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Implicit scheme

To overcome the stiffness issue, one can also apply implicit
schemes, e.g. simplest implicit Euler:

Xn+1 = Xn + b(Xn-i-l)(Stn + O'(Xn)(swn
or semi-implicit scheme
X1 = Xn + [ab(Xn) (1= a)b(Xpa1)|6tn + 0(X0n)dWy

for a € (0,1).
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Implicit scheme

» The fully implicit scheme is also considered but not very
successful although one can transform the Ito SDE form into
right-most endpoint form at first.

» For example
X1 = Xn + [b(XnH) - C(XM)} Stn + 0(Xni1)0Wp

where

00;;
ci(z) = Z U]Ukj
gk

Oxy,
is from the transformation.
» If b=0,0(x) = x, the above scheme implies

X

X1 =17 5nW
n

» It is possible that 1 — 6W,, = 0 and indeed E|X,, 11| = oc!



Extrapolation method

Talay and Tubaro proposed the following extrapolation method
based on the error expansion:

e(0) = Eg(X7) — Eg(X1) = Cy p6” + Cyp116"

3
2

5 J 0
e <> =Eg(X7) —Eg(Xr) = 09,5(5)5 + Cg7ﬁ+1(§)6+1
_ 0 >
27%e(8) = e(5) = Bg(X}) ~ Bg(Xr) = Cy a8

See details in Stoch. Anal. Appl. 8 (1990), 483-509.
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» So far we only considered the bias error of the approximation,
i.e. the error brought by the time discretization. But a real
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Multilevel Monte Carlo method

» So far we only considered the bias error of the approximation,
i.e. the error brought by the time discretization. But a real
approximation also involves Monte Carlo samplings.

» Since 2008, M. Giles proposed the general framework of
multilevel Monte Carlo methods for SDEs, which
approximates the expectation in an efficient way. This method
stimulates a lot of follow-up works in different fields.
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Error in the full discretization

» We have already known that the Euler-Maruyama scheme is
of weak order 1 in computing Yz = Ef(X7) for the SDE

dX; = b(Xt)dt + O'(Xt)th

on [0,7.
» In real computations, we take the weak approximator

N
1 k
YN = Nkz_lf(xg ), n=T/heN

with stepsize h and NN independent samples, where X, is
obtained by the Euler-Maruyama scheme.
> The mean square error has the bias-variance decomposition

MSE = E(Yg — Vi, n)?
< 2‘YE - Ef(Xn)P + 2E’Ef(Xn) - Yvh,N|2
< C1h% +CyN~L

by the weak order 1 convergence and Monte Carlo estimate.
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Overall computational cost

» The above computation has the cost CsNh ™.
» The cost-accuracy tradeoff

%1}\1[1 MSE subject to a given cost K = C3Nh !> 1

gives the optimal choice
N ~O(Kh), h~O(K73) and MSE~ O(K~3).

» This means that if we require the accuracy MSE ~ O(g?), we
must have b ~ O(e), N ~ O(¢7?) and thus the cost
K ~O(73).

» The multilevel Monte Carlo method achieves the same
accuracy with cost K ~ O(e72(In¢)?), which is a typical fast
algorithm.
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Construction of multilevel Monte Carlo method

» Define the L-level grids with time stepsize h; = M T for
l1=0,1,...,L.

» Denote by F; = f(X, ) the approximation of f(Xr) at the
level [, where X 5 is the approximation of X7 with stepsize
hy.

> We have

L
EF, =Y E(F,—F_1)  where F_y:=0.
=0



Construction of multilevel Monte Carlo method

> Take N realizations for each summand in the equation above,
and define
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Construction of multilevel Monte Carlo method

> Take N realizations for each summand in the equation above,

and define
1
n:ﬁlZ(Fl(’“)—Fl(f)), 1=0,1,...,L.
k=1

» Correspondingly define the final estimator
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Construction of multilevel Monte Carlo method

» From Monte Carlo estimate we have var(Y;) = V;/N;, where
Vi :=var(F; — Fj_q) for 1 =0,1,..., L.
» With independent sampling for Y., we get
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Cost-accuracy tradeoff in multilevel Monte Carlo method

» The key point of multilevel Monte Carlo is that with the
decomposition

L
EF, =Y E(F,—F_1)  where F_:=0,
=0

the term F; — F;_1 has smaller fluctuations, i.e. smaller
variance, at higher levels provided that the realizations of
F; — F;_1 come from two discrete approximations with
different time stepsizes but same Brownian paths.

» This property suggests that we can use less Monte Carlo

simulations for higher levels, i.e. finer grids, but more
simulations for lower levels, i.e. coarser grids.

» This cost-accuracy tradeoff is the origin of the efficiency of
multilevel Monte Carlo method.
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Optimal choice

» Now let us consider the minimization

L L
- Vi
H]{,in var(Yy) = Z L subject to the cost K = ZNlhfl > 1.
1=0 =0

» This is generally a very difficult problem so we relax N; to be
continuous. Upon introducing Lagrange multiplier we get the
minimizer

I -1
N, = A/Vih;,  where AzK(Z Vlhl_1> .

=0
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Computational complexity analysis

» From the strong and weak convergence result of
Euler-Maruyama Scheme, we have

[E(F) — Yg| = O(), E[Xr—X;\nf> = O(h).
» By assuming the Lipschitz continuity of f, we obtain
var(Fi—f(X7)) < E|f(X; )~ F(X7)]? < CEI X=X, an [ = O(h)
> Thus
Vi = var(Fi—Fi_1) < 2var(Fi—f(Xr))+2var(Fi_1— f(Xr)) = O(h))

since hj—1 = Mh; and M ~ O(1).
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Computational complexity analysis

» For a given tolerance ¢ < 1, take
N, = O(e2Lhy).

» According to this choice of N;, we get the variance estimate
var(Yy) = O(?)

from

z2l=

L
var (Y] Zvar Y)) = Z N
1=0
» Further take L = lnfs_l/ln M, we have
hr, = ML= 0(8)
» So the bias error

‘EFL — YE‘ = O(hL) = 0(6)
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Computational complexity analysis

> Combing var(Y7) = O(¢2) and |EFy, — Y| = O(hr) = O(e),
we obtain the overall mean square error

MSE = E(Yg — Y7.)? = O(¢?)

and the computational complexity
L
K=Y Nh'=0("7L% =0 (s?*(ne)?).
=0

» The optimal choice of M can be made by minimizing the
prefactor in the estimate of the computational cost.
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