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Implicit scheme

To overcome the stiffness issue, one can also apply implicit
schemes, e.g. simplest implicit Euler:

Xn+1 = Xn + b(Xn+1)δtn + σ(Xn)δWn

or semi-implicit scheme

Xn+1 = Xn +
[
αb(Xn) + (1− α)b(Xn+1)

]
δtn + σ(Xn)δWn

for α ∈ (0, 1).



Implicit scheme

I The fully implicit scheme is also considered but not very
successful although one can transform the Ito SDE form into
right-most endpoint form at first.

I For example

Xn+1 = Xn +
[
b(Xn+1)− c(Xn+1)

]
δtn + σ(Xn+1)δWn

where

ci(x) =
∑
jk

∂σij
∂xk

σkj

is from the transformation.

I If b = 0, σ(x) = x, the above scheme implies

Xn+1 =
Xn

1− δWn

I It is possible that 1− δWn = 0 and indeed E|Xn+1| =∞!
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Extrapolation method

Talay and Tubaro proposed the following extrapolation method
based on the error expansion:

e(δ) = Eg(Xδ
T )− Eg(XT ) = Cg,βδ

β + Cg,β+1δ
β+1

e

(
δ

2

)
= Eg(X

δ
2
T )− Eg(XT ) = Cg,β(

δ

2
)β + Cg,β+1(

δ

2
)β+1

2−βe(δ)− e(δ
2
) = Eg(Xδ

T )− Eg(XT ) = C̃g,β+1δ
β+1

See details in Stoch. Anal. Appl. 8 (1990), 483-509.
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Multilevel Monte Carlo method

I So far we only considered the bias error of the approximation,
i.e. the error brought by the time discretization. But a real
approximation also involves Monte Carlo samplings.

I Since 2008, M. Giles proposed the general framework of
multilevel Monte Carlo methods for SDEs, which
approximates the expectation in an efficient way. This method
stimulates a lot of follow-up works in different fields.
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Error in the full discretization
I We have already known that the Euler-Maruyama scheme is

of weak order 1 in computing YE = Ef(XT ) for the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

on [0, T ].

I In real computations, we take the weak approximator

Yh,N =
1

N

N∑
k=1

f(X(k)
n ), n = T/h ∈ N

with stepsize h and N independent samples, where Xn is
obtained by the Euler-Maruyama scheme.

I The mean square error has the bias-variance decomposition

MSE = E(YE − Yh,N )2

≤ 2|YE − Ef(Xn)|2 + 2E|Ef(Xn)− Yh,N |2

≤ C1h
2 + C2N

−1.

by the weak order 1 convergence and Monte Carlo estimate.
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Overall computational cost

I The above computation has the cost C3Nh
−1.

I The cost-accuracy tradeoff

min
h,N

MSE subject to a given cost K = C3Nh
−1 � 1

gives the optimal choice

N ∼ O(Kh), h ∼ O(K− 1
3 ) and MSE ∼ O(K− 2

3 ).

I This means that if we require the accuracy MSE ∼ O(ε2), we
must have h ∼ O(ε), N ∼ O(ε−2) and thus the cost
K ∼ O(ε−3).

I The multilevel Monte Carlo method achieves the same
accuracy with cost K ∼ O(ε−2(ln ε)2), which is a typical fast
algorithm.
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Construction of multilevel Monte Carlo method

I Define the L-level grids with time stepsize hl =M−lT for
l = 0, 1, . . . , L.

I Denote by Fl = f(Xl,M l) the approximation of f(XT ) at the
level l, where Xl,M l is the approximation of XT with stepsize
hl.

I We have

EFL =
L∑
l=0

E(Fl − Fl−1) where F−1 := 0.



Construction of multilevel Monte Carlo method

I Define the L-level grids with time stepsize hl =M−lT for
l = 0, 1, . . . , L.

I Denote by Fl = f(Xl,M l) the approximation of f(XT ) at the
level l, where Xl,M l is the approximation of XT with stepsize
hl.

I We have

EFL =
L∑
l=0

E(Fl − Fl−1) where F−1 := 0.



Construction of multilevel Monte Carlo method

I Define the L-level grids with time stepsize hl =M−lT for
l = 0, 1, . . . , L.

I Denote by Fl = f(Xl,M l) the approximation of f(XT ) at the
level l, where Xl,M l is the approximation of XT with stepsize
hl.

I We have

EFL =

L∑
l=0

E(Fl − Fl−1) where F−1 := 0.



Construction of multilevel Monte Carlo method

I Take Nl realizations for each summand in the equation above,
and define

Yl =
1

Nl

Nl∑
k=1

(
F

(k)
l − F (k)

l−1

)
, l = 0, 1, . . . , L.

I Correspondingly define the final estimator

ŶL =
L∑
l=0

Yl.
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Construction of multilevel Monte Carlo method

I From Monte Carlo estimate we have var(Yl) = Vl/Nl, where
Vl := var(Fl − Fl−1) for l = 0, 1, . . . , L.

I With independent sampling for ŶL, we get

var(ŶL) =
L∑
l=0

var(Yl) =
L∑
l=0

Vl
Nl

with computational cost

K ∼ O

(
L∑
l=0

Nlh
−1
l

)
.
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Cost-accuracy tradeoff in multilevel Monte Carlo method

I The key point of multilevel Monte Carlo is that with the
decomposition

EFL =

L∑
l=0

E(Fl − Fl−1) where F−1 := 0,

the term Fl − Fl−1 has smaller fluctuations, i.e. smaller
variance, at higher levels provided that the realizations of
Fl − Fl−1 come from two discrete approximations with
different time stepsizes but same Brownian paths.

I This property suggests that we can use less Monte Carlo
simulations for higher levels, i.e. finer grids, but more
simulations for lower levels, i.e. coarser grids.

I This cost-accuracy tradeoff is the origin of the efficiency of
multilevel Monte Carlo method.
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Optimal choice

I Now let us consider the minimization

min
Nl

var(ŶL) =

L∑
l=0

Vl
Nl

subject to the cost K =

L∑
l=0

Nlh
−1
l � 1.

I This is generally a very difficult problem so we relax Nl to be
continuous. Upon introducing Lagrange multiplier we get the
minimizer

Nl = λ
√
Vlhl, where λ = K

(
L∑
l=0

√
Vlh

−1
l

)−1

.
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Computational complexity analysis

I From the strong and weak convergence result of
Euler-Maruyama Scheme, we have

|E(Fl)− YE | = O(hl), E|XT −Xl,M l |2 = O(hl).

I By assuming the Lipschitz continuity of f , we obtain

var(Fl−f(XT )) ≤ E|f(Xl,M l)−f(XT )|2 ≤ CE|XT−Xl,M l |2 = O(hl)

I Thus

Vl = var(Fl−Fl−1) ≤ 2var(Fl−f(XT ))+2var(Fl−1−f(XT )) = O(hl)

since hl−1 =Mhl and M ∼ O(1).
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Computational complexity analysis
I For a given tolerance ε� 1, take

Nl = O(ε−2Lhl).

I According to this choice of Nl, we get the variance estimate

var(ŶL) = O(ε2)

from

var(ŶL) =

L∑
l=0

var(Yl) =

L∑
l=0

Vl
Nl
.

I Further take L = ln ε−1/ lnM , we have

hL =M−L = O(ε).

I So the bias error

|EFL − YE | = O(hL) = O(ε).
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Computational complexity analysis

I Combing var(ŶL) = O(ε2) and |EFL − YE | = O(hL) = O(ε),
we obtain the overall mean square error

MSE = E(YE − ŶL)2 = O(ε2)

and the computational complexity

K =

L∑
l=0

Nlh
−1
l = O(ε−2L2) = O

(
ε−2(ln ε)2)

)
.

I The optimal choice of M can be made by minimizing the
prefactor in the estimate of the computational cost.
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