Lecture 21. Application in Chemical Reaction Kinetics

Tiejun $\mathrm{Li}^{1,2}$
${ }^{1}$ School of Mathematical Sciences (SMS), \&
${ }^{2}$ Center for Machine Learning Research (CMLR),
Peking University,
Beijing 100871,
P.R. China
tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E

Table of Contents

Mathematical Setup

Stochastic Simulation Algorithm (SSA)

Tau-leaping Algorithm
Avoiding Negative Populations
Stiff System
Convergence Analysis
Stationary Distribution

Traditional chemical reaction dynamics - ODE

- Decaying-dimerizing reaction

$$
\begin{aligned}
S_{1} & \longrightarrow \emptyset \\
S_{1}+S_{1} & \longleftrightarrow S_{2} \\
S_{2} & \longrightarrow S_{3}
\end{aligned}
$$

Traditional chemical reaction dynamics - ODE

- Decaying-dimerizing reaction

$$
\begin{aligned}
S_{1} & \longrightarrow \emptyset \\
S_{1}+S_{1} & \longleftrightarrow S_{2} \\
S_{2} & \longrightarrow S_{3}
\end{aligned}
$$

- Traditional model - ODEs for the concentration (Law of Mass Action)

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =-k_{1} x_{1}-2 k_{2} x_{1}^{2}+2 k_{3} x_{2} \\
\frac{d x_{2}}{d t} & =k_{2} x_{1}^{2}-k_{3} x_{2}-k_{4} x_{2} \\
\frac{d x_{3}}{d t} & =k_{4} x_{2}
\end{aligned}
$$

$k_{1}, k_{2}, k_{3}, k_{4}$ are reaction rates.

Drawbacks of ODE description

- Deterministic model describes an average behavior and is valid for large population

Drawbacks of ODE description

- Deterministic model describes an average behavior and is valid for large population
- Species of small population may play important role in biological system

Drawbacks of ODE description

- Deterministic model describes an average behavior and is valid for large population
- Species of small population may play important role in biological system
- Examples of stochasticity A. Arkin et al., Genetics 149 (1998), 1633 - Stochastic variations can produce probabilistic pathway selection. M. Elowitz et al., Science 297 (2002), 391 - Gene expression is affected by both extrinsic and intrinsic noise.

Chemical kinetic system (CKS)

Taking into account the stochasticity in biological chemical reactions, this opens a new way for modeling and simulation!

Chemical reaction kinetics - stochastic version

- Well-stirred system of N molecular species $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$ interacting through M chemical reaction channels $\left\{R_{1}, R_{2}, \ldots, R_{M}\right\}$.

Chemical reaction kinetics - stochastic version

- Well-stirred system of N molecular species $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$ interacting through M chemical reaction channels $\left\{R_{1}, R_{2}, \ldots, R_{M}\right\}$.
- State of the system

$$
\boldsymbol{X}_{t}=\left(X_{t}^{1}, X_{t}^{2}, \ldots, X_{t}^{N}\right)
$$

Chemical reaction kinetics - stochastic version

- Well-stirred system of N molecular species $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$ interacting through M chemical reaction channels $\left\{R_{1}, R_{2}, \ldots, R_{M}\right\}$.
- State of the system

$$
\boldsymbol{X}_{t}=\left(X_{t}^{1}, X_{t}^{2}, \ldots, X_{t}^{N}\right)
$$

- Each reaction channel R_{j} is characterized by its propensity function $a_{j}(\boldsymbol{x})$ and its state change vector

$$
\boldsymbol{\nu}_{j}=\left(\nu_{j}^{1}, \nu_{j}^{2}, \ldots, \nu_{j}^{N}\right)
$$

Chemical reaction kinetics - stochastic version

- Well-stirred system of N molecular species $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$ interacting through M chemical reaction channels $\left\{R_{1}, R_{2}, \ldots, R_{M}\right\}$.
- State of the system

$$
\boldsymbol{X}_{t}=\left(X_{t}^{1}, X_{t}^{2}, \ldots, X_{t}^{N}\right)
$$

- Each reaction channel R_{j} is characterized by its propensity function $a_{j}(\boldsymbol{x})$ and its state change vector

$$
\boldsymbol{\nu}_{j}=\left(\nu_{j}^{1}, \nu_{j}^{2}, \ldots, \nu_{j}^{N}\right)
$$

- Here $a_{j}(\boldsymbol{x}) d t$ gives the probability that the system will experience an R_{j} reaction in the next infinitesimal time $d t$ when the current state $\boldsymbol{X}_{t}=\boldsymbol{x} . \nu_{j}^{i}$ is the change in the number of S_{i} molecules caused by one R_{j} reaction.

Chemical reaction kinetics - stochastic version

- Well-stirred system of N molecular species $\left\{S_{1}, S_{2}, \ldots, S_{N}\right\}$ interacting through M chemical reaction channels $\left\{R_{1}, R_{2}, \ldots, R_{M}\right\}$.
- State of the system

$$
\boldsymbol{X}_{t}=\left(X_{t}^{1}, X_{t}^{2}, \ldots, X_{t}^{N}\right)
$$

- Each reaction channel R_{j} is characterized by its propensity function $a_{j}(\boldsymbol{x})$ and its state change vector

$$
\boldsymbol{\nu}_{j}=\left(\nu_{j}^{1}, \nu_{j}^{2}, \ldots, \nu_{j}^{N}\right)
$$

- Here $a_{j}(\boldsymbol{x}) d t$ gives the probability that the system will experience an R_{j} reaction in the next infinitesimal time $d t$ when the current state $\boldsymbol{X}_{t}=\boldsymbol{x} . \nu_{j}^{i}$ is the change in the number of S_{i} molecules caused by one R_{j} reaction.
- We will define $a_{0}(\boldsymbol{x})=\sum_{j=1}^{M} a_{j}(\boldsymbol{x})$.

An example

- Decaying-dimerizing reaction:

$$
\begin{gathered}
S_{1} \xrightarrow{R_{1}} \phi \\
S_{1}+S_{1} \xrightarrow{R_{2}} S_{2} \\
S_{1}+S_{1} \stackrel{R_{3}}{\leftrightarrows} S_{2} \\
S_{2} \xrightarrow{R_{4}} S_{3}
\end{gathered}
$$

The propensity functions are given by

$$
a_{1}=x_{1}, a_{2}=5 x_{1}\left(x_{1}-1\right), a_{3}=1000 x_{2}, a_{4}=0.1 x_{2}
$$

and state change vector
$\nu_{1}=(-1,0,0), \nu_{2}=(-2,1,0), \nu_{3}=(2,-1,0), \nu_{4}=(-1,0,1)$.
Initial state $\boldsymbol{X}(0)=(400,798,0)$.

Chemical Master Equation

- The Chapman-Kolmogorov equation in the time interval $[t, t+d t)$

$$
\begin{array}{r}
P\left(\boldsymbol{x}, t+d t \mid \boldsymbol{x}_{0}, t_{0}\right)=\sum_{j=1}^{M} P\left(\boldsymbol{x}-\boldsymbol{\nu}_{j}, t \mid \boldsymbol{x}_{0}, t_{0}\right) a_{j}\left(\boldsymbol{x}-\boldsymbol{\nu}_{j}\right) d t+ \\
\left(1-\sum_{j=1}^{M} a_{j}(\boldsymbol{x}) d t\right) P\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{0}, t_{0}\right)
\end{array}
$$

where $d t$ is an infinitesimal time, and we have already omitted the higher order terms in $o(d t)$.

Chemical Master Equation

- The Chapman-Kolmogorov equation in the time interval $[t, t+d t)$

$$
\begin{array}{r}
P\left(\boldsymbol{x}, t+d t \mid \boldsymbol{x}_{0}, t_{0}\right)=\sum_{j=1}^{M} P\left(\boldsymbol{x}-\boldsymbol{\nu}_{j}, t \mid \boldsymbol{x}_{0}, t_{0}\right) a_{j}\left(\boldsymbol{x}-\boldsymbol{\nu}_{j}\right) d t+ \\
\left(1-\sum_{j=1}^{M} a_{j}(\boldsymbol{x}) d t\right) P\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{0}, t_{0}\right),
\end{array}
$$

where $d t$ is an infinitesimal time, and we have already omitted the higher order terms in $o(d t)$.

- With some algebra, we get the well-known chemical master equation.
$\partial_{t} P\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{0}, t_{0}\right)=\sum_{j=1}^{M} a_{j}\left(\boldsymbol{x}-\boldsymbol{\nu}_{j}\right) P\left(\boldsymbol{x}-\boldsymbol{\nu}_{j}, t \mid \boldsymbol{x}_{0}, t_{0}\right)-a_{0}(\boldsymbol{x}) P\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{0}, t_{0}\right)$
where $a_{0}(\boldsymbol{x}):=\sum_{j=1}^{M} a_{j}(\boldsymbol{x})$ is the total propensity.

Table of Contents

Mathematical Setup

Stochastic Simulation Algorithm (SSA)

Tau-leaping Algorithm
Avoiding Negative Populations
Stiff System
Convergence Analysis
Stationary Distribution

SSA — Gillespie's algorithm

- SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)

SSA — Gillespie's algorithm

- SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)
- Step 1: Sampling the waiting time τ as an exponentially distributed random variable (R.V.) with rate $a_{0}\left(\boldsymbol{X}_{t}\right)$;

SSA — Gillespie's algorithm

- SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)
- Step 1: Sampling the waiting time τ as an exponentially distributed random variable (R.V.) with rate $a_{0}\left(\boldsymbol{X}_{t}\right)$;
- Step 2: Sampling an M point R.V. k with probability $\frac{a_{j}\left(\boldsymbol{X}_{t}\right)}{a_{0}\left(\boldsymbol{X}_{t}\right)}$ for the j-th reaction;

SSA — Gillespie's algorithm

- SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)
- Step 1: Sampling the waiting time τ as an exponentially distributed random variable (R.V.) with rate $a_{0}\left(\boldsymbol{X}_{t}\right)$;
- Step 2: Sampling an M point R.V. k with probability $\frac{a_{j}\left(\boldsymbol{X}_{t}\right)}{a_{0}\left(\boldsymbol{X}_{t}\right)}$ for the j-th reaction;
- Step 3: Update $\boldsymbol{X}_{t+\tau}=\boldsymbol{X}_{t}+\boldsymbol{\nu}_{k}$, then return to Step 1.

SSA — Gillespie's algorithm

- SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)
- Step 1: Sampling the waiting time τ as an exponentially distributed random variable (R.V.) with rate $a_{0}\left(\boldsymbol{X}_{t}\right)$;
- Step 2: Sampling an M point R.V. k with probability $\frac{a_{j}\left(\boldsymbol{X}_{t}\right)}{a_{0}\left(\boldsymbol{X}_{t}\right)}$ for the j-th reaction;
- Step 3: Update $\boldsymbol{X}_{t+\tau}=\boldsymbol{X}_{t}+\boldsymbol{\nu}_{k}$, then return to Step 1.
- Understood as an exact simulation since the waiting time of the j-th reaction firing is distributed as $a_{j}(\boldsymbol{x}) \exp \left(-a_{0}(\boldsymbol{x}) t\right)$.

SSA — Gillespie's algorithm

- SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22 (1976), 403.)
- Step 1: Sampling the waiting time τ as an exponentially distributed random variable (R.V.) with rate $a_{0}\left(\boldsymbol{X}_{t}\right)$;
- Step 2: Sampling an M point R.V. k with probability $\frac{a_{j}\left(\boldsymbol{X}_{t}\right)}{a_{0}\left(\boldsymbol{X}_{t}\right)}$ for the j-th reaction;
- Step 3: Update $\boldsymbol{X}_{t+\tau}=\boldsymbol{X}_{t}+\boldsymbol{\nu}_{k}$, then return to Step 1.
- Understood as an exact simulation since the waiting time of the j-th reaction firing is distributed as $a_{j}(\boldsymbol{x}) \exp \left(-a_{0}(\boldsymbol{x}) t\right)$.
- It is essentially the BKL algorithm (Bortz-Kalos-Lebowitz) or KMC in condensed matter physics.

Shortcomings of SSA

- When the population of molecules is very large, the reaction will fire very frequently, which is quite time consuming.

Shortcomings of SSA

- When the population of molecules is very large, the reaction will fire very frequently, which is quite time consuming.
- When the reaction rate is very large for a reversible reaction, the reactions will fire back and forth very frequently, but cause very little change of the state.

$$
S_{1}+S_{1} \longleftrightarrow S_{2}
$$

Shortcomings of SSA

- When the population of molecules is very large, the reaction will fire very frequently, which is quite time consuming.
- When the reaction rate is very large for a reversible reaction, the reactions will fire back and forth very frequently, but cause very little change of the state.

$$
S_{1}+S_{1} \longleftrightarrow S_{2}
$$

- How to accelerate the simulation process?

Table of Contents

Mathematical Setup

Stochastic Simulation Algorithm (SSA)

Tau-leaping Algorithm
Avoiding Negative Populations
Stiff System
Convergence Analysis
Stationary Distribution

Tau-leaping Algorithm

- The philosophy is to accelerate SSA at the cost of accuracy.

Tau-leaping Algorithm

- The philosophy is to accelerate SSA at the cost of accuracy.
- Gillespie proposed the following condition for accelerating the simulation:
"Leap Condition: Require the leap time τ to be small enough that the change in the state during $[t, t+\tau)$ will be so slight that no propensity function will suffer an appreciable (i.e., macroscopically noninfinitesimal) change in its value."

Tau-leaping Algorithm

- The philosophy is to accelerate SSA at the cost of accuracy.
- Gillespie proposed the following condition for accelerating the simulation:
"Leap Condition: Require the leap time τ to be small enough that the change in the state during $[t, t+\tau)$ will be so slight that no propensity function will suffer an appreciable (i.e., macroscopically noninfinitesimal) change in its value."
- This means that we set $a_{j}\left(\boldsymbol{X}_{t}\right)$ fixed, and leap with time stepsize δt.

Tau-leaping Algorithm

- The philosophy is to accelerate SSA at the cost of accuracy.
- Gillespie proposed the following condition for accelerating the simulation:
"Leap Condition: Require the leap time τ to be small enough that the change in the state during $[t, t+\tau)$ will be so slight that no propensity function will suffer an appreciable (i.e., macroscopically noninfinitesimal) change in its value."
- This means that we set $a_{j}\left(\boldsymbol{X}_{t}\right)$ fixed, and leap with time stepsize δt.
- Then the number of j-th reaction will be $\mathcal{P}\left(a_{j}\left(\boldsymbol{X}_{t}\right) \delta t\right.$, which is a Poisson random variable with distribution $\lambda^{k} / k!\exp (-\lambda)$. Here $\lambda=a_{j}\left(X_{t}\right) \delta t$.

Tau-leaping Algorithm

- The philosophy is to accelerate SSA at the cost of accuracy.
- Gillespie proposed the following condition for accelerating the simulation:
"Leap Condition: Require the leap time τ to be small enough that the change in the state during $[t, t+\tau)$ will be so slight that no propensity function will suffer an appreciable (i.e., macroscopically noninfinitesimal) change in its value."
- This means that we set $a_{j}\left(\boldsymbol{X}_{t}\right)$ fixed, and leap with time stepsize δt.
- Then the number of j-th reaction will be $\mathcal{P}\left(a_{j}\left(\boldsymbol{X}_{t}\right) \delta t\right.$, which is a Poisson random variable with distribution $\lambda^{k} / k!\exp (-\lambda)$. Here $\lambda=a_{j}\left(X_{t}\right) \delta t$.
- So we have the tau-leaping scheme

$$
\boldsymbol{X}_{t+\delta t}=\boldsymbol{X}_{t}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} \mathcal{P}\left(a_{j}\left(\boldsymbol{X}_{t}\right) \delta t\right)
$$

Tau-leaping Algorithm: Stepsize Selection

- The procedure for selecting tau (time stepsize) is as follows.

Tau-leaping Algorithm: Stepsize Selection

- The procedure for selecting tau (time stepsize) is as follows.
- Note that the state after τ-leaping is

$$
\boldsymbol{X} \rightarrow \boldsymbol{X}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}(\boldsymbol{X}) \tau:=\boldsymbol{X}+\tau \boldsymbol{\xi}
$$

Tau-leaping Algorithm: Stepsize Selection

- The procedure for selecting tau (time stepsize) is as follows.
- Note that the state after τ-leaping is

$$
\boldsymbol{X} \rightarrow \boldsymbol{X}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}(\boldsymbol{X}) \tau:=\boldsymbol{X}+\tau \boldsymbol{\xi}
$$

- Then the leap condition will be

$$
\left|a_{j}(\boldsymbol{X}+\tau \boldsymbol{\xi})-a_{j}(\boldsymbol{X})\right| \leq \epsilon a_{0}(\boldsymbol{X})
$$

where $0<\epsilon<1$ is a specified value.

Tau-leaping Algorithm: Stepsize Selection

- The procedure for selecting tau (time stepsize) is as follows.
- Note that the state after τ-leaping is

$$
\boldsymbol{X} \rightarrow \boldsymbol{X}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}(\boldsymbol{X}) \tau:=\boldsymbol{X}+\tau \boldsymbol{\xi}
$$

- Then the leap condition will be

$$
\left|a_{j}(\boldsymbol{X}+\tau \boldsymbol{\xi})-a_{j}(\boldsymbol{X})\right| \leq \epsilon a_{0}(\boldsymbol{X})
$$

where $0<\epsilon<1$ is a specified value.

- The Taylor expansion of the LHS gives $\tau\left|\boldsymbol{\xi} \cdot \nabla a_{j}\right| \leq \epsilon a_{0}(\boldsymbol{X})$, which gives one stepsize selection strategy

$$
\tau \approx \min _{j=1, \ldots, M}\left\{\frac{\epsilon a_{0}(\boldsymbol{X})}{\left|\boldsymbol{\xi} \cdot \nabla a_{j}\right|}\right\}
$$

Tau-leaping Algorithm: Stepsize Selection

- The procedure for selecting tau (time stepsize) is as follows.
- Note that the state after τ-leaping is

$$
\boldsymbol{X} \rightarrow \boldsymbol{X}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}(\boldsymbol{X}) \tau:=\boldsymbol{X}+\tau \boldsymbol{\xi}
$$

- Then the leap condition will be

$$
\left|a_{j}(\boldsymbol{X}+\tau \boldsymbol{\xi})-a_{j}(\boldsymbol{X})\right| \leq \epsilon a_{0}(\boldsymbol{X})
$$

where $0<\epsilon<1$ is a specified value.

- The Taylor expansion of the LHS gives $\tau\left|\boldsymbol{\xi} \cdot \nabla a_{j}\right| \leq \epsilon a_{0}(\boldsymbol{X})$, which gives one stepsize selection strategy

$$
\tau \approx \min _{j=1, \ldots, M}\left\{\frac{\epsilon a_{0}(\boldsymbol{X})}{\left|\boldsymbol{\xi} \cdot \nabla a_{j}\right|}\right\}
$$

- Many more robust stepsize selection strategies are also proposed.

Some Remarks

Remark
The total propensity is $a_{0}(\boldsymbol{X})$. So the expected waiting time for one reaction fires is $\mathcal{O}\left(1 / a_{0}(\boldsymbol{X})\right)$. If

$$
\tau \leq m / a_{0}(\boldsymbol{X}), \quad m \sim \mathcal{O}(1)
$$

One will use SSA instead.

Some Remarks

Remark

The total propensity is $a_{0}(\boldsymbol{X})$. So the expected waiting time for one reaction fires is $\mathcal{O}\left(1 / a_{0}(\boldsymbol{X})\right)$. If

$$
\tau \leq m / a_{0}(\boldsymbol{X}), \quad m \sim \mathcal{O}(1)
$$

One will use SSA instead.
Remark
Compare with the forward Euler step $x_{n+1}=x_{n}+f\left(x_{n}\right) \delta t$ for ODE

$$
\dot{x}=f(x) .
$$

We actually fix $f(x)$ as a constant $f\left(x_{n}\right)$ in $\left[t_{n}, t_{n+1}\right)$ with a similar idea. One will find more connections along this direction.

Tau-leaping Algorithm: Multiscale Picture

Multi-scale picture:

The multi-scale picture from tau-leaping is charming.

- From tau-leaping to Chemical Langevin Equation:

When $a_{j}\left(\boldsymbol{X}_{t}\right) \tau \gg 1, P\left(a_{j}\left(\boldsymbol{X}_{t}\right) \tau\right) \approx N\left(a_{j}\left(\boldsymbol{X}_{t}\right) \tau, a_{j}\left(\boldsymbol{X}_{t}\right) \tau\right)$ by Central Limit Theorem

$$
\boldsymbol{X}_{t+\tau} \approx \boldsymbol{X}_{t}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}\left(\boldsymbol{X}_{t}\right) \tau+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} \sqrt{a_{j}\left(\boldsymbol{X}_{t}\right) \tau} N(0,1)
$$

which corresponds to CLE

$$
d \boldsymbol{X}_{t}=\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}\left(\boldsymbol{X}_{t}\right) d t+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} \sqrt{a_{j}\left(\boldsymbol{X}_{t}\right)} d \boldsymbol{W}_{t}
$$

Tau-leaping Algorithm: Multiscale Picture

- From Chemical Langevin Equation to Reaction Rate Equation: When $a_{j}\left(\boldsymbol{X}_{t}\right) \tau \rightarrow+\infty, N\left(a_{j}\left(\boldsymbol{X}_{t}\right) \tau, a_{j}\left(\boldsymbol{X}_{t}\right) \tau\right) \approx a_{j}\left(\boldsymbol{X}_{t}\right) \tau$ by Law of Large Numbers

$$
\boldsymbol{X}_{t+\tau} \approx \boldsymbol{X}_{t}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}\left(\boldsymbol{X}_{t}\right) \tau
$$

which corresponds to RRE

$$
\frac{d \boldsymbol{X}_{t}}{d t}=\sum_{j=1}^{M} \boldsymbol{\nu}_{j} a_{j}\left(\boldsymbol{X}_{t}\right)
$$

Tau-leaping bridges all of the equations in different scales with a seamless way!

Multiscale Picture

The comparison with fluid mechanics (upscaling) will be instructive.

Negative Populations

- Because of unboundedness of Poisson R.V., negative populations may appear.

Negative Populations

- Because of unboundedness of Poisson R.V., negative populations may appear.
- One choice to avoid N.P. is by binomial tau-leaping.

Negative Populations

- Because of unboundedness of Poisson R.V., negative populations may appear.
- One choice to avoid N.P. is by binomial tau-leaping.
- Note that Poisson distribution may be viewed as a limit of binomial distribution $B(n, p)$ when $n \rightarrow \infty$ with $\lambda=n p$ fixed. That is

$$
B(k ; n, p)=C_{n}^{k} p^{k}(1-p)^{n-k} \rightarrow \mathcal{P}(\lambda) .
$$

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

- Step 1: At time t, set $\tilde{\boldsymbol{X}}=\boldsymbol{X}_{t}$, select τ;

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

- Step 1: At time t, set $\tilde{\boldsymbol{X}}=\boldsymbol{X}_{t}$, select τ;
- Step 2: Sequentially for $j=1,2, \ldots, M$ do:

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

- Step 1: At time t, set $\tilde{\boldsymbol{X}}=\boldsymbol{X}_{t}$, select τ;
- Step 2: Sequentially for $j=1,2, \ldots, M$ do:
- Find $k_{\max }^{(j)} \sim$ Maximal admissible number of j-th reactions according to $\tilde{\boldsymbol{X}}$;

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

- Step 1: At time t, set $\tilde{\boldsymbol{X}}=\boldsymbol{X}_{t}$, select τ;
- Step 2: Sequentially for $j=1,2, \ldots, M$ do:
- Find $k_{\max }^{(j)} \sim$ Maximal admissible number of j-th reactions according to $\tilde{\boldsymbol{X}}$;
- Define $p=a_{j} \tau / k_{\text {max }}^{(j)}$;

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

- Step 1: At time t, set $\tilde{\boldsymbol{X}}=\boldsymbol{X}_{t}$, select τ;
- Step 2: Sequentially for $j=1,2, \ldots, M$ do:
- Find $k_{\max }^{(j)} \sim$ Maximal admissible number of j-th reactions according to $\tilde{\boldsymbol{X}}$;
- Define $p=a_{j} \tau / k_{\text {max }}^{(j)}$;
- Sample binomial distribution R.V. $k_{j} \sim B\left(k_{\max }^{(j)}, p\right)$;

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

- Step 1: At time t, set $\tilde{\boldsymbol{X}}=\boldsymbol{X}_{t}$, select τ;
- Step 2: Sequentially for $j=1,2, \ldots, M$ do:
- Find $k_{\max }^{(j)} \sim$ Maximal admissible number of j-th reactions according to $\tilde{\boldsymbol{X}}$;
- Define $p=a_{j} \tau / k_{\text {max }}^{(j)}$;
- Sample binomial distribution R.V. $k_{j} \sim B\left(k_{\max }^{(j)}, p\right)$;
- Firing j-th reaction k_{j} times:

$$
\tilde{\boldsymbol{X}}+\boldsymbol{\nu}_{j} k_{j} \rightarrow \tilde{\boldsymbol{X}}
$$

Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)
Avoiding negative populations.

- Step 1: At time t, set $\tilde{\boldsymbol{X}}=\boldsymbol{X}_{t}$, select τ;
- Step 2: Sequentially for $j=1,2, \ldots, M$ do:
- Find $k_{\max }^{(j)} \sim$ Maximal admissible number of j-th reactions according to $\tilde{\boldsymbol{X}}$;
- Define $p=a_{j} \tau / k_{\text {max }}^{(j)}$;
- Sample binomial distribution R.V. $k_{j} \sim B\left(k_{\max }^{(j)}, p\right)$;
- Firing j-th reaction k_{j} times:

$$
\tilde{\boldsymbol{X}}+\boldsymbol{\nu}_{j} k_{j} \rightarrow \tilde{\boldsymbol{X}}
$$

- Step 3: The iteration is repeated until the final time T is achieved.

Simple Analysis of Binomial Tau-leaping

- A simple analysis of binomial tau-leaping as follows. Note that the number of j-th reactions:

$$
\begin{array}{ll}
\text { Poisson : } & a_{j} \tau \pm \sqrt{a_{j} \tau} \\
\text { Binomial : } & a_{j} \tau \pm \sqrt{a_{j} \tau}\left(1-a_{j} \tau / k_{\max }^{(j)}\right)^{\frac{1}{2}}
\end{array}
$$

Simple Analysis of Binomial Tau-leaping

- A simple analysis of binomial tau-leaping as follows. Note that the number of j-th reactions:

$$
\begin{array}{ll}
\text { Poisson : } & a_{j} \tau \pm \sqrt{a_{j} \tau} \\
\text { Binomial : } & a_{j} \tau \pm \sqrt{a_{j} \tau}\left(1-a_{j} \tau / k_{\max }^{(j)}\right)^{\frac{1}{2}}
\end{array}
$$

- In the law of rare events limit $\left(a_{j} \tau \ll k_{\max }^{(j)}\right)$, they give same result; in the finite size case, the noise is different!

Stiff System: Model System 1

- Chemical reactions are usually stiff.

Stiff System: Model System 1

- Chemical reactions are usually stiff.

Example (Reversible reaction)

Consider the reversible reaction system

$$
\begin{align*}
& S_{1} \longrightarrow S_{2} \quad \text { with rate } C_{1} \tag{1}\\
& S_{2} \longrightarrow S_{1} \quad \text { with rate } C_{2} \tag{2}
\end{align*}
$$

when C_{1} and C_{2} are both large.

Stiff System: Model System 1

- Chemical reactions are usually stiff.

Example (Reversible reaction)

Consider the reversible reaction system

$$
\begin{align*}
& S_{1} \longrightarrow S_{2} \quad \text { with rate } C_{1} \tag{1}\\
& S_{2} \longrightarrow S_{1} \quad \text { with rate } C_{2} \tag{2}
\end{align*}
$$

when C_{1} and C_{2} are both large.

- Define $C_{1}+C_{2}=\lambda, X_{t}^{1}+X_{t}^{2}=X^{T}$ (total number). Here $\lambda \gg 1$. Then we have

$$
\begin{aligned}
& \mathbb{E} X_{t}^{1}=\frac{C_{2} X^{T}}{\lambda}\left(1-e^{-\lambda t}\right)+e^{-\lambda t} X_{0}^{1} \\
& \mathbb{E} X_{t}^{2}=\frac{C_{1} X^{T}}{\lambda}\left(1-e^{-\lambda t}\right)+e^{-\lambda t} X_{0}^{2}
\end{aligned}
$$

Stiff System: Model System 2

Example (Fast decaying)
Consider the following system

$$
\begin{array}{ll}
S \longrightarrow \emptyset & \text { with rate } C_{1} \\
\emptyset \longrightarrow S & \text { with rate } C_{2} \tag{4}
\end{array}
$$

when $C_{1}-C_{2}$ is large.
Define $\lambda=C_{1}-C_{2}$, we have $\mathbb{E} X_{t}=e^{-\lambda t} X_{0}$.

Stability Analysis

- Now we perform the stability analysis for the stiff reversible reaction system. Suppose the explicit tau-leaping is applied.

$$
\left\{\begin{array}{l}
X_{n+1}^{1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n}^{1} \delta t\right)+\mathcal{P}\left(C_{2} X_{n}^{2} \delta t\right) \\
X_{n+1}^{2}=X_{n}^{2}-\mathcal{P}\left(C_{2} X_{n}^{2} \delta t\right)+\mathcal{P}\left(C_{1} X_{n}^{1} \delta t\right)
\end{array}\right.
$$

Stability Analysis

- Now we perform the stability analysis for the stiff reversible reaction system. Suppose the explicit tau-leaping is applied.

$$
\left\{\begin{array}{l}
X_{n+1}^{1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n}^{1} \delta t\right)+\mathcal{P}\left(C_{2} X_{n}^{2} \delta t\right) \\
X_{n+1}^{2}=X_{n}^{2}-\mathcal{P}\left(C_{2} X_{n}^{2} \delta t\right)+\mathcal{P}\left(C_{1} X_{n}^{1} \delta t\right)
\end{array}\right.
$$

- We have $X_{n}^{1}+X_{n}^{2}=X^{T}=$ Const.. So we have

$$
X_{n+1}^{1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n}^{1} \delta t\right)+\mathcal{P}\left(C_{2}\left(X^{T}-X_{n}^{1}\right) \delta t\right)
$$

Stability Analysis for the Mean

- Taking expectation we obtain

$$
\mathbb{E} X_{n+1}^{1}=(1-\lambda \delta t) \mathbb{E} X_{n}^{1}+C_{2} X^{T} \delta t
$$

Stability Analysis for the Mean

- Taking expectation we obtain

$$
\mathbb{E} X_{n+1}^{1}=(1-\lambda \delta t) \mathbb{E} X_{n}^{1}+C_{2} X^{T} \delta t
$$

- The stability condition is

$$
|1-\lambda \delta t| \leq 1 \Longrightarrow \delta t \leq \frac{2}{\lambda}
$$

Stability Analysis for the Mean

- Taking expectation we obtain

$$
\mathbb{E} X_{n+1}^{1}=(1-\lambda \delta t) \mathbb{E} X_{n}^{1}+C_{2} X^{T} \delta t
$$

- The stability condition is

$$
|1-\lambda \delta t| \leq 1 \Longrightarrow \delta t \leq \frac{2}{\lambda}
$$

- When $\lambda \gg 1$, we have $\delta t \ll 1$. That is the stiffness!

Stability Analysis for the Mean

- Taking expectation we obtain

$$
\mathbb{E} X_{n+1}^{1}=(1-\lambda \delta t) \mathbb{E} X_{n}^{1}+C_{2} X^{T} \delta t
$$

- The stability condition is

$$
|1-\lambda \delta t| \leq 1 \Longrightarrow \delta t \leq \frac{2}{\lambda}
$$

- When $\lambda \gg 1$, we have $\delta t \ll 1$. That is the stiffness!
- As $n \rightarrow \infty$, we have

$$
\mathbb{E} X_{n}^{1} \rightarrow \frac{C_{2}}{\lambda} X^{T}
$$

which is the correct limit state.

Stability Analysis for the Variance

- Now consider the variance. At first we have

$$
\operatorname{Var}(Y)=\mathbb{E}(\operatorname{Var}(Y \mid X))+\operatorname{Var}(\mathbb{E}(Y \mid X))
$$

Stability Analysis for the Variance

- Now consider the variance. At first we have

$$
\operatorname{Var}(Y)=\mathbb{E}(\operatorname{Var}(Y \mid X))+\operatorname{Var}(\mathbb{E}(Y \mid X))
$$

- Then

$$
\begin{aligned}
\operatorname{Var}\left(X_{n+1}^{1}\right) & =C_{1} \delta t \mathbb{E} X_{n}^{1}+C_{2} \delta t \mathbb{E}\left(X^{T}-X_{n}^{1}\right) \\
& +\operatorname{Var}\left(X_{n}^{1}-C_{1} X_{n}^{1} \delta t+C_{2}\left(X^{T}-X_{n}^{1}\right) \delta t\right) \\
& =(1-\lambda \delta t)^{2} \operatorname{Var}\left(X_{n}^{1}\right)+\left(C_{1}-C_{2}\right) \delta t \mathbb{E} X_{n}^{1}+C_{2} \delta t X^{T}
\end{aligned}
$$

Stability Analysis for the Variance

- Now consider the variance. At first we have

$$
\operatorname{Var}(Y)=\mathbb{E}(\operatorname{Var}(Y \mid X))+\operatorname{Var}(\mathbb{E}(Y \mid X))
$$

- Then

$$
\begin{aligned}
\operatorname{Var}\left(X_{n+1}^{1}\right) & =C_{1} \delta t \mathbb{E} X_{n}^{1}+C_{2} \delta t \mathbb{E}\left(X^{T}-X_{n}^{1}\right) \\
& +\operatorname{Var}\left(X_{n}^{1}-C_{1} X_{n}^{1} \delta t+C_{2}\left(X^{T}-X_{n}^{1}\right) \delta t\right) \\
& =(1-\lambda \delta t)^{2} \operatorname{Var}\left(X_{n}^{1}\right)+\left(C_{1}-C_{2}\right) \delta t \mathbb{E} X_{n}^{1}+C_{2} \delta t X^{T}
\end{aligned}
$$

- As $n \rightarrow \infty$, we have

$$
\operatorname{Var}\left(X_{n}^{1}\right) \rightarrow \frac{2}{2-\lambda \delta t} \frac{C_{1} C_{2} X^{T}}{\left(C_{1}+C_{2}\right)^{2}}=\frac{2}{2-\lambda \delta t} \operatorname{Var}\left(X_{\infty}^{1}\right) \geq \operatorname{Var}\left(X_{\infty}^{1}\right)
$$

Stability Analysis for the Variance

- Now consider the variance. At first we have

$$
\operatorname{Var}(Y)=\mathbb{E}(\operatorname{Var}(Y \mid X))+\operatorname{Var}(\mathbb{E}(Y \mid X))
$$

- Then

$$
\begin{aligned}
\operatorname{Var}\left(X_{n+1}^{1}\right) & =C_{1} \delta t \mathbb{E} X_{n}^{1}+C_{2} \delta t \mathbb{E}\left(X^{T}-X_{n}^{1}\right) \\
& +\operatorname{Var}\left(X_{n}^{1}-C_{1} X_{n}^{1} \delta t+C_{2}\left(X^{T}-X_{n}^{1}\right) \delta t\right) \\
& =(1-\lambda \delta t)^{2} \operatorname{Var}\left(X_{n}^{1}\right)+\left(C_{1}-C_{2}\right) \delta t \mathbb{E} X_{n}^{1}+C_{2} \delta t X^{T}
\end{aligned}
$$

- As $n \rightarrow \infty$, we have

$$
\operatorname{Var}\left(X_{n}^{1}\right) \rightarrow \frac{2}{2-\lambda \delta t} \frac{C_{1} C_{2} X^{T}}{\left(C_{1}+C_{2}\right)^{2}}=\frac{2}{2-\lambda \delta t} \operatorname{Var}\left(X_{\infty}^{1}\right) \geq \operatorname{Var}\left(X_{\infty}^{1}\right)
$$

- In order to get the right variance, we need $\lambda \delta t \rightarrow 0$. Since $\lambda \gg 1$, we need $\delta t \rightarrow 0$, which is a strict constraint.

Stiff System

Strategy: Implicit method to overcome stiffness.

- The first choice is

$$
X_{n+1}^{1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n+1}^{1} \delta t\right)+\mathcal{P}\left(C_{2}\left(X^{T}-X_{n+1}^{1}\right) \delta t\right)
$$

Stiff System

Strategy: Implicit method to overcome stiffness.

- The first choice is

$$
X_{n+1}^{1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n+1}^{1} \delta t\right)+\mathcal{P}\left(C_{2}\left(X^{T}-X_{n+1}^{1}\right) \delta t\right)
$$

- But the problem is how to sample $\mathcal{P}\left(C_{1} X_{n+1}^{1} \delta t\right)$. If we apply the iteration

$$
X_{n+1}^{1, k+1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n+1}^{1, k} \delta t\right)+\mathcal{P}\left(C_{2}\left(X^{T}-X_{n+1}^{1, k}\right) \delta t\right),
$$

there will be no fixed point because of randomness.

Stiff System

Strategy: Implicit method to overcome stiffness.

- The first choice is

$$
X_{n+1}^{1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n+1}^{1} \delta t\right)+\mathcal{P}\left(C_{2}\left(X^{T}-X_{n+1}^{1}\right) \delta t\right)
$$

- But the problem is how to sample $\mathcal{P}\left(C_{1} X_{n+1}^{1} \delta t\right)$. If we apply the iteration

$$
X_{n+1}^{1, k+1}=X_{n}^{1}-\mathcal{P}\left(C_{1} X_{n+1}^{1, k} \delta t\right)+\mathcal{P}\left(C_{2}\left(X^{T}-X_{n+1}^{1, k}\right) \delta t\right),
$$

there will be no fixed point because of randomness.

- The second choice is semi-implicit method as

$$
\begin{aligned}
X_{n+1}^{1}= & X_{n}^{1}-C_{1} X_{n+1}^{1} \delta t+C_{2}\left(X^{T}-X_{n+1}^{1}\right) \delta t \\
& -\left[\mathcal{P}\left(C_{1} X_{n}^{1} \delta t\right)-C_{1} X_{n}^{1} \delta t\right] \\
+ & {\left[\mathcal{P}\left(C_{2}\left(X^{T}-X_{n}^{1}\right) \delta t\right)-C_{2}\left(X^{T}-X_{n}^{1}\right) \delta t\right] . }
\end{aligned}
$$

Stiff System

- Similar analysis as before shows the stability condition

$$
\left|\frac{1}{1+\lambda t}\right| \leq 1
$$

So the stiffness is resolved!

Stiff System

- Similar analysis as before shows the stability condition

$$
\left|\frac{1}{1+\lambda t}\right| \leq 1
$$

So the stiffness is resolved!

- But the variance

$$
\operatorname{Var}\left(X_{n}^{1}\right) \rightarrow \frac{2}{2+\lambda \delta t} \operatorname{Var}\left(X_{\infty}^{1}\right) \leq \operatorname{Var}\left(X_{\infty}^{1}\right)
$$

because of the damping effect of implicit method.

Stiff System

- Similar analysis as before shows the stability condition

$$
\left|\frac{1}{1+\lambda t}\right| \leq 1
$$

So the stiffness is resolved!

- But the variance

$$
\operatorname{Var}\left(X_{n}^{1}\right) \rightarrow \frac{2}{2+\lambda \delta t} \operatorname{Var}\left(X_{\infty}^{1}\right) \leq \operatorname{Var}\left(X_{\infty}^{1}\right)
$$

because of the damping effect of implicit method.

- Trapezoidal method is a good choice for linear problem. But the story goes on for nonlinear stiff problem!

Convergence Analysis

- Issue: the chemical reaction kinetics is a pure jump process with state dependent intensity.

Convergence Analysis

- Issue: the chemical reaction kinetics is a pure jump process with state dependent intensity.
- Construct jump process with state dependent intensity from constant jump intensity process (P. Protter, 1983) Acceptance rejection method

$$
\mu(d t)=\int_{0}^{A} 1_{\left\{0<x \leq a_{0}\left(\boldsymbol{X}_{t}\right)\right\}} \lambda(d t \times d x) .
$$

$\lambda(d t \times d x)$ is the Poisson random measure generated from a constant jump intensity process. $\mu(d t)$ has intensity $a_{0}\left(\boldsymbol{X}_{t}\right)$.

Convergence Analysis

- Issue: the chemical reaction kinetics is a pure jump process with state dependent intensity.
- Construct jump process with state dependent intensity from constant jump intensity process (P. Protter, 1983) Acceptance rejection method

$$
\mu(d t)=\int_{0}^{A} 1_{\left\{0<x \leq a_{0}\left(\boldsymbol{X}_{t}\right)\right\}} \lambda(d t \times d x)
$$

$\lambda(d t \times d x)$ is the Poisson random measure generated from a constant jump intensity process. $\mu(d t)$ has intensity $a_{0}\left(\boldsymbol{X}_{t}\right)$.

- The SDE form for the CME

$$
d \boldsymbol{X}_{t}=\sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}\left(x ; \boldsymbol{X}_{t-}\right) \lambda(d t \times d x)
$$

where

$$
c_{j}\left(x ; \boldsymbol{X}_{t}\right)= \begin{cases}1, & \text { if } x \in\left(\sum_{i=1}^{j-1} a_{i}\left(\boldsymbol{X}_{t}\right), \sum_{i=1}^{j} a_{i}\left(\boldsymbol{X}_{t}\right)\right] \\ 0, & \text { otherwise }\end{cases}
$$

Tau-leaping is an explicit Euler scheme

- Decomposition

$$
\begin{aligned}
d \boldsymbol{X}_{t} & =\sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}\left(x ; \boldsymbol{X}_{t-}\right) m(d t \times d x) \\
& +\sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}\left(x ; \boldsymbol{X}_{t-}\right)(\lambda-m)(d t \times d x) \\
& =\boldsymbol{P}_{1}+\boldsymbol{P}_{2}
\end{aligned}
$$

Tau-leaping is an explicit Euler scheme

- Decomposition

$$
\begin{aligned}
d \boldsymbol{X}_{t} & =\sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}\left(x ; \boldsymbol{X}_{t-}\right) m(d t \times d x) \\
& +\sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}\left(x ; \boldsymbol{X}_{t-}\right)(\lambda-m)(d t \times d x) \\
& =\boldsymbol{P}_{1}+\boldsymbol{P}_{2}
\end{aligned}
$$

- We call \boldsymbol{P}_{1} the drift term and \boldsymbol{P}_{2} is the jump term.

Tau-leaping is an explicit Euler scheme

- Decomposition

$$
\begin{aligned}
d \boldsymbol{X}_{t} & =\sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}\left(x ; \boldsymbol{X}_{t-}\right) m(d t \times d x) \\
& +\sum_{j=1}^{M} \int_{0}^{A} \boldsymbol{\nu}_{j} c_{j}\left(x ; \boldsymbol{X}_{t-}\right)(\lambda-m)(d t \times d x) \\
& =\boldsymbol{P}_{1}+\boldsymbol{P}_{2}
\end{aligned}
$$

- We call \boldsymbol{P}_{1} the drift term and \boldsymbol{P}_{2} is the jump term.
- Explicit Euler scheme - tau-leaping method!

$$
\boldsymbol{X}_{n+1}=\boldsymbol{X}_{n}+\sum_{j=1}^{M} \boldsymbol{\nu}_{j} \mathcal{P}\left(a_{j}\left(\boldsymbol{X}_{n}\right) \delta t_{n}\right)
$$

Other tau-leaping schemes

- Implicit tau-leaping: semi-implicit Euler of SDEs

Other tau-leaping schemes

- Implicit tau-leaping: semi-implicit Euler of SDEs
- Stochastic theta methods:

$$
\begin{aligned}
\boldsymbol{X}_{n+1} & =\boldsymbol{X}_{n}+\sum_{j=1}^{M} \theta \boldsymbol{\nu}_{j}\left(a_{j}\left(\boldsymbol{X}_{n+1}\right)-a_{j}\left(\boldsymbol{X}_{n}\right)\right) \delta t_{n} \\
& +\sum_{j=1}^{M} \boldsymbol{\nu}_{j} \mathcal{P}\left(a_{j}\left(\boldsymbol{X}_{n}\right) \delta t_{n}\right)
\end{aligned}
$$

Other tau-leaping schemes

- Implicit tau-leaping: semi-implicit Euler of SDEs
- Stochastic theta methods:

$$
\begin{aligned}
\boldsymbol{X}_{n+1} & =\boldsymbol{X}_{n}+\sum_{j=1}^{M} \theta \boldsymbol{\nu}_{j}\left(a_{j}\left(\boldsymbol{X}_{n+1}\right)-a_{j}\left(\boldsymbol{X}_{n}\right)\right) \delta t_{n} \\
& +\sum_{j=1}^{M} \boldsymbol{\nu}_{j} \mathcal{P}\left(a_{j}\left(\boldsymbol{X}_{n}\right) \delta t_{n}\right)
\end{aligned}
$$

- Milstein scheme: Not directly imply any implementable scheme!

Convergence Theorem

Theorem (Mean square convergence)
With the assumptions before we have

$$
\sup _{n \leq N_{T}} \mathbb{E}\left|\boldsymbol{X}_{n}-\boldsymbol{X}_{t_{n}}\right|^{2} \leq C \tau,
$$

where $\tau=\max _{n} \delta t_{n}$.

Convergence Theorem

Theorem (Mean square convergence)
With the assumptions before we have

$$
\sup _{n \leq N_{T}} \mathbb{E}\left|\boldsymbol{X}_{n}-\boldsymbol{X}_{t_{n}}\right|^{2} \leq C \tau
$$

where $\tau=\max _{n} \delta t_{n}$.
Theorem (Weak convergence)
Under the assumptions, for any continuous function $g(\boldsymbol{x})$ satisfying exponential growth condition

$$
|g(\boldsymbol{x})| \leq C_{g} B^{|\boldsymbol{x}|}, \quad \boldsymbol{x} \in \mathbb{R}^{N} \text { and } C_{g}, B>0
$$

We have

$$
\left|\mathbb{E} g\left(\boldsymbol{X}_{N_{T}}\right)-\mathbb{E} g\left(\boldsymbol{X}_{T}\right)\right| \leq C \tau
$$

where $T=t_{N_{T}}, \tau=\max _{n} \delta t_{n}$.

Stationary Distribution

The chemical master equation (FPE) is as before. Denote it as $\partial_{t} P=\mathcal{L} P$. Here \mathcal{L} is the adjoint operator of the infinitesimal generator

$$
\begin{aligned}
\mathcal{L}^{*} u & =\sum_{j=1}^{M} a_{j}(\boldsymbol{x}) u\left(\boldsymbol{x}+\boldsymbol{\nu}_{j}, t\right)-\sum_{j=1}^{M} a_{j}(\boldsymbol{x}) u(\boldsymbol{x}, t) \\
& =\sum_{j=1}^{M} a_{j}(\boldsymbol{x})\left(u\left(\boldsymbol{x}+\boldsymbol{\nu}_{j}, t\right)-u(\boldsymbol{x}, t)\right)
\end{aligned}
$$

For the stationary solution, we ask

$$
\mathcal{L} P=0 .
$$

Stationary Distribution

- For reversible reaction, we only consider the equation for x since $x+y=x^{T}\left(\nu_{1}=-1, \nu_{2}=1\right)$:

$$
\begin{gathered}
\left(C_{1}(x+1) p(x+1)-C_{1} x p(x)\right)+ \\
\left(C_{2}\left(x^{T}-x+1\right) p(x-1)-C_{2}\left(x^{T}-x\right) p(x)\right)=0
\end{gathered}
$$

Stationary Distribution

- For reversible reaction, we only consider the equation for x since $x+y=x^{T}\left(\nu_{1}=-1, \nu_{2}=1\right)$:

$$
\begin{gathered}
\left(C_{1}(x+1) p(x+1)-C_{1} x p(x)\right)+ \\
\left(C_{2}\left(x^{T}-x+1\right) p(x-1)-C_{2}\left(x^{T}-x\right) p(x)\right)=0
\end{gathered}
$$

- Define $a_{2}(x)=C_{2}\left(x^{T}-x\right), a_{1}(x)=C_{1} x,\left(0 \leq x \leq x^{T}\right)$, we have

$$
\left(a_{1}(x+1) p(x+1)-a_{2}(x) p(x)\right)-\left(a_{1}(x) p(x)-a_{2}(x-1) p(x-1)\right)=0
$$

Stationary Distribution

- For reversible reaction, we only consider the equation for x since $x+y=x^{T}\left(\nu_{1}=-1, \nu_{2}=1\right)$:

$$
\begin{array}{r}
\left(C_{1}(x+1) p(x+1)-C_{1} x p(x)\right)+ \\
\left(C_{2}\left(x^{T}-x+1\right) p(x-1)-C_{2}\left(x^{T}-x\right) p(x)\right)=0
\end{array}
$$

- Define $a_{2}(x)=C_{2}\left(x^{T}-x\right), a_{1}(x)=C_{1} x,\left(0 \leq x \leq x^{T}\right)$, we have

$$
\left(a_{1}(x+1) p(x+1)-a_{2}(x) p(x)\right)-\left(a_{1}(x) p(x)-a_{2}(x-1) p(x-1)\right)=0 .
$$

- If $x=0, a_{1}(x) p(x)-a_{2}(x-1) p(x-1)=a(0) p(0)=0$, we have the detailed balance $a_{1}(x) p(x)=a_{2}(x-1) p(x-1)$, so

$$
\frac{p(x)}{p(x-1)}=\frac{a_{2}(x-1)}{a_{1}(x)} \Longrightarrow \frac{p(x)}{p(0)}=\frac{a_{2}(x-1)}{a_{1}(x)} \frac{a_{2}(x-2)}{a_{1}(x-1)} \cdots \frac{a_{2}(0)}{a_{1}(1)}
$$

Stationary Distribution

- We obtain the stationary distribution

$$
\begin{aligned}
p(x) & =p(0)\left(\frac{C_{2}}{C_{1}}\right)^{x} \frac{x^{T}!}{x!\left(x^{T}-x\right)!} \\
& =\frac{x^{T}!}{x!\left(x^{T}-x\right)!}\left(\frac{C_{2}}{C_{1}+C_{2}}\right)^{x}\left(\frac{C_{1}+C_{2}}{C_{1}}\right)^{x}
\end{aligned}
$$

Stationary Distribution

- We obtain the stationary distribution

$$
\begin{aligned}
p(x) & =p(0)\left(\frac{C_{2}}{C_{1}}\right)^{x} \frac{x^{T}!}{x!\left(x^{T}-x\right)!} \\
& =\frac{x^{T}!}{x!\left(x^{T}-x\right)!}\left(\frac{C_{2}}{C_{1}+C_{2}}\right)^{x}\left(\frac{C_{1}+C_{2}}{C_{1}}\right)^{x}
\end{aligned}
$$

- From the normalization we have

$$
p(x) \sim B\left(x^{T}, q\right), \quad q=\frac{C_{2}}{C_{1}+C_{2}}
$$

with mean $x^{T} C_{2} /\left(C_{1}+C_{2}\right)$, and variance $x^{T} C_{1} C_{2} /\left(C_{1}+C_{2}\right)$.

