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Traditional chemical reaction dynamics — ODE

I Decaying-dimerizing reaction

S1 −→ ∅,
S1 + S1 ←→ S2,

S2 −→ S3,

I Traditional model — ODEs for the concentration (Law of
Mass Action)

dx1
dt

= −k1x1 − 2k2x
2
1 + 2k3x2

dx2
dt

= k2x
2
1 − k3x2 − k4x2

dx3
dt

= k4x2

k1, k2, k3, k4 are reaction rates.
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Drawbacks of ODE description

I Deterministic model describes an average behavior and is valid
for large population

I Species of small population may play important role in
biological system

I Examples of stochasticity
A. Arkin et al., Genetics 149 (1998), 1633 — Stochastic
variations can produce probabilistic pathway selection.
M. Elowitz et al., Science 297 (2002), 391 — Gene expression
is affected by both extrinsic and intrinsic noise.
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Chemical kinetic system (CKS)

Taking into account the stochasticity in biological chemical
reactions, this opens a new way for modeling and simulation!



Chemical reaction kinetics — stochastic version

I Well-stirred system of N molecular species {S1, S2, . . . , SN}
interacting through M chemical reaction channels
{R1, R2, . . . , RM}.

I State of the system

Xt = (X1
t , X

2
t , . . . , X

N
t ).

I Each reaction channel Rj is characterized by its propensity
function aj(x) and its state change vector

νj = (ν1j , ν
2
j , . . . , ν

N
j ).

I Here aj(x)dt gives the probability that the system will
experience an Rj reaction in the next infinitesimal time dt
when the current state Xt = x. νij is the change in the
number of Si molecules caused by one Rj reaction.

I We will define a0(x) =
∑M

j=1 aj(x).
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An example

I Decaying-dimerizing reaction:

S1
R1−→ φ

S1 + S1
R2−→ S2

S1 + S1
R3←− S2

S2
R4−→ S3

The propensity functions are given by

a1 = x1, a2 = 5x1(x1 − 1), a3 = 1000x2, a4 = 0.1x2

and state change vector

ν1 = (−1, 0, 0), ν2 = (−2, 1, 0), ν3 = (2,−1, 0), ν4 = (−1, 0, 1).

Initial state X(0) = (400, 798, 0).



Chemical Master Equation
I The Chapman-Kolmogorov equation in the time interval

[t, t+ dt)

P (x, t+ dt|x0, t0) =

M∑
j=1

P (x− νj , t|x0, t0)aj(x− νj)dt+

(
1−

M∑
j=1

aj(x)dt
)
P (x, t|x0, t0),

where dt is an infinitesimal time, and we have already omitted
the higher order terms in o(dt).

I With some algebra, we get the well-known chemical master
equation.

∂tP (x, t|x0, t0) =

M∑
j=1

aj(x−νj)P (x−νj , t|x0, t0)−a0(x)P (x, t|x0, t0)

where a0(x) :=
∑M

j=1 aj(x) is the total propensity.
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SSA — Gillespie’s algorithm

I SSA (Stochastic Simulation Algorithm) (Gillespie, JCP 22
(1976), 403.)

I Step 1: Sampling the waiting time τ as an exponentially
distributed random variable (R.V.) with rate a0(Xt);

I Step 2: Sampling an M point R.V. k with probability
aj(Xt)
a0(Xt)

for the j-th reaction;
I Step 3: Update Xt+τ =Xt + νk, then return to Step 1.

I Understood as an exact simulation since the waiting time of
the j-th reaction firing is distributed as aj(x) exp(−a0(x)t).

I It is essentially the BKL algorithm (Bortz-Kalos-Lebowitz) or
KMC in condensed matter physics.
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Shortcomings of SSA

I When the population of molecules is very large, the reaction
will fire very frequently, which is quite time consuming.

I When the reaction rate is very large for a reversible reaction,
the reactions will fire back and forth very frequently, but cause
very little change of the state.

S1 + S1 ←→ S2

I How to accelerate the simulation process?
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Tau-leaping Algorithm
I The philosophy is to accelerate SSA at the cost of accuracy.

I Gillespie proposed the following condition for accelerating the
simulation:

“Leap Condition: Require the leap time τ to be small
enough that the change in the state during [t, t+ τ) will be so
slight that no propensity function will suffer an appreciable
(i.e., macroscopically noninfinitesimal) change in its value.”

I This means that we set aj(Xt) fixed, and leap with time
stepsize δt.

I Then the number of j-th reaction will be P(aj(Xt)δt, which
is a Poisson random variable with distribution λk/k! exp(−λ).
Here λ = aj(Xt)δt.

I So we have the tau-leaping scheme

Xt+δt =Xt +
M∑
j=1

νjP(aj(Xt)δt)
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Tau-leaping Algorithm: Stepsize Selection
I The procedure for selecting tau (time stepsize) is as follows.

I Note that the state after τ -leaping is

X →X +

M∑
j=1

νjaj(X)τ :=X + τξ.

I Then the leap condition will be

|aj(X + τξ)− aj(X)| ≤ εa0(X),

where 0 < ε < 1 is a specified value.

I The Taylor expansion of the LHS gives τ |ξ · ∇aj | ≤ εa0(X),
which gives one stepsize selection strategy

τ ≈ min
j=1,...,M

{ εa0(X)

|ξ · ∇aj |

}
.

I Many more robust stepsize selection strategies are also
proposed.
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Some Remarks

Remark
The total propensity is a0(X). So the expected waiting time for
one reaction fires is O(1/a0(X)). If

τ ≤ m/a0(X), m ∼ O(1)

One will use SSA instead.

Remark
Compare with the forward Euler step xn+1 = xn + f(xn)δt for
ODE

ẋ = f(x).

We actually fix f(x) as a constant f(xn) in [tn, tn+1) with a
similar idea. One will find more connections along this direction.
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Tau-leaping Algorithm: Multiscale Picture

Multi-scale picture:
The multi-scale picture from tau-leaping is charming.

I From tau-leaping to Chemical Langevin Equation:
When aj(Xt)τ � 1, P (aj(Xt)τ) ≈ N(aj(Xt)τ, aj(Xt)τ) by
Central Limit Theorem

Xt+τ ≈Xt +

M∑
j=1

νjaj(Xt)τ +

M∑
j=1

νj

√
aj(Xt)τN(0, 1)

which corresponds to CLE

dXt =

M∑
j=1

νjaj(Xt)dt+

M∑
j=1

νj

√
aj(Xt)dW t



Tau-leaping Algorithm: Multiscale Picture

I From Chemical Langevin Equation to Reaction Rate Equation:
When aj(Xt)τ → +∞, N(aj(Xt)τ, aj(Xt)τ) ≈ aj(Xt)τ by
Law of Large Numbers

Xt+τ ≈Xt +

M∑
j=1

νjaj(Xt)τ

which corresponds to RRE

dXt

dt
=

M∑
j=1

νjaj(Xt)

Tau-leaping bridges all of the equations in different scales with a
seamless way!



Multiscale Picture

The comparison with fluid mechanics (upscaling) will be
instructive.

SSA −→ Molecular dynamics
↓ ↓

CLE −→ Kinetic theory
↓ ↓

RRE −→ Continuum mechanics



Negative Populations

I Because of unboundedness of Poisson R.V., negative
populations may appear.

I One choice to avoid N.P. is by binomial tau-leaping.

I Note that Poisson distribution may be viewed as a limit of
binomial distribution B(n, p) when n→∞ with λ = np fixed.
That is

B(k;n, p) = Cknp
k(1− p)n−k → P(λ).
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Binomial Tau-leaping

Algorithm (Binomial Tau-leaping)

Avoiding negative populations.

I Step 1: At time t, set X̃ =Xt, select τ ;

I Step 2: Sequentially for j = 1, 2, . . . ,M do:

I Find k
(j)
max ∼ Maximal admissible number of j-th reactions

according to X̃;
I Define p = ajτ/k

(j)
max;

I Sample binomial distribution R.V. kj ∼ B(k
(j)
max, p);

I Firing j-th reaction kj times:

X̃ + νjkj → X̃

I Step 3: The iteration is repeated until the final time T is
achieved.
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according to X̃;

I Define p = ajτ/k
(j)
max;

I Sample binomial distribution R.V. kj ∼ B(k
(j)
max, p);

I Firing j-th reaction kj times:

X̃ + νjkj → X̃

I Step 3: The iteration is repeated until the final time T is
achieved.
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Simple Analysis of Binomial Tau-leaping

I A simple analysis of binomial tau-leaping as follows. Note
that the number of j-th reactions:

Poisson : ajτ ±
√
ajτ

Binomial : ajτ ±
√
ajτ
(
1− ajτ/k(j)max

) 1
2

I In the law of rare events limit (ajτ � k
(j)
max), they give same

result; in the finite size case, the noise is different!
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Stiff System: Model System 1

I Chemical reactions are usually stiff.

Example (Reversible reaction)

Consider the reversible reaction system

S1 −→ S2 with rate C1 (1)

S2 −→ S1 with rate C2 (2)

when C1 and C2 are both large.

I Define C1 + C2 = λ, X1
t +X2

t = XT (total number). Here
λ� 1. Then we have

EX1
t =

C2X
T

λ
(1− e−λt) + e−λtX1

0

EX2
t =

C1X
T

λ
(1− e−λt) + e−λtX2

0
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Stiff System: Model System 2

Example (Fast decaying)

Consider the following system

S −→ ∅ with rate C1 (3)

∅ −→ S with rate C2 (4)

when C1 − C2 is large.

Define λ = C1 − C2, we have EXt = e−λtX0.



Stability Analysis

I Now we perform the stability analysis for the stiff reversible
reaction system. Suppose the explicit tau-leaping is applied.{

X1
n+1 = X1

n − P(C1X
1
nδt) + P(C2X

2
nδt)

X2
n+1 = X2

n − P(C2X
2
nδt) + P(C1X

1
nδt)

I We have X1
n +X2

n = XT = Const.. So we have

X1
n+1 = X1

n − P(C1X
1
nδt) + P(C2(X

T −X1
n)δt).
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Stability Analysis for the Mean

I Taking expectation we obtain

EX1
n+1 = (1− λδt)EX1

n + C2X
T δt.

I The stability condition is

|1− λδt| ≤ 1 =⇒ δt ≤ 2

λ
.

I When λ� 1, we have δt� 1. That is the stiffness!

I As n→∞, we have

EX1
n →

C2

λ
XT ,

which is the correct limit state.
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Stability Analysis for the Variance

I Now consider the variance. At first we have

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)).

I Then

Var(X1
n+1) = C1δtEX1

n + C2δtE(XT −X1
n)

+ Var
(
X1
n − C1X

1
nδt+ C2(X

T −X1
n)δt

)
= (1− λδt)2Var(X1

n) + (C1 − C2)δtEX1
n + C2δtX

T .

I As n→∞, we have

Var(X1
n)→

2

2− λδt
C1C2X

T

(C1 + C2)2
=

2

2− λδt
Var(X1

∞) ≥ Var(X1
∞).

I In order to get the right variance, we need λδt→ 0. Since
λ� 1, we need δt→ 0, which is a strict constraint.
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Stiff System
Strategy: Implicit method to overcome stiffness.

I The first choice is

X1
n+1 = X1

n − P(C1X
1
n+1δt) + P(C2(X

T −X1
n+1)δt).

I But the problem is how to sample P(C1X
1
n+1δt). If we apply

the iteration

X1,k+1
n+1 = X1

n − P(C1X
1,k
n+1δt) + P(C2(X

T −X1,k
n+1)δt),

there will be no fixed point because of randomness.

I The second choice is semi-implicit method as

X1
n+1 = X1

n − C1X
1
n+1δt+ C2(X

T −X1
n+1)δt

−
[
P(C1X

1
nδt)− C1X

1
nδt
]

+
[
P(C2(X

T −X1
n)δt)− C2(X

T −X1
n)δt

]
.
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Stiff System

I Similar analysis as before shows the stability condition∣∣∣ 1

1 + λt

∣∣∣ ≤ 1.

So the stiffness is resolved!

I But the variance

Var(X1
n)→

2

2 + λδt
Var(X1

∞) ≤ Var(X1
∞).

because of the damping effect of implicit method.

I Trapezoidal method is a good choice for linear problem. But
the story goes on for nonlinear stiff problem!
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Convergence Analysis
I Issue: the chemical reaction kinetics is a pure jump process

with state dependent intensity.

I Construct jump process with state dependent intensity from
constant jump intensity process (P. Protter, 1983) —
Acceptance rejection method

µ(dt) =

∫ A

0
1{0<x≤a0(Xt)}λ(dt× dx).

λ(dt× dx) is the Poisson random measure generated from a
constant jump intensity process. µ(dt) has intensity a0(Xt).

I The SDE form for the CME

dXt =
M∑
j=1

∫ A

0
νjcj(x;Xt−)λ(dt× dx),

where

cj(x;Xt) =

{
1, if x ∈ (

∑j−1
i=1 ai(Xt),

∑j
i=1 ai(Xt)],

0, otherwise.
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Tau-leaping is an explicit Euler scheme

I Decomposition

dXt =

M∑
j=1

∫ A

0
νjcj(x;Xt−)m(dt× dx)

+

M∑
j=1

∫ A

0
νjcj(x;Xt−)(λ−m)(dt× dx)

= P 1 + P 2.

I We call P 1 the drift term and P 2 is the jump term.

I Explicit Euler scheme — tau-leaping method!

Xn+1 =Xn +
M∑
j=1

νjP(aj(Xn)δtn)
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Other tau-leaping schemes

I Implicit tau-leaping: semi-implicit Euler of SDEs

I Stochastic theta methods:

Xn+1 = Xn +

M∑
j=1

θνj

(
aj(Xn+1)− aj(Xn)

)
δtn

+
M∑
j=1

νjP(aj(Xn)δtn).

I Milstein scheme: Not directly imply any implementable
scheme!
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Convergence Theorem

Theorem (Mean square convergence)

With the assumptions before we have

sup
n≤NT

E|Xn −Xtn |2 ≤ Cτ,

where τ = maxn δtn.

Theorem (Weak convergence)

Under the assumptions, for any continuous function g(x) satisfying
exponential growth condition

|g(x)| ≤ CgB|x|, x ∈ RN and Cg, B > 0.

We have ∣∣∣Eg(XNT
)− Eg(XT )

∣∣∣ ≤ Cτ,
where T = tNT

, τ = maxn δtn.
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Stationary Distribution

The chemical master equation (FPE) is as before. Denote it as
∂tP = LP . Here L is the adjoint operator of the infinitesimal
generator

L∗u =

M∑
j=1

aj(x)u(x+ νj , t)−
M∑
j=1

aj(x)u(x, t)

=

M∑
j=1

aj(x)
(
u(x+ νj , t)− u(x, t)

)
.

For the stationary solution, we ask

LP = 0.



Stationary Distribution
I For reversible reaction, we only consider the equation for x

since x+ y = xT (ν1 = −1, ν2 = 1):(
C1(x+ 1)p(x+ 1)− C1xp(x)

)
+(

C2(x
T − x+ 1)p(x− 1)− C2(x

T − x)p(x)
)
= 0.

I Define a2(x) = C2(x
T − x), a1(x) = C1x, (0 ≤ x ≤ xT ), we

have(
a1(x+1)p(x+1)−a2(x)p(x)

)
−
(
a1(x)p(x)−a2(x−1)p(x−1)

)
= 0.

I If x = 0, a1(x)p(x)− a2(x− 1)p(x− 1) = a(0)p(0) = 0, we
have the detailed balance a1(x)p(x) = a2(x− 1)p(x− 1), so

p(x)

p(x− 1)
=
a2(x− 1)

a1(x)
=⇒ p(x)

p(0)
=
a2(x− 1)

a1(x)

a2(x− 2)

a1(x− 1)
· · · a2(0)

a1(1)
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C1(x+ 1)p(x+ 1)− C1xp(x)

)
+(

C2(x
T − x+ 1)p(x− 1)− C2(x

T − x)p(x)
)
= 0.

I Define a2(x) = C2(x
T − x), a1(x) = C1x, (0 ≤ x ≤ xT ), we

have(
a1(x+1)p(x+1)−a2(x)p(x)

)
−
(
a1(x)p(x)−a2(x−1)p(x−1)

)
= 0.

I If x = 0, a1(x)p(x)− a2(x− 1)p(x− 1) = a(0)p(0) = 0, we
have the detailed balance a1(x)p(x) = a2(x− 1)p(x− 1), so

p(x)

p(x− 1)
=
a2(x− 1)

a1(x)
=⇒ p(x)

p(0)
=
a2(x− 1)

a1(x)

a2(x− 2)

a1(x− 1)
· · · a2(0)

a1(1)



Stationary Distribution

I We obtain the stationary distribution

p(x) = p(0)
(C2

C1

)x xT !

x!(xT − x)!

=
xT !

x!(xT − x)!

( C2

C1 + C2

)x(C1 + C2

C1

)x

I From the normalization we have

p(x) ∼ B(xT , q), q =
C2

C1 + C2

with mean xTC2/(C1+C2), and variance xTC1C2/(C1+C2).
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