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Path integral: brief introduction

I The path integral can be dated to R. Feynman to construct a
new formulation to understand quantum mechanics.

I The path integral gives very powerful formal approach to deal
with the probability measures on path space and compute the
expectation for some functionals of Wiener paths.

I Briefly speaking, path integral is a formal infinite dimensional
limit of the considered stochastic process under finite
dimensional approximations.
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Wiener process

I Let us start with the formal representation of the Wiener
measure P∗ defined on the canonical space
(C[0, 1],B(C[0, 1])) for the standard Wiener process.

I From the definition of Wiener process, we have the joint pdf
for (Wt1 ,Wt2 , . . . ,Wtn)

pn(w1, w2, . . . , wn) =
1

Zn
exp(−In(w)),

where 0 < t1 < t2 < · · · < tn ≤ 1 and

Zn = (2π)
n
2
[
t1(t2 − t1) · · · (tn − tn−1)

] 1
2 ,

In(w) =
1

2

n∑
j=1

(wj − wj−1

tj − tj−1

)2
(tj − tj−1), t0 := 0, w0 := 0.
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Formal Wiener Measure

I Now we take the formal limit as n→∞, we obtain

pndw1dw2 · · · dwn →
1

Z
exp(−I[w])δ(w0)Dw,

where the δ-function δ(w0) is to fix w0 = 0, I[w] is called the
action functional of the Wiener process defined as

I[w] =
1

2

∫ 1

0
ẇt

2dt.

Dw is a shortcut for
∏

0≤t≤1 dwt, which is the formal volume
element in the path space C[0, 1]. Z is the normalization
factor.

I For notations, we use the lowercase wt for dumb variables, but
the uppercase Wt for the stochastic process.
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Remark on the Formal Wiener Measure

I We should emphasize that this interpretation is purely formal
and all of the results induced by the path integral need to be
reproved in rigorous mathematical language before we want to
use it as an theorem.

I One reason to understand it is only formal is that we have no
infinite dimensional Lebesgue measure.
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Issue on the Infinite Dimensional Lebesgue Measure

I Let us consider an infinite dimensional Hilbert space H with
orthonormal basis {e1, e2, . . .}.

I Define the balls

Bn = B 1
2
(en) = {x|‖x−en‖ ≤ 1/2}, B = B2(0) = {x|‖x‖ ≤ 2}.

I As a Lebesgue measure, it should be translation invariant and
finite for bounded sets.

I If the Lebesgue measure on H exists as µ(·), then we have

0 < µ(B1) = µ(B2) = · · · = µ(Bn) = · · · <∞, 0 < µ(B) <∞.
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Issue on the Infinite Dimensional Lebesgue Measure

I However from the disjointness of {Bn} and Bn ⊂ B for any
n, we obtain

µ(B) ≥
∑
n

µ(Bn) =∞,

which is a contradiction!

I Thus the notation Dw is totally meaningless!

I But the glamor of path integral is that it can give some
extremely insightful results in a very efficient way. That is why
it is also useful for applied mathematicians.
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Expectation of a Wiener functional

Example

Compute the expectation

E exp
(
− 1

2

∫ 1

0
W 2
t dt
)
.

I Note that it is not straightforward to compute this
expectation since the integrand involves the whole Wiener
path, i.e. a Wiener functional.
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Expectation of a Wiener functional

Solution.

I From the Karhunen-Loeve expansion,∫ 1

0
W 2
t dt =

∫ 1

0

∑
k,l

√
λkλlαkαlφk(t)φl(t)dt

=
∑
k

∫ 1

0
λkα

2
kφ

2
k(t)dt =

∑
k

λkα
2
k.
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Expectation of a Wiener functional

I From the identity

E exp(−1

2
λkα

2
k) =

∫ +∞

−∞

1√
2π
e−

x2

2 · e−
1
2
λkx

2
dx =

√
1

1 + λk

we obtain

E exp
(
− 1

2

∫ 1

0
W 2
t dt
)

=
∏
k

√
1

1 + λk
:= M,

where

M−2 =
∞∏
k=1

(
1 +

4

(2k − 1)2π2

)
.



Expectation of a Wiener functional

I From the identities for infinite product series we have

cosh(x) =

∞∏
n=1

(
1 +

4x2

(2n− 1)2π2

)
,

where cosh(x) = (ex + e−x)/2.

I Thus

M = (cosh(1))−
1
2 =

√
2e

1 + e2
.
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Path integral approach

Here we show how to apply the path integral approach to compute
the expectation of this Wiener functional. The path integral
approach to compute the expectation is composed of the following
two steps.

I Step 1. Discretize the problem into finite dimensions.

I Step 2. Take the formal limit as n→∞.
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Step 1. Discretize the problem into finite dimensions

At first let us take finite dimensional approximation to the
functional

exp

(
−1

2

∫ 1

0
W 2
t dt

)
≈ exp

(
− 1

2

n∑
j=1

W 2
tj∆t

)
= exp

(
−1

2
∆tXTAX

)
,

where ∆t = tj − tj−1 for j = 1, 2, . . . , n, A = I, and
X = (Wt1 ,Wt2 , · · · ,Wtn)T .



Step 1. Discretize the problem into finite dimensions

Thus

E exp
(
− 1

2

∫ 1

0
W 2
t dt
)

≈
∫
Rn

exp

(
−1

2
∆txTAx

)
· 1

Zn
exp

(
−1

2
∆txTBx

)
dx,

where x = (x1, x2, . . . , xn), Zn = (2π)
n
2 (det(∆tB)−1)

1
2 , and

B =
1

∆t2


2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 .



Step 1. Discretize the problem into finite dimensions

From equation
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E exp
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W 2
t dt
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n
2 (det(∆t(A+B))−1)

1
2

(2π)
n
2 (det(∆tB)−1)

1
2

=

(
det(B)

det(A+B)

) 1
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=

( ∏
i λ

B
i∏

i λ
A+B
i

) 1
2

,

where λBi , λ
A+B
i are eigenvalues of B and A+B, respectively.



Step 2. Take the formal limit as n→∞

I If we take the formal limit as n→ +∞, the matrix B will
converge to the differential operator B = −d2/dt2 with zero
Dirichlet boundary condition at t = 0 and free Neumann
boundary condition at t = 1.

I Thus the eigenvalues of B corresponds to the following
Sturm-Liouville boundary value problem

−d
2u

dt2
= λu(t), u(0) = 0, u′(1) = 0.
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Step 2. Take the formal limit as n→∞
I Note that the quadratic form∫ 1

0
W 2
t dt = (AWt,Wt),

where A = I and (f, g) :=
∫ 1

0 fgdt.

I We have the formal path integral limit

E exp
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− 1

2

∫ 1

0
W 2
t dt
)
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∫
exp

(
− 1

2
(Awt, wt)

)
· 1

Z
exp

(
− 1

2
(Bwt, wt)

)
δ(w0)Dw

where the operator Bu(t) := d2u/dt2 and

Z =

∫
exp

(
− 1

2
(Bwt, wt)

)
δ(w0)Dw.
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Step 2. Take the formal limit as n→∞

Now we formally apply the Gaussian integrals in infinite dimensions
to obtain

E exp
(
− 1

2

∫ 1

0
W 2
t dt
)

=
( detB

det(A+ B)

) 1
2
,

where detB, det (A+ B) mean the products of all eigenvalues for
the following boundary value problems:{

Bu = λu, or (A+ B)u = λu,
u(0) = 0, u′(1) = 0.

This yield the same result as before.



Girsanov transformation

I We have seen that the Wiener measure over [0, 1] can be
formally expressed as

dµW = Z−1 exp

(
−1

2

∫ 1

0
ẇ2
t dt

)
δ(w0)Dw.

I The solution of the SDE

dXt = b(Xt, t) + σ(Xt, t)dWt, X0 = 0.

can be viewed as a map between the Wiener path {Wt} and
{Xt}:

{Wt}
Φ−→ {Xt}.

I Consequently, the mapping Φ induces another measures on
C[0, 1], which is nothing but the distribution of {Xt}.
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Girsanov transformation

I We now ask the question how the measure dµW changes
under the mapping Φ?

I Let us first consider the case when σ = 1 in one dimension.
The more general conditions can be derived in a similar way.

I We will perform the path integral through two steps as in the
previous section: that is, making discretization first and then
taking the formal continuum limit.
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Step 1. Discretize the problem into finite dimensions
I With the Euler-Maruyama discretization, we obtain

Xtj+1 = Xtj + b(Xtj , tj)(tj+1 − tj) + (Wtj+1 −Wtj ).

I In matrix form we have

B·


Xt1

Xt2
...
Xtn

−


b(Xt0 , t0)(t1 − t0)
b(Xt1 , t1)(t2 − t1)
...
b(Xtn−1 , tn−1)(tn − tn−1)

 = B·


Wt1

Wt2
...
Wtn

 ,

where t0 = 0, Xt0 = 0, and the matrix B has the form

B =


1
−1 1

. . .
. . .
. . .

. . .

−1 1


n×n

.
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Step 1. Discretize the problem into finite dimensions

I The equation

Xtj+1 = Xtj + b(Xtj , tj)(tj+1 − tj) + (Wtj+1 −Wtj ).

indeed introduces a finite dimensional transformation Φn as

{Wt1 ,Wt2 , · · · ,Wtn}
Φn−→ {Xt1 , Xt2 , · · · , Xtn}.

I With dumb variables representation for the equation, we have

xj+1 = xj+b(xj , tj)(tj+1−tj)+(wj+1−wj), j = 0, . . . , n−1

where w0 = 0 and x0 is fixed.

I It is not difficult to find that the Jacobian of the
transformation

∂(w1, . . . , wn)

∂(x1, . . . , xn)
= 1.
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Step 1. Discretize the problem into finite dimensions
I Suppose we want to compute the average 〈F [Xt]〉, then

〈F [Xt]〉 ≈ 〈F (Xt1 , Xt2 , · · · , Xtn)〉 = 〈G(Wt1 ,Wt2 , · · · ,Wtn)〉,

where G = F ◦ Φn.

I Furthermore with transformation of variables

〈F [Xt]〉 ≈
∫
G(w1, w2, · · · , wn)

1

Zn
exp(−In(w))dw1dw2 · · · dwn

=

∫
F (x1, x2, · · · , xn)

1

Zn
exp(−Ĩn(x))dx1dx2 · · · dxn,

where the transformation holds because of the performance
of the Jacobian, and Ĩn(x) = In ◦ Φ−1

n (x) by definition

Ĩn(x) =
1

2

n∑
j=1

(xj − xj−1

tj − tj−1

)2
(tj − tj−1) +

1

2

n∑
j=1

b2(xj−1, tj−1)(tj − tj−1)

−
n∑

j=1

(xj − xj−1) · b(xj−1, tj−1).
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Changing the dumb variables xi to wi, we obtain
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1

Zn
exp(−In(w))

· exp
(
− 1

2

n∑
j=1

b2(wj−1, tj−1)(tj − tj−1)
)

· exp
( n∑
j=1

b(wj−1, tj−1) · (wj − wj−1)
)
dw1dw2 · · · dwn

=
〈
F (Wt1 ,Wt2 , · · · ,Wtn)

· exp
(
− 1

2

n∑
j=1

b2(Wtj−1 , tj−1)(tj − tj−1)
)

· exp
( n∑
j=1

b(Wtj−1 , tj−1) · (Wtj −Wtj−1)
)〉
.



Step 2. Take the formal limit as n→∞

I Now with the finite dimensional discretization, we can take
formal continuum limit

〈F [Xt]〉 =
〈
F [Wt] exp

(
−1

2

∫ 1

0
b2(Wt, t)dt+

∫ 1

0
b(Wt, t)dWt

)〉
.

I Since the transformation is valid for arbitrary F , in
mathematical language, this asserts that the distribution µX
is absolutely continuous with respect to µW , and

dµX
dµW

= exp
(
− 1

2

∫ 1

0
b2(Wt, t)dt+

∫ 1

0
b(Wt, t)dWt

)
.



Step 2. Take the formal limit as n→∞

I Now with the finite dimensional discretization, we can take
formal continuum limit

〈F [Xt]〉 =
〈
F [Wt] exp

(
−1

2

∫ 1

0
b2(Wt, t)dt+

∫ 1

0
b(Wt, t)dWt

)〉
.

I Since the transformation is valid for arbitrary F , in
mathematical language, this asserts that the distribution µX
is absolutely continuous with respect to µW , and

dµX
dµW

= exp
(
− 1

2

∫ 1

0
b2(Wt, t)dt+

∫ 1

0
b(Wt, t)dWt

)
.



Step 2. Take the formal limit as n→∞
The above derivations can be done directly with continuum version
if one gets familiar enough

〈F [Xt]〉
=〈G[Wt]〉 (where G = F ◦ Φ)

=

∫
G[wt] ·

1

Z
exp

(
− 1

2

∫ 1

0

ẇ2
t dt
)
δ(w0)Dw

=

∫
F [xt] ·

1

Z

· exp
(
− 1

2

∫ 1

0

ẋ2tdt−
1

2

∫ 1

0

b2(xt, t)dt+

∫ 1

0

b(xt, t)ẋtdt
)
δ(x0)Dx

=

∫
F [wt] ·

1

Z

· exp
(
− 1

2

∫ 1

0

ẇ2
t dt−

1

2

∫ 1

0

b2(wt, t)dt+

∫ 1

0

b(wt, t)ẇtdt
)
δ(w0)Dw

=
〈
F [Wt] exp

(
− 1

2

∫ 1

0

b2(Wt, t)dt+

∫ 1

0

b(Wt, t)dWt

)〉
.



Cameron-Martin formula

I A special case of this representation is the Cameron-Martin
formula, for the transformation

Xt = Wt + φ(t)

where φ is a smooth function.

I This can be obtained from SDE with b(Xt, t) = φ̇(t). In this
case, we get

dµX
dµW

= exp
(
− 1

2

∫ 1

0
φ̇2(t)dt+

∫ 1

0
φ̇(t)dWt

)
.
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Girsanov formula
I A slight generalization is the Girsanov formula. Consider two

SDE’s:

dXt = b(Xt, t)dt+ σ(Xt, t)dWt,

dYt = (b(Yt, t) + γ(t, ω))dt+ σ(Yt, t)dWt,

where X,Y , b,γ ∈ Rn, W ∈ Rm and σ ∈ Rn×m. Assume
that X0 = Y0 = x.

I Then the distributions of {Xt} and {Yt} over [0, 1] are
absolutely continuous with respect to each other. Moreover
the Radon-Nikodym derivative is given by

dµY

dµX
[X.] = exp

(
−1

2

∫ 1

0

|φ(t, ω)|2dt+

∫ 1

0

φ(t, ω)dWt

)
,

where φ is the solution of

σ(Xt, t)φ(t, ω) = γ(t, ω).
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Girsanov theorem

I Mathematically, the above two results have another
formulation whose idea can be explained as follows.

I Suppose we have n independent standard Gaussian random
variables Z1, Z2, . . . , Zn ∼ N(0, 1) on probability space
(Ω,F , P ). Given a vector (µ1, µ2, . . . , µn) ∈ Rn, the new
random variables with translation

Z̃k = Zk + µk, k = 1, 2 . . . , n

are no longer N(0, 1) distributed.

I But we can define another probability measure

P̃ (dω) = exp
(
−

n∑
k=1

µkZk(ω)− 1

2

n∑
k=1

µ2
k

)
P (dω).
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Girsanov theorem

Then we have

P̃
(
Z̃1 ∈ [z̃1, z̃1 + dz̃1), . . . , Z̃n ∈ [z̃n, z̃n + dz̃n)

)
= exp

(
−

n∑
k=1

µk(z̃k − µk)−
1

2

n∑
k=1

µ2
k

)
· P
(
Z̃1 ∈ [z̃1, z̃1 + dz̃1), . . . , Z̃n ∈ [z̃n, z̃n + dz̃n)

)
= exp

(
−

n∑
k=1

µk(z̃k − µk)−
1

2

n∑
k=1

µ2
k

)
· (2π)−

n
2 exp

(
− 1

2

n∑
k=1

(z̃k − µk)2
)
dz̃1 · · · dz̃n

=(2π)−
n
2 exp

(
− 1

2

n∑
k=1

z̃2
k

)
dz̃1 · · · dz̃n.



Girsanov theorem
I This reveals that the variables {Z̃k}k=1,...,n are again

independent N(0, 1) random variables on space (Ω,F , P̃ ).

I If we take

Zk =
∆Wk√

∆tk
, Z̃k =

∆W̃k√
∆tk

, µk = φk
√

∆tk

and take the formal limit as n→∞, where
∆Wk = Wtk+1

−Wtk and Wt is the standard Wiener process
on (Ω,F , P ), we may claim that

W̃t = Wt +

∫ t

0
φ(s)ds

is again a standard Wiener process on (Ω,F , P̃ ) with

P̃ (dω) = exp
(
−
∫ t

0

φ(s)dWs −
1

2

∫ t

0

φ2(s)ds
)
P (dω).

This claim is indeed true even for multidimensional case and
the translation φ(t) can be ω-dependent.
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Girsanov theorem

Theorem (Girsanov theorem I)

For Itô process

dW̃t = φ(t, ω)dt+ dWt, W̃0 = 0,

where W ∈ Rd is a d-dimensional standard Wiener process on
(Ω,F ,P). Define

Zt(ω) = exp
(
−
∫ t

0
φ(s, ω)dWs −

1

2

∫ t

0
φ2(s, ω)ds

)
.

Assume φ(t, ω) satisfies E exp
(

1
2

∫ T
0 |φ|

2(s, ω)ds
)
<∞ (

Novikov’s condition), where T ≤ ∞ is a fixed constant. Define P̃
as

P̃(dω) = ZT (ω)P(dω),

then we have W̃ is a d-dimensional Wiener process with respect to
(Ω,FT , P̃) for t ≤ T .



Girsanov theorem

I The Novikov’s condition is to ensure the process Zt in

Zt(ω) = exp
(
−
∫ t

0
φ(s, ω)dWs −

1

2

∫ t

0
φ2(s, ω)ds

)
.

is an exponential martingale.

I The rigorous proof of Girsanov Theorem may be referred to:
I. Karatzas and S. E. Shreve, Brownian motion and

stochastic calculus,
B. Øksendal, Stochastic differential equations: An

introduction with applications.
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Girsanov theorem

I The definition of Zt does not contradict

dµX
dµW

= exp
(
− 1

2

∫ 1

0
φ̇2(t)dt+

∫ 1

0
φ̇(t)dWt

)
.

Indeed, they are consequences of each other.

I To see this, we note that for any functional F〈
F [W̃t]

〉
P̃

=
〈
F [W̃t]ZT

〉
P

=
〈
F [W̃t] exp

(
−
∫ T

0
φ(s, ω)dW̃s +

1

2

∫ T

0
φ2(s, ω)ds

)〉
P

=
〈
F [Wt] exp

(
−
∫ T

0
φ(s, ω)dWs +

1

2

∫ T

0
φ2(s, ω)ds

)dµW̃
dµW

〉
P

=
〈
F [Wt]

〉
P
.
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Girsanov theorem
It can also be verified by path integrals as follows

〈F [Wt]〉P

=

∫
F [wt] ·

1

Z
exp

(
− 1

2

∫ T

0
ẇ2
t dt
)
δ(w0)Dw

=

∫
F [w̃t] ·

1

Z
exp

(
− 1

2

∫ T

0

˙̃w2
t dt
)
δ(w̃0)Dw̃

=

∫
F ◦ Φ[wt]

· 1
Z

exp
(
− 1

2

∫ T

0
ẇ2
t dt−

1

2

∫ T

0
φ2dt−

∫ T

0
φ(t)ẇtdt

)
δ(w0)Dw

=
〈
G[Wt] exp

(
− 1

2

∫ T

0
φ2(t)dt−

∫ T

0
φ(t)dWt

)〉
P

=
〈
F [W̃t] exp

(
− 1

2

∫ T

0
φ2(t)dt−

∫ T

0
φ(t)dWt

)〉
P

=
〈
F [W̃t]ZT

〉
P

=
〈
F [W̃t]

〉
P̃
.



Girsanov theorem

Corresponding to

dµY
dµX

[X.] = exp

(
−1

2

∫ 1

0
|φ(t, ω)|2dt+

∫ 1

0
φ(t, ω)dWt

)
,

we have another form of Girsanov theorem.



Girsanov theorem

Theorem (Girsanov theorem II)

For Itô processes X,Y satisfy{
dXt = b(Xt, t)dt+ σ(Xt, t)dWt, X0 = x,

dYt = (b(Yt, t) + γ(t, ω))dt+ σ(Yt, t)dWt, Y0 = x,

where X,Y , b,γ ∈ Rn, W ∈ Rm and σ ∈ Rn×m, and assume b
and σ satisfy the global Lipschitz and linear growth conditions.
Suppose there exists unique φ(t, ω) such that
σ(Xt, t)φ(t, ω) = γ(t, ω) and the Novikov’s condition

E exp
(

1
2

∫ T
0 |φ|

2(s, ω)ds
)
<∞ holds. Define W̃t, Zt and P̃ as in

Girsanov theorem I, then W̃ is a standard Wiener process under
(Ω,FT , P̃) and Y satisfies

dYt = b(Yt, t)dt+ σ(Yt, t)dW̃t, Y0 = x, t ≤ T.



Girsanov theorem

I Thus the law of Yt under P̃ is the same that of Xt under P
for t ≤ T .

I The readers may be referred to
I. Karatzas and S. E. Shreve, Brownian motion and

stochastic calculus,
B. Øksendal, Stochastic differential equations: An

introduction with applications.
for proof details.
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Feynman-Kac formula: revisited

I Earlier we have known that the solution of PDE

∂tv =
1

2
∆v + q(x)v, v|t=0 = f(x)

can be represented as

v(x, t) = Ex
(

exp
(∫ t

0
q(Ws)ds

)
f(Wt)

)
.

I In path integral form

v(x, t) =

∫
δ(w0−x)

1

Z
exp

(
−
∫ t

0

(1

2
ẇ2
s−q(ws)

)
ds
)
f(wt)Dw,

where the delta-function δ(w0 − x) is to shift the starting
point of the Wiener process to x.
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Feynman-Kac formula: revisited

Feynmann-Kac formula originates from Feynmann’s interpretation
of quantum mechanics, namely that solution of linear Schrödinger
equation

i~∂tψ = − ~2

2m
∆ψ + V (x)ψ, ψ|t=0 = ψ0(x)

can be expressed formally as

ψ(x, t) =

∫
δ(w0 − x)

1

Z
exp

( i
~
I[w]

)
ψ0(wt)Dw,

where I[·] is the Lagrangian defined as

I[w] =

∫ t

0

(m
2
ẇ2
s − V (ws)

)
ds.



Feynman-Kac formula: revisited

I Formally if we take

m = 1, ~ = −i

in the Schrödinger equation and path integral form of the
Schrödinger equation, we exactly obtain the above
formulation for Feynman-Kac problem! Indeed, that is the real
story on how Feynman-Kac formula is created.

I Feynman’s formally expression is yet to be made rigorous.
However, Kac’s reinterpretation for the heat equation instead
of Schrödinger’s equation can be readily proved. The
Feynman-Kac formula can also be generalized to the case
when ∆ is replaced by more general second order differential
operator as we did in previous lecture.
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