Lecture 17. Numerical SDEs: Advanced topics

Tiejun $\mathrm{Li}^{1,2}$

${ }^{1}$ School of Mathematical Sciences (SMS),
\&
${ }^{2}$ Center for Machine Learning Research (CMLR),
Peking University,
Beijing 100871,
P.R. China
tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E

Table of Contents

Implicit Scheme and Extrapolation

Multilevel Monte Carlo method

Implicit scheme

To overcome the stiffness issue, one can also apply implicit schemes, e.g. simplest implicit Euler:

$$
X_{n+1}=X_{n}+b\left(X_{n+1}\right) \delta t_{n}+\sigma\left(X_{n}\right) \delta W_{n}
$$

or semi-implicit scheme

$$
X_{n+1}=X_{n}+\left[\alpha b\left(X_{n}\right)+(1-\alpha) b\left(X_{n+1}\right)\right] \delta t_{n}+\sigma\left(X_{n}\right) \delta W_{n}
$$

for $\alpha \in(0,1)$.

Implicit scheme

- The fully implicit scheme is also considered but not very successful although one can transform the Ito SDE form into right-most endpoint form at first.

Implicit scheme

- The fully implicit scheme is also considered but not very successful although one can transform the Ito SDE form into right-most endpoint form at first.
- For example

$$
X_{n+1}=X_{n}+\left[b\left(X_{n+1}\right)-c\left(X_{n+1}\right)\right] \delta t_{n}+\sigma\left(X_{n+1}\right) \delta W_{n}
$$

where

$$
c_{i}(x)=\sum_{j k} \frac{\partial \sigma_{i j}}{\partial x_{k}} \sigma_{k j}
$$

is from the transformation.

Implicit scheme

- The fully implicit scheme is also considered but not very successful although one can transform the Ito SDE form into right-most endpoint form at first.
- For example

$$
X_{n+1}=X_{n}+\left[b\left(X_{n+1}\right)-c\left(X_{n+1}\right)\right] \delta t_{n}+\sigma\left(X_{n+1}\right) \delta W_{n}
$$

where

$$
c_{i}(x)=\sum_{j k} \frac{\partial \sigma_{i j}}{\partial x_{k}} \sigma_{k j}
$$

is from the transformation.

- If $b=0, \sigma(x)=x$, the above scheme implies

$$
X_{n+1}=\frac{X_{n}}{1-\delta W_{n}}
$$

Implicit scheme

- The fully implicit scheme is also considered but not very successful although one can transform the Ito SDE form into right-most endpoint form at first.
- For example

$$
X_{n+1}=X_{n}+\left[b\left(X_{n+1}\right)-c\left(X_{n+1}\right)\right] \delta t_{n}+\sigma\left(X_{n+1}\right) \delta W_{n}
$$

where

$$
c_{i}(x)=\sum_{j k} \frac{\partial \sigma_{i j}}{\partial x_{k}} \sigma_{k j}
$$

is from the transformation.

- If $b=0, \sigma(x)=x$, the above scheme implies

$$
X_{n+1}=\frac{X_{n}}{1-\delta W_{n}}
$$

- It is possible that $1-\delta W_{n}=0$ and indeed $\mathbb{E}\left|X_{n+1}\right|=\infty$!

Extrapolation method

Talay and Tubaro proposed the following extrapolation method based on the error expansion:

$$
\begin{aligned}
& e(\delta)=\mathbb{E} g\left(X_{T}^{\delta}\right)-\mathbb{E} g\left(X_{T}\right)=C_{g, \beta} \delta^{\beta}+C_{g, \beta+1} \delta^{\beta+1} \\
& e\left(\frac{\delta}{2}\right)=\mathbb{E} g\left(X_{T}^{\frac{\delta}{2}}\right)-\mathbb{E} g\left(X_{T}\right)=C_{g, \beta}\left(\frac{\delta}{2}\right)^{\beta}+C_{g, \beta+1}\left(\frac{\delta}{2}\right)^{\beta+1} \\
& 2^{-\beta} e(\delta)-e\left(\frac{\delta}{2}\right)=\mathbb{E} g\left(X_{T}^{\delta}\right)-\mathbb{E} g\left(X_{T}\right)=\tilde{C}_{g, \beta+1} \delta^{\beta+1}
\end{aligned}
$$

See details in Stoch. Anal. Appl. 8 (1990), 483-509.

Table of Contents

Implicit Scheme and Extrapolation

Multilevel Monte Carlo method

Multilevel Monte Carlo method

- So far we only considered the bias error of the approximation, i.e. the error brought by the time discretization. But a real approximation also involves Monte Carlo samplings.

Multilevel Monte Carlo method

- So far we only considered the bias error of the approximation, i.e. the error brought by the time discretization. But a real approximation also involves Monte Carlo samplings.
- Since 2008, M. Giles proposed the general framework of multilevel Monte Carlo methods for SDEs, which approximates the expectation in an efficient way. This method stimulates a lot of follow-up works in different fields.

Error in the full discretization

- We have already known that the Euler-Maruyama scheme is of weak order 1 in computing $Y_{E}=\mathbb{E} f\left(X_{T}\right)$ for the SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}
$$

on $[0, T]$.

Error in the full discretization

- We have already known that the Euler-Maruyama scheme is of weak order 1 in computing $Y_{E}=\mathbb{E} f\left(X_{T}\right)$ for the SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}
$$

on $[0, T]$.

- In real computations, we take the weak approximator

$$
Y_{h, N}=\frac{1}{N} \sum_{k=1}^{N} f\left(X_{n}^{(k)}\right), \quad n=T / h \in \mathbb{N}
$$

with stepsize h and N independent samples, where X_{n} is obtained by the Euler-Maruyama scheme.

Error in the full discretization

- We have already known that the Euler-Maruyama scheme is of weak order 1 in computing $Y_{E}=\mathbb{E} f\left(X_{T}\right)$ for the SDE

$$
d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}
$$

on $[0, T]$.

- In real computations, we take the weak approximator

$$
Y_{h, N}=\frac{1}{N} \sum_{k=1}^{N} f\left(X_{n}^{(k)}\right), \quad n=T / h \in \mathbb{N}
$$

with stepsize h and N independent samples, where X_{n} is obtained by the Euler-Maruyama scheme.

- The mean square error has the bias-variance decomposition

$$
\begin{aligned}
\mathrm{MSE} & =\mathbb{E}\left(Y_{E}-Y_{h, N}\right)^{2} \\
& \leq 2\left|Y_{E}-\mathbb{E} f\left(X_{n}\right)\right|^{2}+2 \mathbb{E}\left|\mathbb{E} f\left(X_{n}\right)-Y_{h, N}\right|^{2} \\
& \leq C_{1} h^{2}+C_{2} N^{-1}
\end{aligned}
$$

by the weak order 1 convergence and Monte Carlo estimate.

Overall computational cost

- The above computation has the cost $C_{3} \mathrm{Nh}^{-1}$.

Overall computational cost

- The above computation has the cost $C_{3}{N h^{-1}}^{-1}$.
- The cost-accuracy tradeoff

$$
\min _{h, N} \text { MSE } \quad \text { subject to a given cost } K=C_{3} N h^{-1} \gg 1
$$

gives the optimal choice

$$
N \sim O(K h), \quad h \sim O\left(K^{-\frac{1}{3}}\right) \quad \text { and } \quad \mathrm{MSE} \sim O\left(K^{-\frac{2}{3}}\right)
$$

Overall computational cost

- The above computation has the cost $C_{3} \mathrm{Nh}^{-1}$.
- The cost-accuracy tradeoff

$$
\min _{h, N} \text { MSE } \quad \text { subject to a given cost } K=C_{3} N h^{-1} \gg 1
$$

gives the optimal choice

$$
N \sim O(K h), \quad h \sim O\left(K^{-\frac{1}{3}}\right) \quad \text { and } \quad \mathrm{MSE} \sim O\left(K^{-\frac{2}{3}}\right)
$$

- This means that if we require the accuracy MSE $\sim O\left(\varepsilon^{2}\right)$, we must have $h \sim O(\varepsilon), N \sim O\left(\varepsilon^{-2}\right)$ and thus the cost $K \sim O\left(\varepsilon^{-3}\right)$.

Overall computational cost

- The above computation has the cost $C_{3} N h^{-1}$.
- The cost-accuracy tradeoff

$$
\min _{h, N} \mathrm{MSE} \quad \text { subject to a given cost } K=C_{3} N h^{-1} \gg 1
$$

gives the optimal choice

$$
N \sim O(K h), \quad h \sim O\left(K^{-\frac{1}{3}}\right) \quad \text { and } \quad \mathrm{MSE} \sim O\left(K^{-\frac{2}{3}}\right)
$$

- This means that if we require the accuracy MSE $\sim O\left(\varepsilon^{2}\right)$, we must have $h \sim O(\varepsilon), N \sim O\left(\varepsilon^{-2}\right)$ and thus the cost $K \sim O\left(\varepsilon^{-3}\right)$.
- The multilevel Monte Carlo method achieves the same accuracy with cost $K \sim O\left(\varepsilon^{-2}(\ln \varepsilon)^{2}\right)$, which is a typical fast algorithm.

Construction of multilevel Monte Carlo method

- Define the L-level grids with time stepsize $h_{l}=M^{-l} T$ for $l=0,1, \ldots, L$.

Construction of multilevel Monte Carlo method

- Define the L-level grids with time stepsize $h_{l}=M^{-l} T$ for $l=0,1, \ldots, L$.
- Denote by $F_{l}=f\left(X_{l, M^{l}}\right)$ the approximation of $f\left(X_{T}\right)$ at the level l, where $X_{l, M^{l}}$ is the approximation of X_{T} with stepsize h_{l}.

Construction of multilevel Monte Carlo method

- Define the L-level grids with time stepsize $h_{l}=M^{-l} T$ for $l=0,1, \ldots, L$.
- Denote by $F_{l}=f\left(X_{l, M^{l}}\right)$ the approximation of $f\left(X_{T}\right)$ at the level l, where $X_{l, M^{l}}$ is the approximation of X_{T} with stepsize h_{l}.
- We have

$$
\mathbb{E} F_{L}=\sum_{l=0}^{L} \mathbb{E}\left(F_{l}-F_{l-1}\right) \quad \text { where } F_{-1}:=0
$$

Construction of multilevel Monte Carlo method

- Take N_{l} realizations for each summand in the equation above, and define

$$
Y_{l}=\frac{1}{N_{l}} \sum_{k=1}^{N_{l}}\left(F_{l}^{(k)}-F_{l-1}^{(k)}\right), \quad l=0,1, \ldots, L
$$

Construction of multilevel Monte Carlo method

- Take N_{l} realizations for each summand in the equation above, and define

$$
Y_{l}=\frac{1}{N_{l}} \sum_{k=1}^{N_{l}}\left(F_{l}^{(k)}-F_{l-1}^{(k)}\right), \quad l=0,1, \ldots, L
$$

- Correspondingly define the final estimator

$$
\hat{Y}_{L}=\sum_{l=0}^{L} Y_{l} .
$$

Construction of multilevel Monte Carlo method

- From Monte Carlo estimate we have $\operatorname{var}\left(Y_{l}\right)=V_{l} / N_{l}$, where $V_{l}:=\operatorname{var}\left(F_{l}-F_{l-1}\right)$ for $l=0,1, \ldots, L$.

Construction of multilevel Monte Carlo method

- From Monte Carlo estimate we have $\operatorname{var}\left(Y_{l}\right)=V_{l} / N_{l}$, where $V_{l}:=\operatorname{var}\left(F_{l}-F_{l-1}\right)$ for $l=0,1, \ldots, L$.
- With independent sampling for \hat{Y}_{L}, we get

$$
\operatorname{var}\left(\hat{Y}_{L}\right)=\sum_{l=0}^{L} \operatorname{var}\left(Y_{l}\right)=\sum_{l=0}^{L} \frac{V_{l}}{N_{l}}
$$

with computational cost

$$
K \sim O\left(\sum_{l=0}^{L} N_{l} h_{l}^{-1}\right)
$$

Cost-accuracy tradeoff in multilevel Monte Carlo method

- The key point of multilevel Monte Carlo is that with the decomposition

$$
\mathbb{E} F_{L}=\sum_{l=0}^{L} \mathbb{E}\left(F_{l}-F_{l-1}\right) \quad \text { where } F_{-1}:=0
$$

the term $F_{l}-F_{l-1}$ has smaller fluctuations, i.e. smaller variance, at higher levels provided that the realizations of $F_{l}-F_{l-1}$ come from two discrete approximations with different time stepsizes but same Brownian paths.

Cost-accuracy tradeoff in multilevel Monte Carlo method

- The key point of multilevel Monte Carlo is that with the decomposition

$$
\mathbb{E} F_{L}=\sum_{l=0}^{L} \mathbb{E}\left(F_{l}-F_{l-1}\right) \quad \text { where } F_{-1}:=0
$$

the term $F_{l}-F_{l-1}$ has smaller fluctuations, i.e. smaller variance, at higher levels provided that the realizations of $F_{l}-F_{l-1}$ come from two discrete approximations with different time stepsizes but same Brownian paths.

- This property suggests that we can use less Monte Carlo simulations for higher levels, i.e. finer grids, but more simulations for lower levels, i.e. coarser grids.

Cost-accuracy tradeoff in multilevel Monte Carlo method

- The key point of multilevel Monte Carlo is that with the decomposition

$$
\mathbb{E} F_{L}=\sum_{l=0}^{L} \mathbb{E}\left(F_{l}-F_{l-1}\right) \quad \text { where } F_{-1}:=0
$$

the term $F_{l}-F_{l-1}$ has smaller fluctuations, i.e. smaller variance, at higher levels provided that the realizations of $F_{l}-F_{l-1}$ come from two discrete approximations with different time stepsizes but same Brownian paths.

- This property suggests that we can use less Monte Carlo simulations for higher levels, i.e. finer grids, but more simulations for lower levels, i.e. coarser grids.
- This cost-accuracy tradeoff is the origin of the efficiency of multilevel Monte Carlo method.

Optimal choice

- Now let us consider the minimization

$$
\min _{N_{l}} \operatorname{var}\left(\hat{Y}_{L}\right)=\sum_{l=0}^{L} \frac{V_{l}}{N_{l}} \quad \text { subject to the cost } K=\sum_{l=0}^{L} N_{l} h_{l}^{-1} \gg 1
$$

Optimal choice

- Now let us consider the minimization

$$
\min _{N_{l}} \operatorname{var}\left(\hat{Y}_{L}\right)=\sum_{l=0}^{L} \frac{V_{l}}{N_{l}} \quad \text { subject to the cost } K=\sum_{l=0}^{L} N_{l} h_{l}^{-1} \gg 1 .
$$

- This is generally a very difficult problem so we relax N_{l} to be continuous. Upon introducing Lagrange multiplier we get the minimizer

$$
N_{l}=\lambda \sqrt{V_{l} h_{l}}, \quad \text { where } \quad \lambda=K\left(\sum_{l=0}^{L} \sqrt{V_{l} h_{l}^{-1}}\right)^{-1}
$$

Computational complexity analysis

- From the strong and weak convergence result of Euler-Maruyama Scheme, we have

$$
\left|\mathbb{E}\left(F_{l}\right)-Y_{E}\right|=O\left(h_{l}\right), \quad \mathbb{E}\left|X_{T}-X_{l, M^{l}}\right|^{2}=O\left(h_{l}\right) .
$$

Computational complexity analysis

- From the strong and weak convergence result of Euler-Maruyama Scheme, we have

$$
\left|\mathbb{E}\left(F_{l}\right)-Y_{E}\right|=O\left(h_{l}\right), \quad \mathbb{E}\left|X_{T}-X_{l, M^{l}}\right|^{2}=O\left(h_{l}\right)
$$

- By assuming the Lipschitz continuity of f, we obtain

$$
\operatorname{var}\left(F_{l}-f\left(X_{T}\right)\right) \leq \mathbb{E}\left|f\left(X_{l, M^{l}}\right)-f\left(X_{T}\right)\right|^{2} \leq C \mathbb{E}\left|X_{T}-X_{l, M^{l}}\right|^{2}=O\left(h_{l}\right)
$$

Computational complexity analysis

- From the strong and weak convergence result of Euler-Maruyama Scheme, we have

$$
\left|\mathbb{E}\left(F_{l}\right)-Y_{E}\right|=O\left(h_{l}\right), \quad \mathbb{E}\left|X_{T}-X_{l, M^{l}}\right|^{2}=O\left(h_{l}\right) .
$$

- By assuming the Lipschitz continuity of f, we obtain

$$
\operatorname{var}\left(F_{l}-f\left(X_{T}\right)\right) \leq \mathbb{E}\left|f\left(X_{l, M^{l}}\right)-f\left(X_{T}\right)\right|^{2} \leq C \mathbb{E}\left|X_{T}-X_{l, M^{l}}\right|^{2}=O\left(h_{l}\right)
$$

- Thus

$$
\begin{aligned}
& V_{l}=\operatorname{var}\left(F_{l}-F_{l-1}\right) \leq 2 \operatorname{var}\left(F_{l}-f\left(X_{T}\right)\right)+2 \operatorname{var}\left(F_{l-1}-f\left(X_{T}\right)\right)=O\left(h_{l}\right) \\
& \text { since } h_{l-1}=M h_{l} \text { and } M \sim O(1) .
\end{aligned}
$$

Computational complexity analysis

- For a given tolerance $\varepsilon \ll 1$, take

$$
N_{l}=O\left(\varepsilon^{-2} L h_{l}\right) .
$$

Computational complexity analysis

- For a given tolerance $\varepsilon \ll 1$, take

$$
N_{l}=O\left(\varepsilon^{-2} L h_{l}\right) .
$$

- According to this choice of N_{l}, we get the variance estimate

$$
\operatorname{var}\left(\hat{Y}_{L}\right)=O\left(\varepsilon^{2}\right)
$$

from

$$
\operatorname{var}\left(\hat{Y}_{L}\right)=\sum_{l=0}^{L} \operatorname{var}\left(Y_{l}\right)=\sum_{l=0}^{L} \frac{V_{l}}{N_{l}} .
$$

Computational complexity analysis

- For a given tolerance $\varepsilon \ll 1$, take

$$
N_{l}=O\left(\varepsilon^{-2} L h_{l}\right)
$$

- According to this choice of N_{l}, we get the variance estimate

$$
\operatorname{var}\left(\hat{Y}_{L}\right)=O\left(\varepsilon^{2}\right)
$$

from

$$
\operatorname{var}\left(\hat{Y}_{L}\right)=\sum_{l=0}^{L} \operatorname{var}\left(Y_{l}\right)=\sum_{l=0}^{L} \frac{V_{l}}{N_{l}} .
$$

- Further take $L=\ln \varepsilon^{-1} / \ln M$, we have

$$
h_{L}=M^{-L}=O(\varepsilon) .
$$

Computational complexity analysis

- For a given tolerance $\varepsilon \ll 1$, take

$$
N_{l}=O\left(\varepsilon^{-2} L h_{l}\right) .
$$

- According to this choice of N_{l}, we get the variance estimate

$$
\operatorname{var}\left(\hat{Y}_{L}\right)=O\left(\varepsilon^{2}\right)
$$

from

$$
\operatorname{var}\left(\hat{Y}_{L}\right)=\sum_{l=0}^{L} \operatorname{var}\left(Y_{l}\right)=\sum_{l=0}^{L} \frac{V_{l}}{N_{l}}
$$

- Further take $L=\ln \varepsilon^{-1} / \ln M$, we have

$$
h_{L}=M^{-L}=O(\varepsilon) .
$$

- So the bias error

$$
\left|\mathbb{E} F_{L}-Y_{E}\right|=O\left(h_{L}\right)=O(\varepsilon)
$$

Computational complexity analysis

- Combing $\operatorname{var}\left(\hat{Y}_{L}\right)=O\left(\varepsilon^{2}\right)$ and $\left|\mathbb{E} F_{L}-Y_{E}\right|=O\left(h_{L}\right)=O(\varepsilon)$, we obtain the overall mean square error

$$
\mathrm{MSE}=\mathbb{E}\left(Y_{E}-\hat{Y}_{L}\right)^{2}=O\left(\varepsilon^{2}\right)
$$

and the computational complexity

$$
\left.K=\sum_{l=0}^{L} N_{l} h_{l}^{-1}=O\left(\varepsilon^{-2} L^{2}\right)=O\left(\varepsilon^{-2}(\ln \varepsilon)^{2}\right)\right)
$$

Computational complexity analysis

- Combing $\operatorname{var}\left(\hat{Y}_{L}\right)=O\left(\varepsilon^{2}\right)$ and $\left|\mathbb{E} F_{L}-Y_{E}\right|=O\left(h_{L}\right)=O(\varepsilon)$, we obtain the overall mean square error

$$
\mathrm{MSE}=\mathbb{E}\left(Y_{E}-\hat{Y}_{L}\right)^{2}=O\left(\varepsilon^{2}\right)
$$

and the computational complexity

$$
\left.K=\sum_{l=0}^{L} N_{l} h_{l}^{-1}=O\left(\varepsilon^{-2} L^{2}\right)=O\left(\varepsilon^{-2}(\ln \varepsilon)^{2}\right)\right)
$$

- The optimal choice of M can be made by minimizing the prefactor in the estimate of the computational cost.

