum_{x} p(x)e^{tx}, & X \text{ is discrete-valued} \\ \int_{\mathbb{R}}^{x} p(x)e^{tx}dx, & X \text{ is continuous} \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

provided that e^{tX} is integrable. It is obvious M(0) = 1.
Moment Generating Function

The moment generating function of a random variable X is defined for all values of t by

$$M(t) = \mathbb{E}e^{tX} = \begin{cases} \sum_{x} p(x)e^{tx}, & X \text{ is discrete-valued} \\ \int_{\mathbb{R}} p(x)e^{tx}dx, & X \text{ is continuous} \end{cases}$$

provided that e^{tX} is integrable. It is obvious M(0) = 1.

▶ Once M(t) can be defined, one can show $M(t) \in C^{\infty}$ in its domain and its relation to the *n*th moments

$$M^{(n)}(t) = \mathbb{E}(X^n e^{tX}) \text{ and } \mu_n := \mathbb{E}X^n = M^{(n)}(0), \ n \in \mathbb{N}.$$

This gives

$$M(t) = \sum_{n=0}^{\infty} \mu_n \frac{t^n}{n!},$$

which tells why M(t) is called the moment generating function.

Moment Generating Function: Property

Theorem

Denote $M_X(t), M_Y(t)$ and $M_{X+Y}(t)$ the moment generating functions of random variables X, Y and X + Y, respectively. If X, Y are independent, we have

$$M_{X+Y}(t) = M_X(t)M_Y(t).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The proof is straightforward.

The following moment generating functions of typical random variables can be obtained by direct calculations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(a) Binomial distribution: $M(t) = (pe^t + 1 - p)^n$.

Moment Generating Function: Examples

The following moment generating functions of typical random variables can be obtained by direct calculations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- (a) Binomial distribution: $M(t) = (pe^t + 1 p)^n$.
- (b) Poisson distribution: $M(t) = \exp[\lambda(e^t 1)].$

The following moment generating functions of typical random variables can be obtained by direct calculations.

- (a) Binomial distribution: $M(t) = (pe^t + 1 p)^n$.
- (b) Poisson distribution: $M(t) = \exp[\lambda(e^t 1)].$
- (c) Exponential distribution: $M(t) = \lambda/(\lambda t)$ for $t < \lambda$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The following moment generating functions of typical random variables can be obtained by direct calculations.

- (a) Binomial distribution: $M(t) = (pe^t + 1 p)^n$.
- (b) Poisson distribution: $M(t) = \exp[\lambda(e^t 1)].$
- (c) Exponential distribution: $M(t) = \lambda/(\lambda t)$ for $t < \lambda$.
- (d) Normal distribution $N(\mu, \sigma^2)$: $M(t) = \exp\left(\mu t + \frac{\sigma^2 t^2}{2}\right)$.

A D N A 目 N A E N A E N A B N A C N

Cumulants Generating Function

• The cumulant generating function K(t) is defined based on M(t) by

$$K(t) = \ln M(t) = \ln \mathbb{E}e^{tX} = \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!}.$$

With such definition, we have the cumulants $\kappa_0 = 0$ and

$$\kappa_n = K^{(n)}(0), \quad n \in \mathbb{N}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Cumulants Generating Function

• The cumulant generating function K(t) is defined based on M(t) by

$$K(t) = \ln M(t) = \ln \mathbb{E}e^{tX} = \sum_{n=1}^{\infty} \kappa_n \frac{t^n}{n!}.$$

With such definition, we have the cumulants $\kappa_0 = 0$ and

$$\kappa_n = K^{(n)}(0), \quad n \in \mathbb{N}.$$

The moment and cumulant generating functions have explicit meaning in statistical physics, in which

$$Z(\beta) = \mathbb{E}e^{-\beta E}, \quad F(\beta) = -\beta^{-1}\ln Z(\beta)$$

are called *partition function* and *Helmholtz free energy*, respectively. They can be connected to M and K by

$$Z(\beta) = M_X(-\beta), \quad F(\beta) = -\beta^{-1}K_X(-\beta)$$

if X is taken as E, the energy of the system.

Table of Contents

Elementary Random Variables

Axiomatic Probability Theory Setup

Conditional Expectation

Characteristic and Generating Functions

Borel-Cantelli Lemma

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

i.o. Set

Let $\{A_n\}$ be a sequence of events, $A_n \in \mathcal{F}$. Define

$$\begin{split} \limsup_{n \to \infty} (A_n) &= \{ \omega \in \Omega, \quad \omega \in A_n \text{ infinitely often (i.o.)} \} \\ &= \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \end{split}$$

Question: What is the set

$$\liminf_{n \to \infty} (A_n) := \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k?$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

First Borel-Cantelli Lemma

Lemma (First Borel-Cantelli Lemma) If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < +\infty$, then

$$\mathbb{P}(\limsup_{n \to \infty} A_n) = \mathbb{P}\{\omega : \omega \in A_n, i.o.\} = 0.$$

First Borel-Cantelli Lemma

Lemma (First Borel-Cantelli Lemma) If $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < +\infty$, then

$$\mathbb{P}(\limsup_{n \to \infty} A_n) = \mathbb{P}\{\omega : \omega \in A_n, i.o.\} = 0.$$

Proof.

We have

$$\mathbb{P}\{\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_k\} \le \mathbb{P}\{\bigcup_{k=n}^{\infty}A_k\} \le \sum_{k=n}^{\infty}\mathbb{P}(A_k)$$

for any n, but the last term goes to 0, as $n \to \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Borel-Cantelli Lemma: An Application

As an example of the application of this result, we prove

Proposition (BCL-Application)

Let $\{X_n\}$ be a sequence of identically distributed (not necessarily independent) random variables, such that

$$\mathbb{E}|X_n| < +\infty.$$

Then

$$\lim_{n \to \infty} \frac{X_n}{n} = 0 \qquad \text{a.s.}$$

Chebyshev Inequality

Lemma (Chebyshev Inequality)

Let X be a random variable such that $\mathbb{E}|X|^k < +\infty$, for some integer k. Then

$$P\{|X| > \lambda\} \le \frac{1}{\lambda^k} \mathbb{E}|X|^k$$

for any positive constant λ .

Proof. For any $\lambda > 0$,

$$\mathbb{E}|X|^{k} = \int_{-\infty}^{\infty} |x|^{k} d\mu \ge \int_{|X|\ge\lambda} |X|^{k} d\mu$$
$$\ge \lambda^{k} \int_{|X|\ge\lambda} d\mu = \lambda^{k} P\{|X|\ge\lambda\}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Proof of Proposition BCL-Application

Proof. For any $\epsilon > 0$, define

$$A_n = \{\omega \in \Omega : \left| \frac{X_n(\omega)}{n} \right| > \epsilon \}$$

$$\sum_n P(A_n) = \sum_n P\{|X_n| > n\epsilon\}$$

$$= \sum_n \sum_{k=n} P\{k\epsilon < |X_n| < (k+1)\epsilon\}$$

$$= \sum_k kP\{k\epsilon < |X_n| < (k+1)\epsilon\}$$

$$\leq \frac{1}{\epsilon} \mathbb{E}|X| < +\infty$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proof of Proposition BCL-Application: Continued

Therefore if we define

$$B_{\epsilon} = \{ \omega \in \Omega, \qquad \omega \in A_n \text{ i.o.} \}$$

then $P(B_{\epsilon}) = 0$. Let $B = \bigcup_{n=1}^{\infty} B_{\frac{1}{n}}$. Then $P(B) = 0$, and
$$\lim_{n \to \infty} \frac{X_n(\omega)}{n} = 0, \quad \text{if } \omega \notin B.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The proof is done.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume X = 0.

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume X = 0.

Convergence in probability implies that for any k, we can choose subsequence X_{nk} (nk is increasing in k) such that

 $\mathbb{P}(X_{n_k} \ge 1/k) \le 1/2^k$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume X = 0.

Convergence in probability implies that for any k, we can choose subsequence X_{nk} (nk is increasing in k) such that

$$\mathbb{P}(X_{n_k} \ge 1/k) \le 1/2^k$$

For any $\epsilon > 0$, we have

$$\sum_{k=1}^{\infty} \mathbb{P}(|X_{n_k}| \ge \epsilon) = \sum_{k=1}^{k_{\epsilon}} + \sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}(|X_{n_k}| \ge \epsilon) < \infty, \quad 1/k_{\epsilon} \le \epsilon$$

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume X = 0.

Convergence in probability implies that for any k, we can choose subsequence X_{nk} (nk is increasing in k) such that

$$\mathbb{P}(X_{n_k} \ge 1/k) \le 1/2^k$$

For any $\epsilon > 0$, we have

$$\sum_{k=1}^{\infty} \mathbb{P}(|X_{n_k}| \ge \epsilon) = \sum_{k=1}^{k_{\epsilon}} + \sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}(|X_{n_k}| \ge \epsilon) < \infty, \quad 1/k_{\epsilon} \le \epsilon$$

From the 1st BCL lemma, we have

$$\mathbb{P}(|X_{n_k}| \geq \epsilon, i.o.) = 0 \quad \text{for any } \epsilon > 0$$

Here we give the proof by 1st BCL lemma. Without loss of generality (W.L.G.), we assume X = 0.

Convergence in probability implies that for any k, we can choose subsequence X_{nk} (nk is increasing in k) such that

$$\mathbb{P}(X_{n_k} \ge 1/k) \le 1/2^k$$

$$\sum_{k=1}^{\infty} \mathbb{P}(|X_{n_k}| \ge \epsilon) = \sum_{k=1}^{k_{\epsilon}} + \sum_{k=k_{\epsilon}}^{\infty} \mathbb{P}(|X_{n_k}| \ge \epsilon) < \infty, \quad 1/k_{\epsilon} \le \epsilon$$

From the 1st BCL lemma, we have

$$\mathbb{P}(|X_{n_k}| \ge \epsilon, i.o.) = 0 \quad \text{for any } \epsilon > 0$$

With similar argument as before, we have the almost sure convergence of {X_{nk}} to 0.

Second Borel-Cantelli Lemma

Lemma (Second Borel-Cantelli Lemma) If $\sum_{n=1}^{\infty} P(A_n) = +\infty$, and A_n are mutually independent, then

$$P\{\omega \in \Omega, \quad \omega \in A_n \text{ i.o.}\} = 1.$$