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Metastability and transition events

Consider the diffusion process defined by

dXε
t = −∇U(Xε

t )dt+
√
εdW t

where W t is the standard multi-dimensional Wiener process, U(x)
is assumed to be a smooth Morse function, i.e. the critical points
of U are non-degenerate in the sense that the Hessian matrices at
the critical points are non-degenerate.



Schematics of metastability and transitions

Figure: Schematics of the metastability phenomenon



Gradient system: ODE case

I When ε = 0, for generic initial conditions, the solution of this
ODEs converges to a local minimum of the potential function
U .

I For each local minimum, the set of initial conditions from
which the solutions of the ODEs converge to that local
minimum is the basin of attraction of that local minimum.

I The whole configuration space is then divided into the union
of the different basins of attraction. The boundaries of the
basins of the attraction are the separatrices, which are
themselves invariant sets of the deterministic dynamics.

I In particular, each local minimum is stable under the
dynamics.
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Gradient system: SDE case

I When ε is positive but small, on O(1) time scale, the picture
just described still pretty much holds.

I In particular, with overwhelming probability, the solution to
the SDEs will stay within the basin of attraction of a local
minimum.

I However, as we discuss below, on exponentially large time
scales in O(1/ε), the solution will hop over from one basin of
attraction to another, giving rise to a noise-induced instability.

I Such hopping events are the rare events we are interested in.
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Metastability: 1D example

I The above picture can be best illustrated in the following one
dimensional example (see Figure below) with the double-well
potential

U(x) =
1

4
(x2 − 1)2.

I The potential U has two local minima at x+ = 1 and
x− = −1, and one saddle at xs = 0. xs is also called the
transition state between x+ and x−. Thus we have two basins
of attraction

B− = {x| x ≤ 0} and B+ = {x| x ≥ 0}.

I Most of time, Xt wanders around x+ or x−. But after
exponentially large time scales in O(1/ε), Xε

t hops between
the regions B+ and B−, which manifests basic features of rare
events.
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Metastability: 1D example
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Figure: Illustration of rare events in the 1D double-well potential. Left
panel: The symmetric double-well potential with two metastable states at
x+ = 1 and x− = −1. Right panel: A specific trajectory of Xt, which
wanders around x+ or x− and hops after a sufficiently long time.



Metastability: key questions
In physical terms, the local minima or the basin of attractions are
called metastable states. Obviously, when we discuss metastability,
the key issue is that of the time scale. In rare event studies, one is
typically concerned about the following three key questions:

1. What is the most probable transition path and how to
compute it? When the dimension of Xε

t is bigger than 1, this
becomes a meaningful question.

2. Where is the transition state, i.e. the neighboring saddle
point, for a transition event starting from a metastable state?
Presumably the saddle points can be identified from the
eigenvalue analysis of the Hessian of U . However, when the
dimension is high and the landscape of U is complex, it is not
trivial.

3. How large is the typical transition time from a metastable
state? Answer of this question helps understanding the
stability of a metastable state, which corresponds to the key
time scale issue.
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Rare events: setup

I We will present some recent methodologies in the literature to
answer these questions.

I Consider the SDEs

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t ) · dW t, Xε
0 = y ∈ Rd.

We assume that the standard Lipschitz and uniform ellipticity
conditions on b and σ hold and denote the transition pdf by
pε(x, t|y). We are interested in the behavior of its solution for
small ε.
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Law of Large Numbers

I Let X0
t be the solution of the deterministic ODEs

Ẋ
0
t = b(X0

t ), X0
0 = y.

I It can be shown that for any fixed T > 0 and δ > 0, we have
the law of large numbers for the processes Xε

lim
ε→0

P
(

max
t∈[0,T ]

|Xε
t −X0

t | > δ

)
= 0.

I Further detailed analysis on the behavior of the pdf is studied
below.
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WKB analysis
I Inspired by the form of probability distribution function of

Brownian dynamics, we insert the Wentzel-Kramers-Brillouin
(WKB) ansatz

pε(x, t|y) ∼ exp
(
−ε−1φ(x, t|y)

)
into the forward Kolmogorov equation associated with the
SDEs

∂pε
∂t

= −∇ · (b(x)pε) +
ε

2
∇2 : (A(x)pε).

where A(x) = σσT (x) = (aij(x)) is the diffusion matrix.

I Collecting the leading order terms gives a time-dependent
Hamilton-Jacobi equation

∂φ

∂t
= H(x,∇xφ),

where H is the Hamiltonian with the form

H(x,p) = bT (x)p+
1

2
pTA(x)p =

∑
i

bipi +
1

2

∑
ij

aijpipj .
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Hamilton-Jacobi Theory

We will call p the momentum variable for its formal
correspondence in classical mechanics. The solution of this
equation can be characterized by the variational principle:

φ(x, t|y) = inf
ϕ

{
It[ϕ] : ϕ is absolutely continuous in [0, t]

and ϕ(0) = y,ϕ(t) = x
}
,

where It is the action functional

It[ϕ] =

∫ t

0
L(ϕ, ϕ̇)ds

and L is called the Lagrangian

L(x, z) =
1

2
‖z − b(x)‖2A

where the norm ‖z‖2A := zTA−1z.



Lagrangian and Hamiltonian

I The Lagrangian L is the dual of the Hamiltonian H in the
sense of Legendre-Fenchel transform

L(x, z) = sup
p
{p · z −H(x,p)}.

I The readers may be referred to
H. Goldstein, Classical mechanics,
V. I. Arnold, Mathematical methods of classical mechanics

for more details about the variational derivations about the
above connections.
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Implications of WKB results

I The WKB analysis has given us the intuition that the
probability

P(Xε
t ∈ B) � exp(−ε−1C) as ε→ 0,

where B is an open set, and the symbol � means exponential
equivalence, i.e. we have limε→0 ε lnAε/Bε = 1 if Aε � Bε.
The constant C will be positive if x(t) /∈ B, and 0 otherwise.

I This large deviation type estimate is even true in path space
C[0, T ].
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Large deviations on path space

First let us quote the large deviation result for the SDEs.

Theorem
Under the condition that b(x) and σ(x) is bounded and Lipschitz,
and A(x) is uniformly elliptic, we have that for any T > 0, the
following large deviation estimates for Xε.

(i) Upper bound. For any closed set F ⊂ (C[0, T ])d,

lim sup
ε→0

ε lnP(Xε ∈ F ) ≤ − inf
ϕ∈F

IT [ϕ].

(ii) Lower bound. For any open set G ⊂ (C[0, T ])d,

lim inf
ε→0

ε lnP(Xε ∈ G) ≥ − inf
ϕ∈G

IT [ϕ].

Here IT [ϕ] is the rate functional defined in WKB analysis if ϕ is
absolutely continuous with square integrable ϕ̇ and satisfies
ϕ(0) = y, otherwise IT [ϕ] =∞.
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Large deviations for 1D Brownian motion
I The proof of this theorem is beyond the scope of this course.

However we will give a formal derivation by path integral
approach.

I It is straightforward that the one-dimensional SDE

dXε
t =
√
εdWt, X0 = 0

has solution Xε
t =
√
εWt.

I Using the path integral representation, the probability
distribution induced by {Xε

t } on C[0, T ] can be formally
written as

dP ε[ϕ] = Z−1 exp

(
− 1

2ε

∫ T

0
|ϕ̇(s)|2ds

)
Dϕ

= Z−1 exp

(
−1

ε
IT [ϕ]

)
Dϕ

Note that IT [ϕ] can be +∞ if ϕ is not absolutely continuous
and square integrable or does not satisfy the corresponding
initial condition.
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Large deviations for SDEs
I Then let us consider the stochastic ODE

dXε
t = b(Xε

t )dt+
√
εσ(Xε

t )dWt, X0 = y.

We are interested in the asymptotic behavior of the
probability distribution P ε induced by {Xε

t }.

I From the SDE we have Ẇt = (
√
ε)−1σ−1(Xε

t )(Ẋε
t − b(Xε

t )).
Hence ∫ T

0
Ẇ 2
t dt = ε−1

∫ T

0
|σ−1(Xε

t )(Ẋε
t − b(Xε

t )|2dt.

From the distribution dP ε[ϕ] induced by
√
εWt, we obtain

dP ε[ϕ] = Z−1 exp

(
−1

ε
IT [ϕ]

)
Dϕ,

where IT [ϕ] is finite if ϕ is absolutely continuous with square
integrable ϕ̇ and satisfies ϕ(0) = y, and IT [ϕ] =∞ otherwise.
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Rate functional

Based on the theorem above and Varadhan’s lemma, we have the
asymptotics

−ε logP ε(B) ∼ inf
ϕ∈B

IT [ϕ], ε→ 0

for a reasonable set B in C[0, T ].

I This motivates a natural characterization of the most
probable transition paths in the limit ε→ 0.

I Given a set of path B in C[0, T ] we can define the optimal
path in B as the path ϕ? that has the maximum probability or
minimal action

inf
ϕ∈B

IT (ϕ) = IT (ϕ?),

if this minimization problem has a solution.

I Such a path is called a minimum (or least) action path.
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Minimum action path

I The minimum action path has special features in case that
b(x) = −∇U(x) and σ(x) = I.

I Assume that A and B are two neighboring metastable states
of U separated by the saddle point C. Define
B = {ϕ : ϕ ∈ (C[0, T ])d,ϕ(0) = A,ϕ(T ) = B}. We are
interested in the minimum action path ϕ ∈ B and let the
transition time T to be free

inf
T>0

inf
ϕ(0)=A,ϕ(T )=B

IT [ϕ].

We have the following characterizations.
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Minimum action/energy path

Lemma
The minimum action path ϕ of the Brownian dynamics is
comprised of two parts defined through functions ϕ1 and ϕ2 as

ϕ̇1(s) = ∇U(ϕ1(s)), ϕ1(−∞) = A,ϕ1(∞) = C,

ϕ̇2(s) = −∇U(ϕ2(s)), ϕ2(−∞) = C,ϕ2(∞) = B,

and the minimum action is achieved as

I∗ = I∞(ϕ1) + I∞(ϕ2) = I∞(ϕ1) = 2(U(C)− U(A)) = 2∆UAB.



Minimum action path: Proof

Proof.
It is not difficult to convince oneself that the minimum in T is
attained when T =∞ since A, B and C are all critical points (see
Exercise 13.1). To see why the minimization problem in is solved
by the path defined above, we first note that

I∞[ϕ1] = 2∆UAB, I∞[ϕ2] = 0.

In addition, for any path ϕ connecting A and a point C̃ on the
separatrix that separates the basins of attraction of A and B, we
have

I∞[ϕ] =
1

2

∫
R

(ϕ̇−∇U, ϕ̇−∇U)dt+ 2

∫
R
ϕ̇ · ∇Udt

≥ 2

∫
R
ϕ̇ · ∇Udt = 2(U(C̃)− U(A)) ≥ 2∆UAB

since C is the minimum of U on the separatrix. Combing the
result above we obtain the minimum I∗ = 2∆UAB.



Minimum energy path (MEP)
I Thus the most probable transition path is then the

combination of ϕ1 and ϕ2: ϕ1 goes along the steepest ascent
dynamics and therefore requires the action of the noise. ϕ2

simply follows the steepest descent dynamics and therefore
does not require the help from the noise.

I Putting them together we obtain the characterization for the
most probable transition path of Brownian dynamics

ϕ̇(s) = ±∇U(ϕ(s)).

Paths that satisfy this equation are called the minimum
energy path (MEP).

I One can write the equation above as:(
∇U(ϕ)

)⊥
= 0,

where (∇U(ϕ))⊥ denotes the component of ∇U(ϕ) normal
to the curve described by ϕ.
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Minimum energy path (MEP)

Question: How to compute the MEP for complicate systems?
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MEP Equation: Naive Implementation

I Note that the MEP equation for gradient system

(∇U(ϕ))⊥ = 0.

I This yields a natural methodology to compute the optimal
path by pseudo-steepest descent flow:

∂tϕ(α, t) = −(∇U(ϕ))⊥, ϕ(0) = A,ϕ(1) = B.

I The equation looks quite reasonable. Is it really true that the
trajectory will converge to the solution of the steady equation
(∇U(ϕ))⊥ = 0?

I The naive pseudo-steepest descent flow is not good for
numerics!
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String Method

I A modified form better for numerical implementation

∂tϕ(α, t) = −(∇U(ϕ))⊥ + rτ̂ , ϕ(0) = A,ϕ(1) = B.

I ϕ(α, t) is parametric curve of α ∈ (0, 1), τ̂ = ϕα/|ϕα|, and

(∇U(ϕ))⊥ = ∇U(ϕ)− (τ̂ ⊗ τ̂ ) · ∇U(ϕ).

I r is just a Lagrange multiplier to ensure the equi-arclength
parameterization:

(|ϕα|)α = 0.

I Note that the term rτ̂ is not necessary for the evolution of a
continuous path ϕ, and the equi-arclength parameterization
can be also replaced by other choices. This is called String
Method in the literature.
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Implementing String Method

The real implementation can be performed with the following
simplified two-step iterations:

1. Evolution of the steepest descent dynamics. For example, one
can simply apply the forward Euler scheme

ϕ̃n+1
i = ϕni −∆t∇U(ϕni )

or Runge-Kutta type schemes for one or several steps.

2. Reparameterization of the string. One can redistribute the
points {ϕ̃n+1

i } according to equi-arclength or other weighted
parameterizations. For example,
I Define s0 = 0, si = si−1 + |ϕ̃n

i − ϕ̃n
i−1| for i = 1, . . . , N , and

α̃i = si/sN .
I Interpolate ϕn+1

i at si = i/N from {α̃i, ϕ̃
n+1
i }.

With such implementation, the boundary states can be chosen
close to A and B instead of knowing their exact locations.



Implementing String Method

The real implementation can be performed with the following
simplified two-step iterations:

1. Evolution of the steepest descent dynamics. For example, one
can simply apply the forward Euler scheme

ϕ̃n+1
i = ϕni −∆t∇U(ϕni )

or Runge-Kutta type schemes for one or several steps.

2. Reparameterization of the string. One can redistribute the
points {ϕ̃n+1

i } according to equi-arclength or other weighted
parameterizations. For example,
I Define s0 = 0, si = si−1 + |ϕ̃n

i − ϕ̃n
i−1| for i = 1, . . . , N , and

α̃i = si/sN .
I Interpolate ϕn+1

i at si = i/N from {α̃i, ϕ̃
n+1
i }.

With such implementation, the boundary states can be chosen
close to A and B instead of knowing their exact locations.



Implementing String Method

The real implementation can be performed with the following
simplified two-step iterations:

1. Evolution of the steepest descent dynamics. For example, one
can simply apply the forward Euler scheme

ϕ̃n+1
i = ϕni −∆t∇U(ϕni )

or Runge-Kutta type schemes for one or several steps.

2. Reparameterization of the string. One can redistribute the
points {ϕ̃n+1

i } according to equi-arclength or other weighted
parameterizations. For example,

I Define s0 = 0, si = si−1 + |ϕ̃n
i − ϕ̃n

i−1| for i = 1, . . . , N , and
α̃i = si/sN .

I Interpolate ϕn+1
i at si = i/N from {α̃i, ϕ̃

n+1
i }.

With such implementation, the boundary states can be chosen
close to A and B instead of knowing their exact locations.



Implementing String Method

The real implementation can be performed with the following
simplified two-step iterations:

1. Evolution of the steepest descent dynamics. For example, one
can simply apply the forward Euler scheme

ϕ̃n+1
i = ϕni −∆t∇U(ϕni )

or Runge-Kutta type schemes for one or several steps.

2. Reparameterization of the string. One can redistribute the
points {ϕ̃n+1

i } according to equi-arclength or other weighted
parameterizations. For example,
I Define s0 = 0, si = si−1 + |ϕ̃n

i − ϕ̃n
i−1| for i = 1, . . . , N , and

α̃i = si/sN .

I Interpolate ϕn+1
i at si = i/N from {α̃i, ϕ̃

n+1
i }.

With such implementation, the boundary states can be chosen
close to A and B instead of knowing their exact locations.



Implementing String Method

The real implementation can be performed with the following
simplified two-step iterations:

1. Evolution of the steepest descent dynamics. For example, one
can simply apply the forward Euler scheme

ϕ̃n+1
i = ϕni −∆t∇U(ϕni )

or Runge-Kutta type schemes for one or several steps.

2. Reparameterization of the string. One can redistribute the
points {ϕ̃n+1

i } according to equi-arclength or other weighted
parameterizations. For example,
I Define s0 = 0, si = si−1 + |ϕ̃n

i − ϕ̃n
i−1| for i = 1, . . . , N , and

α̃i = si/sN .
I Interpolate ϕn+1

i at si = i/N from {α̃i, ϕ̃
n+1
i }.

With such implementation, the boundary states can be chosen
close to A and B instead of knowing their exact locations.



Implementing String Method

The real implementation can be performed with the following
simplified two-step iterations:

1. Evolution of the steepest descent dynamics. For example, one
can simply apply the forward Euler scheme

ϕ̃n+1
i = ϕni −∆t∇U(ϕni )

or Runge-Kutta type schemes for one or several steps.

2. Reparameterization of the string. One can redistribute the
points {ϕ̃n+1

i } according to equi-arclength or other weighted
parameterizations. For example,
I Define s0 = 0, si = si−1 + |ϕ̃n

i − ϕ̃n
i−1| for i = 1, . . . , N , and

α̃i = si/sN .
I Interpolate ϕn+1

i at si = i/N from {α̃i, ϕ̃
n+1
i }.

With such implementation, the boundary states can be chosen
close to A and B instead of knowing their exact locations.



Illustration of String Method

where �l and �r are Lagrange multipliers determined by the
constraints

��l − �s� = ��r − �s� = h . �30�

�29� is a discretized version of �27� because

�V��l� = H��s���l − �s� + O�h2� �31�

and similarly for �V��r�: here we used �V��s� and ��l−�s�
=h.

In practice, �29� can be solved by a two-step procedure.
At each time step, �r and �l is first evolved by the potential
force to give intermediate values,

�l
� = �l

n − �t � V��l
n� , �32�

and similarly for �r
�; then the constraints in �30� are enforced

by projecting �l
� and �r

� to the sphere S�s,h
with center �s and

radius h,

�l
n+1 = �s + h

�l
� − �s

��l
� − �s�

�33�

and similarly for �r
�. The steady-state solution of the proce-

dure above is used in �28� to calculate the tangent vector �̂s.
The parameter h in �28� should be chosen as small as

possible without impeding the accuracy with round-off er-
rors: if the digital precision is TOLmin, one should choose
h=TOLmin

1/2 , in which case the error due to finite difference in
�28� remains O�h2�=O�TOLmin�.

Notice that the time step �t in �32� can be chosen inde-
pendently of h without impeding on the accuracy because
�31� implies that �V��l�=O�h� and �V��r�=O�h�. As a re-
sult ��l

�−�l
n�=O�h� and ��r

�−�l
n�=O�h� and the two steps in

the procedure above do not interfere with the accuracy re-
gardless of what �t is. Since the convergence of the solution
of �29� is exponential in time, the number of steps nstep re-
quired to achieved a given accuracy TOL on �s scales as in
�23�.

Note that the above procedure brings �r and �l to the
minima of the potential energy V on the sphere S�s,h

by
steepest descent dynamics. More efficient constrained opti-
mization methods can be used as well to improve the con-
vergence rate and save computational cost.15

C. Illustrative example

In this example, we calculate the MEP, one of the saddle
point, and the associated unstable direction for the Mueller
potential.13

In the calculation, we first identify an approximation of
the MEP using the improved string method with N=10 im-
ages. Cubic splines were used in the reparametrization and
the forward Euler method with �t=4.5
10−4 was used in
the integration. After 70 time steps when d defined in �18� is
less than 0.1, we stop the string calculation, and identify the
image of maximum energy along the string, �s

0, and the cor-
responding �̂s

0. Then we switch to the climbing image algo-
rithm described in Sec. V A to improve �s

0, using again �t
=4.5
10−4 in �22�. The numerical result is shown in the

upper panel of Fig. 2. The figure shows the initial string
�dashed line� and the calculated MEP �filled circles�. The
background shows the contour lines of the Mueller potential.
There is an intermediate metastable state along the MEP, and
accordingly there are two saddle points. The empty circle on
the MEP indicates the location of the saddle point �s with
higher energy, obtained by the climbing image technique.
After convergence, the norm of the potential force at �s,
��V��s��, is smaller than 10−12. It takes 188 time steps to
reach this accuracy. The convergence history for the calcula-
tion of the saddle point is shown in the lower panel of Fig. 2.
The error decays exponentially with the iteration number or
time step n.

We then proceeded to calculate the unstable direction at
�s using the algorithm described in Sec. V B. We compared
the accuracy of the numerical results for different choices of
h.2,3,5,15 The numerical result is shown in the upper panel of
Fig. 3. Here the error is calculated by

FIG. 2. Upper panel: Initial string and calculated MEP using the string
method with ten images �the images are shown as filled circles; the lines are
the curves interpolated across these images; the vertical line is the initial
string and the other one is the calculated MEP�. The empty circle indicates
the saddle point identified by combining the string method with the climbing
image technique. The norm of the residual potential force at �s is smaller
than 10−12, ��V��s��	10−12. The background shows the contour lines of the
Mueller potential. Lower panel: The norm of the force on the climbing
image ��V��s�� vs the number n of iterations or time steps. The convergence
is exponential in time.
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B. Pathways in a cylinder with square cross section

Next we discuss three-dimensional results of a 200 nm
350 nm350 nm permalloy cylinder with square cross sec-
tion. In the pictures for the three-dimensional results in Figs.
4 and 5, the arrow indicates the two in-plane components of
the magnetization, and the color is coded for the third com-
ponent. The long axis of the cylinder is in thex direction.
For each critical point, we plot the two cross sections in the
middle of the cylinder, one of which is perpendicular to thez
axis, and the other is perpendicular to they axis. In the initial
state, the magnetization points along the positivex axis, ex-
cept that there are two vortices at both the top and the bottom
~see Figs. 4 and 5!. One vortex rotates clockwise, the other
rotates in the reverse direction. The magnetization in the final
state is chosen to be the reversed state of the initial one.

Path ~a! proceeds in three steps. The first step is to re-
verse the two in-plane components (m2 ,m3) of the vortex at
the top of the cylinder. The second step is the nucleation of
two vortices at the edges, followed by the propagation of
these vortices through the sample, and the exit from the
edges. The last step is to reverse the vortex at the top of the
cylinder to reach the final state.

The mechanism of the switching in the path~b! is similar
to that in path~b! with vortices for the thin film. Namely,
there are two vortices nucleated at the edges, withm3 point-
ing in the same direction. Then, the vortices move through
the sample to switch the interior, and exit from the edges to
reach the final state. The difference between path~a! and
path~b! is thatm3 around the vortices points in the different
directions, which leads to the nonuniform magnetization in
the z direction, as shown in thex–z cross section of the
second saddle point@fourth picture in path~a!#.

Figure 6 shows the energy along paths~a! and ~b!.

C. Influence of the gyromagnetic term

So far, we only considered the damping term when we
implement the string method. As discussed earlier, the MEP
for the overdamped dynamics of the Landau–Lifshitz equa-

tion ~i.e., neglecting the gyromagnetic term! goes through the
same sequence of critical points as that for the dynamics
with gyromagnetic term. Once we obtain the sequence of
critical points along the MEP of the overdamped dynamics,
we start from the perturbed saddle point and simulate the
Landau–Lifshitz equation to correct dynamics in between
the critical points. For instance, with path~b! for the thin-
film element, the correct dynamics between the two local
minima with two vortices is show in Fig. 7 where we plot the
position of the vortices both for the correct Landau–Lifshitz
dynamics and the overdamped dynamics. We see that with
the gyromagnetic term, the vortices approach their steady-
state positions via spiraling paths.

V. EFFECTIVE DYNAMICS: RANDOM WALK ON A
GRAPH

We now map the energy landscape for the magnetic sys-
tem by considering the various pathways between the
minima of the energy, and thereby deduce the Markov chain
to which the magnetic system is reducible. We study the
submicron-sized thin film: The three-dimensional system can
be analyzed similarly. The result is summarized in Fig. 8
where we plot the energy landscape of the system in a two-
dimensional plane spanned by the average magnetization
~over the sample! of the two in-plane directions. In Fig. 8,
circles represent the local minima, lines are MEPs connect-
ing them, and diamonds represent the saddle points along the
MEPs. The black solid line corresponds to the switching path
~a! shown in Fig. 1; the red solid line corresponds to the
switching path~b! shown in Fig. 2.

The simplicity of Fig. 8 is quite remarkable considering
that the micromagnetics system is infinite dimensional. Fig-
ure 8 has the structure of a graph with an obvious four-fold
symmetry, as a result of the four-fold symmetry of the ge-
ometry of the sample. The minima are 8 S states,Sj , 8 C
states,Cj , 16 vortex states with one vortex,Vj

1 , and 8 vor-
tex states with two vortices,Vj

2 . Each of these states can be
obtained from the corresponding S, C, or vortex states shown
in Figs. 1 and 2 by some symmetry. The structure of the
saddle point along the MEP connecting any two minima can
also be deduced from Figs. 1 and 2. On the graph, pairs of C
states, and pairs of vortex states seem to coincide because
they lead to the same average magnetization; however, they
are different states which are not direct neighbors on the
graph~for instance, the shortest paths between C3 and C4 are
C32S22C4 and C32S32C4). Another notable feature is
that the potential energy tends to be higher near the center
where the vortex states lie. This changes as the film thickness
changes.

Figure 8 gives a graphical representation of the Markov
chain to which the micromagnetics system is reducible. The
state space of the chain are the minima~circles!, and the
dynamics is that of a continuous-in-time random walk on the
graph where in one step only the neighboring states on the
graph are accessible~for instance, in one step, S2 can switch
into S1 , S3 , C3 , C4 , V3

1, or V4
1). The rate for each individual

step is given by

FIG. 3. The magnetic energy along the two paths~a! and~b! for the thin film
shown in Figs. 1 and 2. In path~a! the saddle points with highest energy are
the flower states, and the minimum with lowest energy is the C state.
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Figure: Applied to Mueller potential (left) and micromagnetic switching
(right).

I Left panel: The calculated MEP and initial string (the vertical
straight line).

I Right panel: Magnetic energy along two transition paths
found by string method with different initial values.

I The path (a) costs lower action than path (b).
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First Passage Time
I Let us quantify the difficulty of transitions in terms of mean

first exit times from metastable states.

I Consider the one-dimensional diffusion process associated with
the Brownian dynamics:

dXt = −∂xU(Xt)dt+
√

2εdWt.

Assume that U(x) has two local minima at xA = −1, xB = 1
and a local maximum, also a saddle point, at xC = 0.
Consider diffusion in domain D = [a, b] with reflecting and
absorbing boundaries at a and b, respectively.

I Denote the first passage time to b by

τb := inf{t ≥ 0 : Xt = b}

and the mean first passage time starting at x by τ(x) = Exτb.
I Then we derive equation for τ(x) using the probability

remaining in [a, b).
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Equation for Mean First Passage Time

I The probability remaining in [a, b) at time t has the form

R(x, t) = Px(Xt ∈ [a, b)) =

∫ b

a
p(y, t|x, 0)dy = Px(τb ≥ t).

I We have

τ(x) = Exτb = −
∫ ∞
0

t∂tR(x, t)dt =

∫ ∞
0

R(x, t)dt

under the assumption that tR(x, t)→ 0 as t→∞.

I Applying L to both sides, we get

Lτ(x) =

∫ ∞
0
LR(x, t)dt =

∫ ∞
0

∫ b

a
∂tp(y, t|x, 0)dydt

=

∫ b

a
p|t=∞ − p|t=0dy = −

∫ b

a
δ(x− y)dy = −1.
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p|t=∞ − p|t=0dy = −

∫ b

a
δ(x− y)dy = −1.



Equation for Mean First Passage Time

I The probability remaining in [a, b) at time t has the form
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Mean First Passage Time (MFPT)
I From the boundary conditions for the backward equation, we

have R(x, t)|x=b = 0 and ∂xR(x, t)|x=a = 0, which implies
the boundary conditions for τ(x):

∂xτ(x)|x=a = 0, τ(x)|x=b = 0.

I So τ(x) satisfies equation:

Aτ(x) = −U ′(x)τ ′(x) + ετ ′′(x) = −1 for x ∈ (a, b).

With boundary conditions:

τ |x=b = 0, τ ′|x=a = 0.

I It has the solution

τ(x) =
1

ε

∫ b

x
e

U(y)
ε

∫ y

a
e−

U(z)
ε dzdy.
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MFPT in Zero-Temperature Limit
I Take a→ −∞, b→ xB and x = xA, thus obtain

τ(xA) =
1

ε

∫ xB

xA

∫ y

−∞
e

U(y)−U(z)
ε dzdy.

I Define the function F (y, z) = U(y)− U(z) on the domain

S =
{

(y, z) : y ∈ [xA, xB ] and z ∈ (−∞, y] for any y
}
.

We have

max
(y,z)∈S

F (y, z) = ∆UAB = U(xC)− U(xA)

at (y, z) = (xC , xA).
I With Laplace asymptotics in the 2D domain S, we have

τ(x) ≈ τ(xA) ∼ 2π√
|U ′′(xC)|U ′′(xA)

e
∆UAB

ε

for any x ≤ xC − δ0, where δ0 is a positive constant. We
implicitly require that U ′′(xA) and |U ′′(xC)| are positive.
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1D Transition Rates

I The formula tells us that the transition time is exponentially
large in O(∆UAB/ε).

I The derivations also tell that the length of transition times
does not heavily depends on where the particle starts from.

I In the considered case, we naturally define the transition rate

kAB =
1

τ(xA)
=

√
|U ′′(xC)|U ′′(xA)

2π
exp

(
−∆UAB

ε

)
.

This is the celebrated Kramers reaction rate formula in the
Brownian dynamics case, which is also called Arrhenius’s law
of reaction rates.
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Multi-dimensional Transition Rates

I In the multi-dimensional case with index-one saddle point xC ,
one can also derive the reaction rate asymptotics

kAB =

√
|λs|

2π

√
detHA

detH⊥C
exp

(
−∆UAB

ε

)
.

for the Brownian dynamics, where λs < 0 is the unique
negative eigenvalue of the Hessian HC = ∇2U(xC),
HA = ∇2U(xA), H⊥C is the restriction of HC on the
(d− 1)-dimensional stable manifold at xC .
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