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Stochastics: why

There are still debates on whether the world is deterministic or
stochastic.

We take a practical point of view on this problem. The
reason why we utilize stochastics is as below:

I The problem itself is stochastic (quantum mechanics).

I Even the problem is deterministic in nature, the degrees of
freedom is too huge to be handled in a deterministic manner
(statistical mechanics).

I The considered problem is in deterministic form, but we utilize
its equivalent stochastic form to do computing (Monte Carlo
methods).
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Stochastics: what

The course will be composed of three parts:

1. Monte Carlo methods

2. SDEs and their simulations

3. Applications
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Stochastics: where

Main application area of the Monte Carlo methods:

I Statistical physics

I Statistical inference

I Data Science

I Mathematical finance

I Communication Theory

I Information Theory

I etc.
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Monte Carlo method

We will show the basic idea of Monte Carlo method through two
simple examples at first:

1. Buffon’s needle test

2. Monte Carlo integration
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Buffon’s needle problem

Formulation: (Buffon’s needle problem)

1. Parallel lines with distance a in the plane;

2. Tossing a needle of length l (l < a) randomly;

3. What is the probability of intersection?

a

�

2
sinφ

x

Figure: Schematics for Buffon’s needle problem.
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Buffon’s needle problem

Solution. This is a geometric probability problem. The admissible
set is

Ω := {0 ≤ x ≤ a

2
, 0 ≤ φ ≤ π}.

The set of intersection is

G = {x ≤ l

2
sinφ},

then the probability of intersection

P =
meas(G)

meas(Ω)
=
(∫ π

0

l

2
sinφdφ

)/(aπ
2

)
=

2l

aπ
,

thus

π =
2l

aP
.



Buffon’s needle problem

Another choice (taking into account more symmetry):

Ω := {0 ≤ x ≤ a

2
, 0 ≤ φ ≤ π

2
}.

and

G = {x ≤ l

2
sinφ},

we also have

P =
2l

aπ
.



Monte Carlo integration

Numerically solve

I(f) =

∫ 1

0
f(x)dx.

I Midpoint rule:

I
(1)
N (f) = h

N∑
i=1

f(xi), h =
1

N
, xi = (i+

1

2
)h

Accuracy: O(h2).



Monte Carlo integration
I Monte Carlo:

I
(2)
N (f) =

1

N

N∑
i=1

f(Xi), Xi ∼ i.i.d. U [0, 1]

One has EI(2)N (f) = I(f), and the mean square error

E|eN |2 = E(I
(2)
N (f)− I(f))2 = E

(
1

N

N∑
i=1

(f(Xi)− I(f))

)2

=
1

N2

N∑
i,j=1

E(f(Xi)− I(f))(f(Xj)− I(f))

=
1

N
E(f(Xi)− I(f))2 =

1

N
Var (f),

One obtains eN ∼
√

Var (f)
N ∼ O(h

1
2 ) — half order convergence.

Question: How to generate Xi?



Monte Carlo integration

High dimensional case:

I Ensemble average in statistical mechanics

〈A〉 =
1

Z

∫
R6N

A(x)e−βH(x)dx

where Z =
∫
R6N e

−βH(x)dx is partition function,
β = (kBT )−1, kB is Boltzmann constant, T is the absolute
temperature, dx = dx1 · · · dxNdp1 · · · dpN , N is the number
of particles.

I Deterministic quadrature: 10 segments in each direction,
totally 106N nodes!

I Monte Carlo method is the only viable approach!
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Monte Carlo integration

Deterministic vs. Stochastic approach, which is better?

I Estimate of computational effort:

Dimension — d, number of quadrature points — N

Midpoint rule ∼ O(N− d
2 ), Monte Carlo ∼ O(N− 1

2 ).

If d > 4, Monte Carlo is better.



Monte Carlo integration

Brief summary:
I The advantage of Monte Carlo:

I Half order convergence independent of dimensions;
I Parallel essentially;
I Versatile: If we can find a probabilistic interpretation of a

problem, we can apply MC.

I The disadvantage of Monte Carlo:

I Half order convergence (slow convergence);
I Noisy result.
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Randomized linear algebra

Problem setup: Compute the matrix product

C = AB,

where A ∈ Rm×n, B ∈ Rn×p, and assume n� 1.
When n is huge, which is possible in many applications in big data,
the following randomized matrix multiplication was proposed.



Randomized linear algebra

Given any probability distribution {pi}, where pi > 0 and∑n
i=1 pi = 1, randomly pick K columns with the imth column

from A, L(m) and the imth row from B, R(m) according to {pi}.
Correspondingly define

L(m) =
1√
Kpim

A·,im , R(m) =
1√
Kpim

Bim,·, m = 1, . . . ,K

then compute

C ≈
K∑
m=1

L(m)R(m). (1)

Does it work? Is it possible to generalize and improve it?



Bayesian methods in statistical learning
Problem: Sampling the posterior distribution of the unknown
parameters θ.

I In statistics, we have large amount of sampling data, and we
want to extract the parameters from some type of
probabilistic model.

I Suppose we have the likelihood function

L(θ|x), θ ∈ Θ,

and the prior distribution of the parameter θ is π(θ), we
would like to sample the posteriori distribution of θ

π(θ|x) ∝ L(θ|x)π(θ)

or compute the expectation of the parameters.

I Usually θ is in a high dimensional space, and π(θ|x) is only
known up to a constant.

I We need the Monte Carlo sampling method here.
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Simulated annealing for optimization

Problem: minxH(x), H(x) is an energy function.

I If H(x) is convex, the problem is quite easy by steepest
decent method

dx

dt
= −∇H

I If H(x) is non-convex, the problem is complicate. The
solution by steepest descent will fall into a local minimum
generally.

I Introduce thermal noise

dx

dt
= −∇H + εẇ

ε ∼ temperature. Let ε→ 0 with suitable speed, one can
achieve the global minimum.
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Kinetic Theory
Problem: Dynamics of harmonic oscillator with random forcing.

I How to describe the noise mathematically? (Potential
U(x) = 1

2kx
2)

I Conservative harmonic oscillator{
ẋ = v
mv̇ = −kx

I Frictional harmonic oscillator (frictional coefficient γ){
ẋ = v
mv̇ = −γv − kx

I White noise forcing (mesoscopic particles){
ẋ = v
mv̇ = −γv − kx+

√
2kBTγẇ

ẇ is the temporal white noise. How to define w?
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First exit time — Connection with PDEs

Solving the elliptic PDE{
∆u = 0 D
u = f ∂D

I Traditional method: FEM, FD

I Stochastic formulation

u(x) = E
(
f(XτD)

)
where XτD is the first exit point form ∂D of the Brownian
motion starting at x ∈ D.

I One can compute the value of u at any point in Ω separately.
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Particle system —- Mckean-Vlasov equation

Problem: Particle system — Macroscopic behavior from
microscopic movements

I Deterministic case(without interaction): Liouville equation.

dxi
dt

= b(xi) −→ ψt +∇ · (bψ) = 0

I Stochastic case(without interaction): Fokker-Planck equation.

dxi
dt

= b(xi) + ẇi −→ ψt +∇ · (bψ) =
1

2
∆ψ

I Stochastic case (with interaction): Mckean-Vlasov equation.

dxi
dt

=
1

N

N∑
j=1

b(xi − xj) + ẇi −→ ψt +∇ · (Uψ) =
1

2
∆ψ

where U =
∫
b(x− y)ψ(y)dy.
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Chemical reaction kinetics — Stochastic simulation
algorithm

I Traditional modeling of chemical reaction: reaction rate
equation (RRE):

dx

dt
= a(x)

where x is the concentration of the reactants, a is the
reaction rate.

I In biological reactions, the population of some species are very
few. The concept concentration does not make any sense
there. The reaction also shows the random character. How to
model the chemical reaction kinetics?
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Diffusion-Limited Aggregation (DLA) model

Fractal growth of crystallization.

Figure: DLA model. Adapted from PRL 47(1981), 1400.



Complex fluids

Complex fluids: Such as the suspensions, colloids and liquid
crystals, etc.

Flexible Rigid Semiflexible

Random flight

Additional angle potential

Figure: Schematics of flexible, semi-flexible and rigid polymers.

How to describe the behavior of the fluids through describing the
polymers?
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Course plan
The following topics will be covered in this course:
• Generation of pseudo random variables,
• Variance reduction methods,
• Simulated annealing and quasi-Monte Carlo,
• Large deviation principle,
• Metropolis algorithm (Markov chain Monte Carlo method),
• Multilevel sampling and kinetic MC,
• Wiener Process and its construction,
• Stochastic differential equations and Ito’s formula,
• Fokker-Planck equation and diffusion process,
• Numerical solution of SDEs,
• Path integral methods and Girsanov transformation,
• Applications in material science(rare events),
• Applications in biology,
• Applications in networks,
• Applications in fluids.
We will have 2 numerical projects which will account for 15 pts.
The homeworks will account for 15 pts, and the final exam will
account for 70 pts.



Course plan

We will have 2 numerical projects which will account for 15 pts.
The homeworks will account for 15 pts, and the final exam will
account for 70 pts.
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I W.H. Press et al., Numerical Recipes: the Art of Scientific

Computing, Cambridge university press, Cambridge, 1986.
I R.E. Caflish, Monte Carlo and Quasi-Monte Carlo methods,

Acta Numerica, Vol. 7, 1-49, 1998.
I P. Glasserman, Monte Carlo methods in financial engineering,

Springer-Verlag, New York, 2003.
I C.P. Robert and G. Casella, Monte Carlo Statistical methods,

Springer-Verlag, New York, 2004.
I C.W. Gardiner, Handbook of Stochastic Methods for Physics,

Chemistry and Natural Sciences, Springer-Varlag, Berlin, New
York, 1983.

I B. Oksendal, Stochastic Differential Equations: an
Introduction with Applications, Springer-Verlag, Berlin
Heidelberg New York, 2003(6th edition).

I I. Karatzas and S.E. Shreve, Brownian motion and stochastic
calculus, Springer-Verlag, New York, 1991.

I P.E. Kloeden and E. Platen, Numerical Solution of Stochastic
Differential Equations, Springer-Verlag, Berlin and Heidelberg,
1992.



TA Info

TA information:

Qiangwei Peng, qiangwei peng@stu.pku.edu.cn

The HW will be collected on Monday per two weeks.
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