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Metastability and transition events

Consider the diffusion process defined by
dX§ = —VU(X3)dt + /edW,

where W, is the standard multi-dimensional Wiener process, U(x)
is assumed to be a smooth Morse function, i.e. the critical points

of U are non-degenerate in the sense that the Hessian matrices at
the critical points are non-degenerate.



Schematics of metastability and transitions

Figure: Schematics of the metastability phenomenon
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Gradient system: ODE case

» When ¢ = 0, for generic initial conditions, the solution of this
ODEs converges to a local minimum of the potential function

U.

» For each local minimum, the set of initial conditions from
which the solutions of the ODEs converge to that local
minimum is the basin of attraction of that local minimum.

» The whole configuration space is then divided into the union
of the different basins of attraction. The boundaries of the
basins of the attraction are the separatrices, which are
themselves invariant sets of the deterministic dynamics.

P In particular, each local minimum is stable under the
dynamics.
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Gradient system: SDE case

» When ¢ is positive but small, on O(1) time scale, the picture
just described still pretty much holds.

» In particular, with overwhelming probability, the solution to
the SDEs will stay within the basin of attraction of a local
minimum.

» However, as we discuss below, on exponentially large time
scales in O(1/¢), the solution will hop over from one basin of
attraction to another, giving rise to a noise-induced instability.

» Such hopping events are the rare events we are interested in.
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Metastability: 1D example

» The above picture can be best illustrated in the following one
dimensional example (see Figure below) with the double-well

potential
1
Ule) = (2* — 1)
» The potential U has two local minima at 4 =1 and
xz_ = —1, and one saddle at x5 = 0. x; is also called the

transition state between x and x_. Thus we have two basins
of attraction

B_ ={z| <0} and By ={z|xz>0}.

» Most of time, X; wanders around x4 or x_. But after
exponentially large time scales in O(1/¢), X7 hops between
the regions By and B_, which manifests basic features of rare
events.



Metastability: 1D example

=1 003

(a) Potential function U(x) (b) A typical trajectory of X

Figure: Illustration of rare events in the 1D double-well potential. Left
panel: The symmetric double-well potential with two metastable states at
x4y =1 and x_ = —1. Right panel: A specific trajectory of X;, which
wanders around x4 or z_ and hops after a sufficiently long time.



Metastability: key questions

In physical terms, the local minima or the basin of attractions are
called metastable states. Obviously, when we discuss metastability,
the key issue is that of the time scale. In rare event studies, one is
typically concerned about the following three key questions:

1. What is the most probable transition path and how to
compute it? When the dimension of X7 is bigger than 1, this

becomes a meaningful question.
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In physical terms, the local minima or the basin of attractions are
called metastable states. Obviously, when we discuss metastability,
the key issue is that of the time scale. In rare event studies, one is
typically concerned about the following three key questions:

1. What is the most probable transition path and how to
compute it? When the dimension of X7 is bigger than 1, this
becomes a meaningful question.

2. Where is the transition state, i.e. the neighboring saddle
point, for a transition event starting from a metastable state?
Presumably the saddle points can be identified from the
eigenvalue analysis of the Hessian of U. However, when the
dimension is high and the landscape of U is complex, it is not
trivial.

3. How large is the typical transition time from a metastable
state? Answer of this question helps understanding the
stability of a metastable state, which corresponds to the key
time scale issue.
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Rare events: setup

> We will present some recent methodologies in the literature to
answer these questions.

» Consider the SDEs
dX§ = b(X5)dt + Veo (X5) - dW,,  X§=yeR%

We assume that the standard Lipschitz and uniform ellipticity
conditions on b and o hold and denote the transition pdf by
pe(x,t|y). We are interested in the behavior of its solution for
small .
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Law of Large Numbers

> Let XY be the solution of the deterministic ODEs
.0
X, =b(X}), Xi=vy.

» It can be shown that for any fixed 7" > 0 and é > 0, we have
the law of large numbers for the processes X*

lim P ( max | X§ — XY > 5) = 0.
e—0 t€[0,T)

» Further detailed analysis on the behavior of the pdf is studied
below.
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» Inspired by the form of probability distribution function of
Brownian dynamics, we insert the Wentzel-Kramers-Brillouin
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SDEs
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WKB analysis

» Inspired by the form of probability distribution function of
Brownian dynamics, we insert the Wentzel-Kramers-Brillouin
(WKB) ansatz

p-(z, tly) ~ exp (' p(x, t|y))
into the forward Kolmogorov equation associated with the
SDEs

Be — V- (bla)pe) + 597 (A@)pe).

where A(z) = oo (z) = (a;j(x)) is the diffusion matrix.

» Collecting the leading order terms gives a time-dependent
Hamilton-Jacobi equation
o¢

ot

where H is the Ham||ton|an with the form

H(m,p) = bT( )p+ p A szpz + = Zaljpzpj'

= H(z, Vz9),



Hamilton-Jacobi Theory

We will call p the momentum variable for its formal
correspondence in classical mechanics. The solution of this
equation can be characterized by the variational principle:

¢(x,tly) = inf {I;[p] : ¢ is absolutely continuous in [0, ]
)
and ¢(0) =y, ¢(t) =z},

where I; is the action functional

¢
Hlel = [ Lip.p)ds
and L is called the Lagrangian
1 2
L(x,z) = Sllz = b(@)la

where the norm ||z|% = 2T A7 2.



Lagrangian and Hamiltonian

» The Lagrangian L is the dual of the Hamiltonian H in the
sense of Legendre-Fenchel transform

Lz, z) = sgp{p +z—H(z,p)}



Lagrangian and Hamiltonian

» The Lagrangian L is the dual of the Hamiltonian H in the
sense of Legendre-Fenchel transform

Lz, z) = Sgp{p +z—H(z,p)}
» The readers may be referred to
H. Goldstein, Classical mechanics,
V. I. Arnold, Mathematical methods of classical mechanics
for more details about the variational derivations about the
above connections.
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Implications of WKB results

> The WKB analysis has given us the intuition that the
probability

P(X$ € B) < exp(—e'C) ase—0,

where B is an open set, and the symbol =< means exponential
equivalence, i.e. we have lim. ,geln A./B. =1 if A. < B..
The constant C' will be positive if (¢) ¢ B, and 0 otherwise.



Implications of WKB results

> The WKB analysis has given us the intuition that the
probability

P(X$ € B) < exp(—e'C) ase—0,

where B is an open set, and the symbol =< means exponential
equivalence, i.e. we have lim. ,geln A./B. =1 if A. < B..
The constant C' will be positive if (¢) ¢ B, and 0 otherwise.

» This large deviation type estimate is even true in path space
Clo,T].



Large deviations on path space

First let us quote the large deviation result for the SDEs.

Theorem

Under the condition that b(x) and o (x) is bounded and Lipschitz,
and A(x) is uniformly elliptic, we have that for any T > 0, the
following large deviation estimates for X°©.

(i) Upper bound. For any closed set I c (C[0,T]),

limsup eInP(X° € F) < — inf I7[¢p].
e—0 pel’

(i) Lower bound. For any open set G C (C[0,T])¢,

liminf eInP(X* € G) > — inf Ir[ep].
e—0 peG



Large deviations on path space

First let us quote the large deviation result for the SDEs.

Theorem

Under the condition that b(x) and o (x) is bounded and Lipschitz,
and A(x) is uniformly elliptic, we have that for any T > 0, the
following large deviation estimates for X°©.

(i) Upper bound. For any closed set I c (C[0,T]),

limsup eInP(X° € F) < — inf I7[¢p].
e—0 pel’

(i) Lower bound. For any open set G C (C[0,T])¢,

liminf eInP(X* € G) > — inf Ir[ep].
e—0 peG

Here I7[p] is the rate functional defined in WKB analysis if ¢ is
absolutely continuous with square integrable ¢ and satisfies
©(0) =y, otherwise IT[p] = 0.
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Large deviations for 1D Brownian motion

» The proof of this theorem is beyond the scope of this course.
However we will give a formal derivation by path integral
approach.

» |t is straightforward that the one-dimensional SDE

dXF = edW,,  Xo=0

has solution X} = /eW;.

P Using the path integral representation, the probability
distribution induced by { X} on C[0,T] can be formally
written as

1 T
il =27 e (=g [ IooPas) Dy
€Jo

_ 1
=Z texp <—€IT[<p]> Dy

Note that I7[p] can be 400 if ¢ is not absolutely continuous
and square integrable or does not satisfy the corresponding
initial condition.



Large deviations for SDEs
» Then let us consider the stochastic ODE

dX; = b(XE)dt + eo (XP)dW,,  Xo=uy.

We are interested in the asymptotic behavior of the
probability distribution P¢ induced by {X7}}.



Large deviations for SDEs
» Then let us consider the stochastic ODE

dX; = b(XE)dt + eo (XP)dW,,  Xo=uy.

We are interested in the asymptotic behavior of the
probability distribution P¢ induced by {X7}}.

» From the SDE we have W; = (v&) o1 (XF)(XE — b(X?)).
Hence

T T
/ Wadt = 51/ o L (XE)(XE — b(XE)[2dt.
0 0
From the distribution dP¢[y] induced by 1/cW}, we obtain

i) = 27 exp (~L1alel ) D,

where I7[p] is finite if ¢ is absolutely continuous with square
integrable ¢ and satisfies p(0) = y, and I7[p] = co otherwise.
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Based on the theorem above and Varadhan’s lemma, we have the
asymptotics
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probable transition paths in the limit £ — 0.
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Rate functional

Based on the theorem above and Varadhan’s lemma, we have the
asymptotics

—clog P*(B) ~ inf Ir[p], €—0
peB
for a reasonable set B in C[0,T].
» This motivates a natural characterization of the most
probable transition paths in the limit £ — 0.

» Given a set of path B in C[0,T] we can define the optimal
path in B as the path ¢* that has the maximum probability or
minimal action

inf Ip(0) = Ip(o*
Inf, T(v) = I7(¢"),

if this minimization problem has a solution.

» Such a path is called a minimum (or least) action path.
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Minimum action path

» The minimum action path has special features in case that
b(x) =—-VU(x) and o(x) = I.

» Assume that A and B are two neighboring metastable states
of U separated by the saddle point C. Define
B={p:pec(C[0,T)¢ ¢0)=A,p(T)= B}. We are
interested in the minimum action path ¢ € BB and let the
transition time 1" to be free

inf  inf  Irfg].
) oy 7L

We have the following characterizations.



Minimum action/energy path

Lemma
The minimum action path ¢ of the Brownian dynamics is
comprised of two parts defined through functions ¢, and ¢, as

$1(s) = VU (p1(s)), ¢p1(—00) = A, py(c0) =C,

Pa(s) = =VU(pa(s)), pa(—00) = C,py(c0) = B,

and the minimum action is achieved as

I* = Lo(py) + Lo(9) = Lno(spy) = 2U(C) — U(A)) = 2AUssp.



Minimum action path: Proof
Proof.

It is not difficult to convince oneself that the minimum in T is
attained when 7' = oo since A, B and C' are all critical points (see
Exercise 13.1). To see why the minimization problem in is solved
by the path defined above, we first note that

Io[p1] =2AUaB, Is[ps] =0.

In addition, for any path ¢ connecting A and a point C on the
separatrix that separates the basins of attraction of A and B, we
have

1
Ioo[cp]:Q/R(g’o—VU,<,'o—VU)dt+2/Rgo-VUdt

> 2/R¢> -VUdt =2(U(C) — U(A)) > 2AUxp

since C' is the minimum of U on the separatrix. Combing the
result above we obtain the minimum I* = 2AUypB. E]
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» Thus the most probable transition path is then the
combination of ¢, and ¢, ¢, goes along the steepest ascent
dynamics and therefore requires the action of the noise. ¢,
simply follows the steepest descent dynamics and therefore
does not require the help from the noise.
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Minimum energy path (MEP)

» Thus the most probable transition path is then the
combination of ¢, and ¢, ¢, goes along the steepest ascent
dynamics and therefore requires the action of the noise. ¢,
simply follows the steepest descent dynamics and therefore
does not require the help from the noise.

» Putting them together we obtain the characterization for the
most probable transition path of Brownian dynamics

() = VU (p(s)).

Paths that satisfy this equation are called the minimum
energy path (MEP).

» One can write the equation above as:
1
(VU(p))" =0,

where (VU ())* denotes the component of VU (¢) normal
to the curve described by ¢.



Minimum energy path (MEP)

Question: How to compute the MEP for complicate systems?
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MEP Equation: Naive Implementation

> Note that the MEP equation for gradient system
(VU(p)™ =0.

» This yields a natural methodology to compute the optimal
path by pseudo-steepest descent flow:

Opla,t) = —(VU (@)™, »(0) = A, 0(1) =B.

» The equation looks quite reasonable. Is it really true that the
trajectory will converge to the solution of the steady equation
(VU(p) " =07

» The naive pseudo-steepest descent flow is not good for
numerics!
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» A modified form better for numerical implementation
dplat) = =(VU (@)= +r7,  ¢(0) = A,¢(1) = B.
» ¢(a,t) is parametric curve of a € (0,1), T = ¢, /|¢,|, and
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(lpal)a = 0.



String Method

>

A modified form better for numerical implementation
dplat) = =(VU (@)= +r7,  ¢(0) = A,¢(1) = B.
(e, t) is parametric curve of a € (0,1), 7 = ¢, /|¢.|, and

(VU(@)" = VU(p) = (T ©7) - VU(p).

r is just a Lagrange multiplier to ensure the equi-arclength
parameterization:

(lpal)a = 0.

Note that the term r7 is not necessary for the evolution of a
continuous path ¢, and the equi-arclength parameterization
can be also replaced by other choices. This is called String
Method in the literature.
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Implementing String Method

The real implementation can be performed with the following
simplified two-step iterations:
1. Evolution of the steepest descent dynamics. For example, one
can simply apply the forward Euler scheme

Pl = o' — AtVU(})

or Runge-Kutta type schemes for one or several steps.

2. Reparameterlzatlon of the string. One can redistribute the
points {4,0"+ } according to equi-arclength or other weighted
parameterizations. For example,

> Define s =0, s; = $i-1+ |p; — ;1| fori=1,...,N, and
072- = si/sN.
> Interpolate ¢! at s; = i/N from {&;, @7}
With such implementation, the boundary states can be chosen
close to A and B instead of knowing their exact locations.



lllustration of String Method
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Figure: Applied to Mueller potential (left) and micromagnetic switching
(right).

» Left panel: The calculated MEP and initial string (the vertical
straight line).

» Right panel: Magnetic energy along two transition paths
found by string method with different initial values.

» The path (a) costs lower action than path (b).
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Let us quantify the difficulty of transitions in terms of mean
first exit times from metastable states.

Consider the one-dimensional diffusion process associated with
the Brownian dynamics:

dX; = —0,U(Xy)dt + v/2edW;.

Assume that U(x) has two local minima at x4 = —1, zp =1
and a local maximum, also a saddle point, at z¢ = 0.
Consider diffusion in domain D = [a, b] with reflecting and
absorbing boundaries at a and b, respectively.

Denote the first passage time to b by
Ty :=inf{t > 0: X; = b}

and the mean first passage time starting at « by 7(z) = E*7,.

Then we derive equation for 7(z) using the probability
remaining in [a,b).
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Equation for Mean First Passage Time

» The probability remaining in [a, b) at time ¢ has the form

b
R(z,t) = P*(X; € [a,)) = / Dyt 0)dy = P* (, > 1).
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Equation for Mean First Passage Time

» The probability remaining in [a, b) at time ¢ has the form

b
R(z,t) = P*(X; € [a,)) = / Dyt 0)dy = P* (, > 1).
» We have
T(z) =E*n = —/ to R(x,t)dt = / R(z,t)dt
0 0

under the assumption that tR(z,t) — 0 as t — oo.
> Applying £ to both sides, we get

0o 00 b
Lr(z) = / LRz t)dt = / / Oup(y, tl, 0)dydt
0 0 a
b b
= / Pli=cc — Pli=ody = / §(z —y)dy = —1.



Mean First Passage Time (MFPT)

» From the boundary conditions for the backward equation, we
have R(z,t)|,—p = 0 and Oz R(x,t)|z=q = 0, which implies
the boundary conditions for 7(z):

0:7(2)|g=a =0, 7(x)|z=p = 0.
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Mean First Passage Time (MFPT)

» From the boundary conditions for the backward equation, we
have R(z,t)|,—p = 0 and Oz R(x,t)|z=q = 0, which implies
the boundary conditions for 7(z):

0:7(2)|g=a =0, 7(x)|z=p = 0.
» So 7(z) satisfies equation:
Ar(z) = =U'(2)7'(z) + et (x) = =1 for z € (a,b).
With boundary conditions:
Tlo=b =0, 7'|g=q = 0.

» It has the solution

1 f° vw (Y _ve
T(z) = / eay/ e = dzdy.
€ x a
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MEPT in Zero-Temperature Limit

» Take a — —o0, b — xp and x = x4, thus obtain

1 (% (Y vw-ve
T(za) = E/ / e T dady.
T A —00

» Define the function F(y,z) = U(y) — U(z) on the domain

S={(y,z):y € [xa,zp] and z € (—o0,y] for any y}.
We have

max F(y,z) = AUap = U(zc) —U(xa)
(y,2)€S

at (ya Z) = (330,1’14)-
> With Laplace asymptotics in the 2D domain .S, we have
2 AUaB

TGN @a)

for any x < z¢ — &g, where §g is a positive constant. We
implicitly require that U”(z4) and |U"(xz¢)| are positive.

T(z) = 7(ra) ~
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1D Transition Rates

» The formula tells us that the transition time is exponentially
large in O(AUap/e).

» The derivations also tell that the length of transition times
does not heavily depends on where the particle starts from.

» In the considered case, we naturally define the transition rate

L _ Ve (~aun).

T(z4) 2 €

kap =

This is the celebrated Kramers reaction rate formula in the
Brownian dynamics case, which is also called Arrhenius’s law
of reaction rates.



Multi-dimensional Transition Rates

» In the multi-dimensional case with index-one saddle point z¢,
one can also derive the reaction rate asymptotics

\/|)\ detHA AUAB>
kap

det HJ-

for the Brownian dynamics, where A; < 0 is the unique
negative eigenvalue of the Hessian Hp = V2U(z¢),
Ha = V2U(x4), Hé is the restriction of Ho on the
(d — 1)-dimensional stable manifold at x¢.
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