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Deterministic multiscale models
The multiscale is very common in different fields of science and
engineering.
I Consider the toy model

dx

dt
= f(x, y)

dy

dt
=

1

ε
(g(x)− y), ε� 1, ε > 0.

We call x the slow variable and y the fast variable.

I The exact solution of y given x has the form

y(t) = e−t/εy0 + (1− e−t/ε)g(x)→ g(x)

as t→∞. That is, y will relax to y = g(x) fast in O(ε)
timescale. y = g(x) is called the slow manifold.

I Finally we get the adiabatic approximation:

dx

dt
= f(x, g(x))

as ε→ 0.



Deterministic multiscale models
The multiscale is very common in different fields of science and
engineering.
I Consider the toy model

dx

dt
= f(x, y)

dy

dt
=

1

ε
(g(x)− y), ε� 1, ε > 0.

We call x the slow variable and y the fast variable.
I The exact solution of y given x has the form

y(t) = e−t/εy0 + (1− e−t/ε)g(x)→ g(x)

as t→∞. That is, y will relax to y = g(x) fast in O(ε)
timescale. y = g(x) is called the slow manifold.

I Finally we get the adiabatic approximation:

dx

dt
= f(x, g(x))

as ε→ 0.



Deterministic multiscale models
The multiscale is very common in different fields of science and
engineering.
I Consider the toy model

dx

dt
= f(x, y)

dy

dt
=

1

ε
(g(x)− y), ε� 1, ε > 0.

We call x the slow variable and y the fast variable.
I The exact solution of y given x has the form

y(t) = e−t/εy0 + (1− e−t/ε)g(x)→ g(x)

as t→∞. That is, y will relax to y = g(x) fast in O(ε)
timescale. y = g(x) is called the slow manifold.

I Finally we get the adiabatic approximation:

dx

dt
= f(x, g(x))

as ε→ 0.



Simple Stochastic Multiscale models

I A slight generalization is

dx

dt
= f(x, y)

dy

dt
=

1

ε
(g(x)− y) +

√
2

ε
Ẇ , ε� 1, ε > 0.

I Given x, y(t) has an invariant distribution

y(t) ∼ N(g(x), 1) := µg(x)(y)dy

The effective dynamics is

dx

dt
= 〈f(x, y)〉µg(x) =

∫
R
f(x, y)µg(x)(y)dy

as ε→ 0.
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Diffusive Limit of a Simple Eample

For SDEs or ODEs, the presence of a small parameter usually
means that the system has some disparate time scales. Our task is
to eliminate the fast time scales in the system and derive effective
equations that govern the dynamics on the slow time scale.

I Let us start with a simple example. Let Yt = y(t) be a
stationary two-state Markov jump process taking values ±α
with jump rate β between these two states. With matrix
notation, the infinitesimal generator for Y has the form

A =

(
−β β
β −β

)
.

I Let yε(t) = y(t/ε2) where ε is a small parameter. Consider
the SDE

dxε(t)

dt
=

1

ε
yε(t), xε(0) = x.
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Backward Operator Analysis
I Let uε(x, y, t) = E(x,y)

(
f(xε(t), yε(t))

)
, where f is any given

smooth function. Then uε satisfies the backward Kolmogorov
equation:

∂uε

∂t
=

1

ε
y
∂uε

∂x
+

1

ε2
Auε, uε(x, y, 0) = f(x, y).

I Since y can only take two values, by defining

u±(x, t) = uε(x,±α, t), f±(x, t) = f(x,±α),

we can rewrite the above equation as

∂

∂t

(
u+
u−

)
=

1

ε

(
+α 0
0 −α

)
∂

∂x

(
u+
u−

)
+

1

ε2

(
−β β
β −β

)(
u+
u−

)
with initial condition u±(x, 0) = f±(x).
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Asymptotic expansion
I Let w = u+ + u−, we have

ε2
∂2w

∂t2
= α2 ∂

2w

∂x2
−2β

∂w

∂t
, w|t=0 = f++f−, ∂tw|t=0 =

α

ε
∂x(f+−f−).

I Consider the case when f+ = f− = f . In this case the time
derivative of w vanishes at t = 0, hence we avoid the extra
complication coming from the initial layer.

I Following the standard approach in asymptotic analysis, we
make the ansatz: w = w0 + εw1 + ε2w2 + · · · . To leading
order, this gives:

∂w0

∂t
=
α2

2β

∂2w0

∂x2
, w0|t=0 = 2f.

I This means that to leading order, xε behaves like Brownian
motion with diffusion constant D = α/

√
β. This is not

surprising since it is what the central limit theorem tells us
about

xε(t) =
1

ε

∫ t

0
yε(s)ds as ε→ 0.
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General Framework
We turn now to the general case. Suppose the stochastic process
Xε
t possess the backward equation for uε(x, t) = Exf(Xε

t ) as

∂uε

∂t
=

1

ε2
L1uε +

1

ε
L2uε + L3uε, uε(0) = f,

where L1,L2 and L3 are differential operators defined on some
Banach space B, whose properties will be specified below. As a
general framework we assume that the following conditions hold.

(a) L1 is an infinitesimal generator of a stationary Markov
process, and the semi-group exp(L1t) generated by L1
converges to a projection operator to the null space of L1,
which we will denote as P .

exp(L1t)→ P, t→∞.

(b) Solvability condition: PL2P = 0.

(c) Consistency condition for the initial value: Pf = f .
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Asymptotic expansion
I Assume that uε can be expressed in the following form:

uε = u0 + εu1 + ε2u2 + . . . .

Substituting it into the above PDE and collecting terms of the
same order in ε, we get

O(ε−2) : L1u0 = 0,

O(ε−1) : L1u1 = −L2u0,

O(ε0) : L1u2 = −L2u1 − L3u0 +
∂u0
∂t

,

and u0(0) = f from the initial condition.

I We obtain from the O(ε−2) term that u0 is in the null space
of L1, which is the same as the range of P (see the following
pages for reason), i.e.

Pu0 = u0.

I The consistency condition Pf = f , i.e. Pu0(x, 0) = u0(x, 0)
allows us to avoid the initial layer problem.
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Supplemental: Fredholm Alternative

I Fredholm Alternative — Finite dimensional case.

Ax = b, A ∈ Rm×n

I Either: Ax = b has a solution x
I Or: AT y = 0 has a nontrivial solution y with 〈y, b〉 = yT b 6= 0.

Key point: Rm = R(A)⊕N(AT )

Either b is in the range of A or it has a nontrivial projec-
tion in the null space of AT .

I It can be also stated as

Ax = b has a solution if and only if

for any y ∈ N(AT ), we have 〈y, b〉 = 0.
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Supplemental: Fredholm Alternative

I Fredholm Alternative — Extension to infinite dimensional
space

Lu = f, L : V → H

I Either: Lu = f has a solution u
I Or: L∗v = 0 has a nontrivial solution v with 〈v, f〉 6= 0.

I It can be also stated as

Lu = f has a solution iff ∀v ∈ N(L∗), ∃ 〈v, f〉 = 0

Typical Examples:1

I L = I − K, where K is a compact operator.
Fact: R(L) = N(L∗)⊥

I Elliptic operator with coercive condition for the diffusion
matrix.

1L.C. Evans, PDE, AMS.
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Supplemental: Properties of the limit of Markov
semigroups

Consider a Markov semigroup

S(t) = exp(Lt), t ≥ 0,

where L is the infinitesimal generator. Denote

P = lim
t→+∞

S(t).

We have the following important properties 2

1. P 2 = P, ‖P‖ ≤ 1.

2. S(t)P = PS(t) = P

3. LP = PL = 0

4. R(P ) = N(L)

5. N(P ) = R(L)
2Ethier and Kurtz, Markov processes: Characterization and Convergence,

Wiley.



Supplemental: Solvability of the equation in O(ε−1) term

I The equation in O(ε−1) term reads

L1u1 = −L2u0.

We assume the solvability condition PL2P = 0.

I Note that from the O(ε−2) term: L1u0 = 0, we have
u0 ∈ N(L1) = R(P ).

I From the Fredholm alternative, the O(ε−1) term has a
solution iff for any f ∈ N(L∗1), we have 〈f,L2Pu0〉 = 0.

I This is true since

f ∈ N(L∗1)⇒ 〈L∗1f, g〉 = 0, ∀g ⇒ 〈f,L1g〉 = 0

⇒ f ∈ R(L1)
⊥

= N(P )⊥ ⇒ ∀g ∈ N(P ), 〈f, g〉 = 0

while L2Pu0 ∈ N(P ) since PL2P = 0. Done!
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Effective equation
I To solve u1, we assume the Fredholm alternative holds for the

operator L1, which should be rigorously proved for each
concrete problem.

I With the solvability condition and the Fredholm alternative,
we denote a solution as

u1 = −L−11 L2Pu0.

I Substituting this into the last equation and applying P on
both sides, we obtain the effective equation for the leading
order u0

∂u0
∂t

= (PL3P − PL2L−11 L2P )u0 := L̄u0, u0(0) = f

in the range of P .

I One can also derive effective equations for the higher order
terms u1, u2, etc. But it is more complicated and usually not
very useful.
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Applied to the Simple Example
To see this abstract framework actually works, we use it for the
simple model introduced at the beginning of this section. We have

L1 = A, L2 =

(
+α 0
0 −α

)
∂

∂x
, L3 = 0.

Thus the projection operator P is given by

P = lim
t→∞

exp(L1t) = lim
t→∞

1

2

(
1 + e−2βt 1− e−2βt
1− e−2βt 1 + e−2βt

)
=

(
1
2

1
2

1
2

1
2

)

I In the current example, we can simply pick a version of L−11 as

L−11 = −
∫ ∞
0

(exp(L1t)− P )dt = − 1

4β

(
1 −1
−1 1

)
.

It is easy to verify that the solvability condition PL2P = 0 is
satisfied. The consistency condition Pf = f gives f+ = f−,
which we still denote as f .



Applied to the Simple Example

I Finally the effective operator

−PL2L−11 L2P =
α2

4β

(
1 1
1 1

)
∂2

∂x2
.

I Combining these we obtain the effective equation

∂

∂t
(u+0 +u−0 ) =

α2

2β

∂2

∂x2
(u+0 +u−0 ), (u+0 +u−0 )|t=0 = f++f− = 2f,

where u0 = (u+0 , u
−
0 ). Set w0 = u+0 + u−0 , we recover the

above result.
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where u0 = (u+0 , u
−
0 ). Set w0 = u+0 + u−0 , we recover the

above result.
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Averaging for Chemical Reaction Kinetics
I Consider a well-stirred system of N molecular species
{S1, S2, . . . , SN} interacting through M reaction channels
{R1, R2, . . . , RM}.

I The following quantities are used to characterize the discrete
reaction dynamics.

(a) States Xt.

Xt = (X1
t , X

2
t , . . . , X

N
t ) ∈ NN ,

where the kth component Xk
t is the number of molecules of

species Sk at time t.
(b) Reactions {Rj}. Each reaction channel Rj is characterized by

its propensity function aj(x) and its state change vector

νj = (ν1j , ν
2
j , . . . , ν

N
j ) ∈ ZN ,

where aj(x)dt gives the probability that the system will
experience a Rj reaction in the next infinitesimal amount of
time dt when the current state is Xt = x.

I We have aj(x) ≥ 0 for physically meaningful states x.
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Chemical Master Equation
I The Chapman-Kolmogorov equation in the time interval

[t, t+ dt)

P (x, t+ dt|x0, t0) =

M∑
j=1

P (x− νj , t|x0, t0)aj(x− νj)dt+

(
1−

M∑
j=1

aj(x)dt
)
P (x, t|x0, t0),

where dt is an infinitesimal time, and we have already omitted
the higher order terms in o(dt).

I With some algebra, we get the well-known chemical master
equation.

∂tP (x, t|x0, t0) =

M∑
j=1

aj(x−νj)P (x−νj , t|x0, t0)−a0(x)P (x, t|x0, t0)

where a0(x) :=
∑M

j=1 aj(x) is the total propensity.
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Scaling of the Propensity Function

I In physics, we take the large volume scaling:

aj(V x) =
κj

V |ν
−
j |−1

(
V x

ν−j

)
= V aVj (x),

where

aVj (x) = ãj(x)+O(V −1), ãj(x) =
κj

ν−j !
xν

−
j = κj

N∏
m=1

1

ν−,mj !
x
ν−,m
j
m

and aVj (x), ãj(x) ∼ O(1) if κj ,x ∼ O(1).

I For simplicity, we will only consider the case when
aVj (x) = ãj(x). The general case can be analyzed similarly.
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aVj (x) = ãj(x). The general case can be analyzed similarly.



Large Volume Limit

Now let us derive the continuum limit of a rescaled process

XV
t := Xt/V.

I The backward operator for the original process Xt has the
form

Af(x) =

M∑
j=1

aj(x)
(
f(x+ νj)− f(x)

)
.

I For the rescaled process XV
t , define u(x, t) = Exf(XV

t ) for
any bounded continuous function f . We have

∂tu(x, t) = AV u =
M∑
j=1

V aVj (x)
(
u
(
x+

νj
V

)
− u(x)

)
.
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Large Volume Limit

I Under the scaling assumption and the ansatz
u(x, t) = u0(x, t) + V −1u1(x, t) + o(V −1), we get, to leading
order

∂tu0(x, t) = A0u0 =

M∑
j=1

ãj(x)νj · ∇u0(x, t)

I This is the backward equation for the reaction rate equations

d

dt
x =

M∑
j=1

ãj(x)νj .
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Over-damped Limit: A Less Trivial Example

Question: Derive the Brownian dynamics from Langevin equations

dXt = Vtdt

dVt = (−∇U(Xt)− γA(Xt) · Vt)dt+
√

2γσ(Xt) · dWt

in the time scale t ∼ O(1/ε), where γ = 1/ε→∞ and we set
m = 1, kBT = 1.
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