Lecture 15. Connections with PDE

Tiejun $\mathrm{Li}^{1,2}$

${ }^{1}$ School of Mathematical Sciences (SMS), \&
${ }^{2}$ Center for Machine Learning Research (CMLR),
Peking University,
Beijing 100871,
P.R. China
tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E

Table of Contents

Liouville equation

Fokker-Planck equation

Boundary Condition

Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes
Semigroup and backward Equation
Feynman-Kac Formula
First exit time

Particle system

Consider N non-interacting particles moving according to the following deterministic ODEs

$$
\frac{d \boldsymbol{X}_{t}^{i}}{d t}=\boldsymbol{b}\left(\boldsymbol{X}_{t}^{i}\right),\left.\quad \boldsymbol{X}_{t}^{i}\right|_{t=0}=\boldsymbol{X}_{0}^{i}, \quad i=1,2, \ldots, N
$$

- Empirical distribution at time t :

$$
\mu^{N}(\boldsymbol{x}, t)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{X}_{t}^{i}\right)
$$

Particle system

Consider N non-interacting particles moving according to the following deterministic ODEs

$$
\frac{d \boldsymbol{X}_{t}^{i}}{d t}=\boldsymbol{b}\left(\boldsymbol{X}_{t}^{i}\right),\left.\quad \boldsymbol{X}_{t}^{i}\right|_{t=0}=\boldsymbol{X}_{0}^{i}, \quad i=1,2, \ldots, N
$$

- Empirical distribution at time t :

$$
\mu^{N}(\boldsymbol{x}, t)=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{X}_{t}^{i}\right)
$$

- Problem: What the transition rule for the distribution of these particles is in macroscopic viewpoint, that is, to describe its distributive law when the number of particles N goes to infinity.

Transition rule

For any compactly supported smooth function $\phi(\boldsymbol{x}) \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$

$$
\begin{aligned}
\frac{d}{d t}\left(\mu^{N}, \phi\right) & =\frac{1}{N} \sum_{i=1}^{N} \frac{d}{d t} \int_{\mathbb{R}^{d}} \delta\left(\boldsymbol{x}-\boldsymbol{X}_{t}^{i}\right) \phi(\boldsymbol{x}) d \boldsymbol{x} \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{d}{d t} \phi\left(\boldsymbol{X}_{t}^{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \nabla_{\boldsymbol{x}} \phi\left(\boldsymbol{X}_{t}^{i}\right) \cdot \boldsymbol{b}\left(\boldsymbol{X}_{t}^{i}\right) \\
& =\left(\mu^{N}, \boldsymbol{b} \cdot \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x})\right)
\end{aligned}
$$

where the notation $(\boldsymbol{f}, \boldsymbol{g}):=\int_{\mathbb{R}^{d}} \boldsymbol{f}(\boldsymbol{x}) \cdot \boldsymbol{g}(\boldsymbol{x}) d \boldsymbol{x}$ is the inner product of functions.

Transition rule

- Suppose the initial distribution
$\mu^{N}(\boldsymbol{x}, 0):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{X}_{0}^{i}\right) \xrightarrow{*} \mu_{0}(\boldsymbol{x}) \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ as $N \rightarrow \infty$
in the sense that $\left(\mu^{N}, \phi\right) \rightarrow(\mu, \phi)$ for any $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

Transition rule

- Suppose the initial distribution

$$
\mu^{N}(\boldsymbol{x}, 0):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{X}_{0}^{i}\right) \xrightarrow{*} \mu_{0}(\boldsymbol{x}) \in \mathcal{M}\left(\mathbb{R}^{d}\right) \text { as } N \rightarrow \infty
$$

in the sense that $\left(\mu^{N}, \phi\right) \rightarrow(\mu, \phi)$ for any $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

- Establish the limit $\mu^{N}(\boldsymbol{x}, t) \xrightarrow{*} \mu(\boldsymbol{x}, t)$ and indeed μ satisfies

$$
\frac{d}{d t}(\mu, \phi)=\left(\mu, \boldsymbol{b} \cdot \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x})\right), \quad \mu(\boldsymbol{x}, 0)=\mu_{0}(\boldsymbol{x})
$$

Transition rule

- Suppose the initial distribution

$$
\mu^{N}(\boldsymbol{x}, 0):=\frac{1}{N} \sum_{i=1}^{N} \delta\left(\boldsymbol{x}-\boldsymbol{X}_{0}^{i}\right) \xrightarrow{*} \mu_{0}(\boldsymbol{x}) \in \mathcal{M}\left(\mathbb{R}^{d}\right) \text { as } N \rightarrow \infty
$$

in the sense that $\left(\mu^{N}, \phi\right) \rightarrow(\mu, \phi)$ for any $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

- Establish the limit $\mu^{N}(\boldsymbol{x}, t) \xrightarrow{*} \mu(\boldsymbol{x}, t)$ and indeed μ satisfies

$$
\frac{d}{d t}(\mu, \phi)=\left(\mu, \boldsymbol{b} \cdot \nabla_{\boldsymbol{x}} \phi(\boldsymbol{x})\right), \quad \mu(\boldsymbol{x}, 0)=\mu_{0}(\boldsymbol{x})
$$

- If we assume the probability measure μ has density $\psi(\boldsymbol{x}, t) \in C^{1}\left(\mathbb{R}^{d} \times[0, T]\right)$, then we obtain the following hyperbolic equation after integration by parts

$$
\partial_{t} \psi+\nabla_{\boldsymbol{x}} \cdot(\boldsymbol{b} \psi)=0
$$

Liouville equation

- If the drift vector \boldsymbol{b} satisfies $\nabla_{\boldsymbol{x}} \cdot \boldsymbol{b}=0$, we get

$$
\partial_{t} \psi+\boldsymbol{b}(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{x}} \psi=0
$$

This is called the Liouville equation which is well-known in classical mechanics.

Liouville equation

- If the drift vector \boldsymbol{b} satisfies $\nabla_{\boldsymbol{x}} \cdot \boldsymbol{b}=0$, we get

$$
\partial_{t} \psi+\boldsymbol{b}(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{x}} \psi=0
$$

This is called the Liouville equation which is well-known in classical mechanics.

- The orbit of the equation

$$
\frac{d \boldsymbol{x}}{d t}=\boldsymbol{b}(\boldsymbol{x})
$$

is called the characteristics of the above hyperbolic PDE.

Table of Contents

Liouville equation

Fokker-Planck equation

Boundary Condition

Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes
Semigroup and backward Equation
Feynman-Kac Formula
First exit time

Stochastic case

Replace the deterministic equations with the following SDEs

$$
d \boldsymbol{X}_{t}=\boldsymbol{b}\left(\boldsymbol{X}_{t}, t\right) d t+\boldsymbol{\sigma}\left(\boldsymbol{X}_{t}, t\right) \cdot d \boldsymbol{W}_{t},
$$

- We assume the transition probability density function exists and is defined as $(t \geq s)$

$$
p(\boldsymbol{x}, t \mid \boldsymbol{y}, s) d \boldsymbol{x}=\mathbb{P}\left\{\boldsymbol{X}_{t} \in[\boldsymbol{x}, \boldsymbol{x}+d \boldsymbol{x}) \mid \boldsymbol{X}_{s}=\boldsymbol{y}\right\} .
$$

Stochastic case

Replace the deterministic equations with the following SDEs

$$
d \boldsymbol{X}_{t}=\boldsymbol{b}\left(\boldsymbol{X}_{t}, t\right) d t+\boldsymbol{\sigma}\left(\boldsymbol{X}_{t}, t\right) \cdot d \boldsymbol{W}_{t}
$$

- We assume the transition probability density function exists and is defined as $(t \geq s)$

$$
p(\boldsymbol{x}, t \mid \boldsymbol{y}, s) d \boldsymbol{x}=\mathbb{P}\left\{\boldsymbol{X}_{t} \in[\boldsymbol{x}, \boldsymbol{x}+d \boldsymbol{x}) \mid \boldsymbol{X}_{s}=\boldsymbol{y}\right\} .
$$

- We have the same question on the probability distribution of \boldsymbol{X}.

Fokker-Planck equation

- For any function $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, the Ito formula gives

$$
\begin{aligned}
d f\left(\boldsymbol{X}_{t}\right) & =\nabla f\left(\boldsymbol{X}_{t}\right) \cdot d \boldsymbol{X}_{t}+\frac{1}{2}\left(d \boldsymbol{X}_{t}\right)^{T} \cdot \nabla^{2} f\left(\boldsymbol{X}_{t}\right) \cdot\left(d \boldsymbol{X}_{t}\right) \\
& =\left(\boldsymbol{b} \cdot \nabla f+\frac{1}{2} \boldsymbol{\sigma} \boldsymbol{\sigma}^{T}: \nabla^{2} f\right) d t+\nabla f \cdot \boldsymbol{\sigma} \cdot d \boldsymbol{W}_{t} .
\end{aligned}
$$

Fokker-Planck equation

- For any function $f \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, the Ito formula gives

$$
\begin{aligned}
d f\left(\boldsymbol{X}_{t}\right) & =\nabla f\left(\boldsymbol{X}_{t}\right) \cdot d \boldsymbol{X}_{t}+\frac{1}{2}\left(d \boldsymbol{X}_{t}\right)^{T} \cdot \nabla^{2} f\left(\boldsymbol{X}_{t}\right) \cdot\left(d \boldsymbol{X}_{t}\right) \\
& =\left(\boldsymbol{b} \cdot \nabla f+\frac{1}{2} \boldsymbol{\sigma} \boldsymbol{\sigma}^{T}: \nabla^{2} f\right) d t+\nabla f \cdot \boldsymbol{\sigma} \cdot d \boldsymbol{W}_{t} .
\end{aligned}
$$

- Integrating both sides from s to t we get

$$
\begin{aligned}
f\left(\boldsymbol{X}_{t}\right)-f\left(\boldsymbol{X}_{s}\right)= & \int_{s}^{t} \nabla f\left(\boldsymbol{X}_{\tau}\right) \cdot\left\{\boldsymbol{b}\left(\boldsymbol{X}_{\tau}, \tau\right) d \tau+\boldsymbol{\sigma}\left(\boldsymbol{X}_{\tau}, \tau\right) d \boldsymbol{W}_{\tau}\right\} \\
& +\frac{1}{2} \int_{s}^{t} \sum_{i, j} \partial_{i j}^{2} f\left(\boldsymbol{X}_{\tau}\right) a_{i j}\left(\boldsymbol{X}_{\tau}, \tau\right) d \tau
\end{aligned}
$$

where the diffusion matrix $\boldsymbol{a}(\boldsymbol{x}, t)=\boldsymbol{\sigma}(\boldsymbol{x}, t) \boldsymbol{\sigma}^{T}(\boldsymbol{x}, t)$.

Fokker-Planck equation

- Now taking expectation on both sides and utilizing the initial condition $\boldsymbol{X}_{s}=\boldsymbol{y}$, we have

$$
\mathbb{E} f\left(\boldsymbol{X}_{t}\right)-f(\boldsymbol{y})=\mathbb{E} \int_{s}^{t} \mathcal{L} f\left(\boldsymbol{X}_{\tau}, \tau\right) d \tau
$$

where the operator \mathcal{L} is defined as

$$
\mathcal{L} f(\boldsymbol{x}, t)=\boldsymbol{b}(\boldsymbol{x}, t) \cdot \nabla f(\boldsymbol{x})+\frac{1}{2} \sum_{i, j} a_{i j}(\boldsymbol{x}, t) \partial_{i j}^{2} f(\boldsymbol{x})
$$

Fokker-Planck equation

- Now taking expectation on both sides and utilizing the initial condition $\boldsymbol{X}_{s}=\boldsymbol{y}$, we have

$$
\mathbb{E} f\left(\boldsymbol{X}_{t}\right)-f(\boldsymbol{y})=\mathbb{E} \int_{s}^{t} \mathcal{L} f\left(\boldsymbol{X}_{\tau}, \tau\right) d \tau
$$

where the operator \mathcal{L} is defined as

$$
\mathcal{L} f(\boldsymbol{x}, t)=\boldsymbol{b}(\boldsymbol{x}, t) \cdot \nabla f(\boldsymbol{x})+\frac{1}{2} \sum_{i, j} a_{i j}(\boldsymbol{x}, t) \partial_{i j}^{2} f(\boldsymbol{x}) .
$$

- In the language of transition pdf $p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)$, we have

$$
\int_{\mathbb{R}^{d}} f(\boldsymbol{x}) p(\boldsymbol{x}, t \mid \boldsymbol{y}, s) d \boldsymbol{x}-f(\boldsymbol{y})=\int_{s}^{t} \int_{\mathbb{R}^{d}} \mathcal{L} f(\boldsymbol{x}, \tau) p(\boldsymbol{x}, \tau \mid \boldsymbol{y}, s) d \boldsymbol{x} d \tau
$$

Fokker-Planck equation

- The adjoint operator \mathcal{L}^{*} is defined through $(\mathcal{L} f, g)_{L^{2}}=\left(f, \mathcal{L}^{*} g\right)_{L^{2}}$. The concrete form of \mathcal{L}^{*} reads

$$
\mathcal{L}^{*} f(\boldsymbol{x}, t)=-\nabla_{\boldsymbol{x}} \cdot(\boldsymbol{b}(\boldsymbol{x}, t) f(\boldsymbol{x}))+\frac{1}{2} \nabla_{\boldsymbol{x}}^{2}:(\boldsymbol{a}(\boldsymbol{x}, t) f(\boldsymbol{x})),
$$

where $\nabla_{\boldsymbol{x}}^{2}:(\boldsymbol{a} f)=\sum_{i j} \partial_{i j}\left(a_{i j} f\right)$.

Fokker-Planck equation

- The adjoint operator \mathcal{L}^{*} is defined through $(\mathcal{L} f, g)_{L^{2}}=\left(f, \mathcal{L}^{*} g\right)_{L^{2}}$. The concrete form of \mathcal{L}^{*} reads

$$
\mathcal{L}^{*} f(\boldsymbol{x}, t)=-\nabla_{\boldsymbol{x}} \cdot(\boldsymbol{b}(\boldsymbol{x}, t) f(\boldsymbol{x}))+\frac{1}{2} \nabla_{\boldsymbol{x}}^{2}:(\boldsymbol{a}(\boldsymbol{x}, t) f(\boldsymbol{x})),
$$

where $\nabla_{\boldsymbol{x}}^{2}:(\boldsymbol{a} f)=\sum_{i j} \partial_{i j}\left(a_{i j} f\right)$.

- Then the above equation can be simplified to

$$
(f, p(\cdot, t \mid \boldsymbol{y}, s))_{L^{2}}-f(\boldsymbol{y})=\int_{s}^{t}\left(f, \mathcal{L}^{*} p(\cdot, \tau \mid \boldsymbol{y}, s)\right)_{L^{2}} d \tau
$$

Fokker-Planck equation

- The adjoint operator \mathcal{L}^{*} is defined through $(\mathcal{L} f, g)_{L^{2}}=\left(f, \mathcal{L}^{*} g\right)_{L^{2}}$. The concrete form of \mathcal{L}^{*} reads

$$
\mathcal{L}^{*} f(\boldsymbol{x}, t)=-\nabla_{\boldsymbol{x}} \cdot(\boldsymbol{b}(\boldsymbol{x}, t) f(\boldsymbol{x}))+\frac{1}{2} \nabla_{\boldsymbol{x}}^{2}:(\boldsymbol{a}(\boldsymbol{x}, t) f(\boldsymbol{x})),
$$

where $\nabla_{\boldsymbol{x}}^{2}:(\boldsymbol{a} f)=\sum_{i j} \partial_{i j}\left(a_{i j} f\right)$.

- Then the above equation can be simplified to

$$
(f, p(\cdot, t \mid \boldsymbol{y}, s))_{L^{2}}-f(\boldsymbol{y})=\int_{s}^{t}\left(f, \mathcal{L}^{*} p(\cdot, \tau \mid \boldsymbol{y}, s)\right)_{L^{2}} d \tau
$$

- This is exactly the definition of the weak solution of the PDE with respect to t and \boldsymbol{x}

$$
\partial_{t} p=\mathcal{L}_{x}^{*} p(\boldsymbol{x}, t \mid \boldsymbol{y}, s),\left.\quad p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)\right|_{t=s}=\delta(\boldsymbol{x}-\boldsymbol{y}), \quad t \geq s
$$

in the sense of distribution.

Fokker-Planck equation

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

- The "forward" means it is for the forward time variable $t>s$ and its corresponding space variable \boldsymbol{x}.

Fokker-Planck equation

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

- The "forward" means it is for the forward time variable $t>s$ and its corresponding space variable \boldsymbol{x}.
- When we consider the equation for the backward time variable $s<t$ and \boldsymbol{y}, we will call it backward equation.

Fokker-Planck equation

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

- The "forward" means it is for the forward time variable $t>s$ and its corresponding space variable \boldsymbol{x}.
- When we consider the equation for the backward time variable $s<t$ and \boldsymbol{y}, we will call it backward equation.
- By analogy with the deterministic case, the SDE may be regarded as the "stochastic characteristics" of the parabolic equation.

Fokker-Planck equation

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

- The "forward" means it is for the forward time variable $t>s$ and its corresponding space variable \boldsymbol{x}.
- When we consider the equation for the backward time variable $s<t$ and \boldsymbol{y}, we will call it backward equation.
- By analogy with the deterministic case, the SDE may be regarded as the "stochastic characteristics" of the parabolic equation.
- The joint distribution $p(\boldsymbol{x}, t ; \boldsymbol{y}, s)$ and the distribution density $p(\boldsymbol{x}, t)$ starting from some initial distribution both satisfy the forward Kolmogorov type equation with respect to \boldsymbol{x} and t.

Brownian motion

- The SDE reads

$$
d \boldsymbol{X}_{t}=d \boldsymbol{W}_{t}, \quad \boldsymbol{X}_{0}=0
$$

Brownian motion

- The SDE reads

$$
d \boldsymbol{X}_{t}=d \boldsymbol{W}_{t}, \quad \boldsymbol{X}_{0}=0
$$

- The Fokker-Planck equation is

$$
\partial_{t} p=\frac{1}{2} \Delta p, \quad p(\boldsymbol{x}, 0)=\delta(\boldsymbol{x}) .
$$

Brownian motion

- The SDE reads

$$
d \boldsymbol{X}_{t}=d \boldsymbol{W}_{t}, \quad \boldsymbol{X}_{0}=0
$$

- The Fokker-Planck equation is

$$
\partial_{t} p=\frac{1}{2} \Delta p, \quad p(\boldsymbol{x}, 0)=\delta(\boldsymbol{x})
$$

- It is well-known from PDE that its unique solution is the heat kernal

$$
p(\boldsymbol{x}, t)=\frac{1}{\sqrt{2 \pi t}} \exp \left(-\frac{\boldsymbol{x}^{2}}{2 t}\right)
$$

which is exactly the pdf of $N(0, t \boldsymbol{I})$. The PDE gives another characterization of the Brownian motion.

Brownian dynamics

- The SDE reads

$$
d \boldsymbol{X}_{t}=-\frac{1}{\gamma} \nabla V\left(\boldsymbol{X}_{t}\right) d t+\sqrt{\frac{2 k_{B} T}{\gamma}} d \boldsymbol{W}_{t}
$$

Brownian dynamics

- The SDE reads

$$
d \boldsymbol{X}_{t}=-\frac{1}{\gamma} \nabla V\left(\boldsymbol{X}_{t}\right) d t+\sqrt{\frac{2 k_{B} T}{\gamma}} d \boldsymbol{W}_{t}
$$

- The Fokker-Planck equation is

$$
\partial_{t} p-\nabla \cdot\left(\frac{1}{\gamma} \nabla V(\boldsymbol{x}) p\right)=\frac{k_{B} T}{\gamma} \Delta p=D \Delta p,
$$

where $D=k_{B} T / \gamma$ is the diffusion coefficient.

Brownian dynamics

- The SDE reads

$$
d \boldsymbol{X}_{t}=-\frac{1}{\gamma} \nabla V\left(\boldsymbol{X}_{t}\right) d t+\sqrt{\frac{2 k_{B} T}{\gamma}} d \boldsymbol{W}_{t}
$$

- The Fokker-Planck equation is

$$
\partial_{t} p-\nabla \cdot\left(\frac{1}{\gamma} \nabla V(\boldsymbol{x}) p\right)=\frac{k_{B} T}{\gamma} \Delta p=D \Delta p
$$

where $D=k_{B} T / \gamma$ is the diffusion coefficient.

- Define the free energy associated with the pdf p as

$$
\mathcal{F}(p)=\int_{\mathbb{R}^{d}}\left(k_{B} T p(\boldsymbol{x}) \ln p(\boldsymbol{x})+V(\boldsymbol{x}) p(\boldsymbol{x})\right) d \boldsymbol{x}
$$

where the first term $k_{B} \int_{\mathbb{R}^{d}} p(\boldsymbol{x}) \ln p(\boldsymbol{x}) d \boldsymbol{x}$ corresponds to the negative entropy $-S$ in thermodynamics, and the second term $\int_{\mathbb{R}^{d}} V(\boldsymbol{x}) p(\boldsymbol{x}) d \boldsymbol{x}$ is the internal energy U.

Brownian dynamics

- The chemical potential μ is then given by

$$
\mu=\frac{\delta \mathcal{F}}{\delta p}=k_{B} T(1+\ln p(\boldsymbol{x}))+V(\boldsymbol{x})
$$

Brownian dynamics

- The chemical potential μ is then given by

$$
\mu=\frac{\delta \mathcal{F}}{\delta p}=k_{B} T(1+\ln p(\boldsymbol{x}))+V(\boldsymbol{x})
$$

- The velocity field $\boldsymbol{u}(\boldsymbol{x})$ is given by the Fick's Law

$$
\boldsymbol{u}(\boldsymbol{x})=\frac{1}{\gamma} \boldsymbol{f}=-\frac{1}{\gamma} \nabla \mu,
$$

where $f=-\nabla \mu$ is the force field.

Brownian dynamics

- The chemical potential μ is then given by

$$
\mu=\frac{\delta \mathcal{F}}{\delta p}=k_{B} T(1+\ln p(\boldsymbol{x}))+V(\boldsymbol{x})
$$

- The velocity field $\boldsymbol{u}(\boldsymbol{x})$ is given by the Fick's Law

$$
\boldsymbol{u}(\boldsymbol{x})=\frac{1}{\gamma} \boldsymbol{f}=-\frac{1}{\gamma} \nabla \mu,
$$

where $f=-\nabla \mu$ is the force field.

- The current density is defined as

$$
\boldsymbol{j}(\boldsymbol{x}):=p(\boldsymbol{x}) \boldsymbol{u}(\boldsymbol{x})
$$

Brownian dynamics

- The chemical potential μ is then given by

$$
\mu=\frac{\delta \mathcal{F}}{\delta p}=k_{B} T(1+\ln p(\boldsymbol{x}))+V(\boldsymbol{x})
$$

- The velocity field $\boldsymbol{u}(\boldsymbol{x})$ is given by the Fick's Law

$$
\boldsymbol{u}(\boldsymbol{x})=\frac{1}{\gamma} \boldsymbol{f}=-\frac{1}{\gamma} \nabla \mu,
$$

where $f=-\nabla \mu$ is the force field.

- The current density is defined as

$$
\boldsymbol{j}(\boldsymbol{x}):=p(\boldsymbol{x}) \boldsymbol{u}(\boldsymbol{x})
$$

- Then the Smoluchowski's equation is a consequence of the continuity equation

$$
\partial_{t} p+\nabla \cdot \boldsymbol{j}=0
$$

This approach via deterministic PDE to describe the Brownian dynamics is more common in physics.

Other SDE form

- If the underlying stochastic dynamics is a Stratonovich SDE, we will have its transition pdf satisfies the following type of PDE

$$
\begin{aligned}
\partial_{t} p+\nabla_{\boldsymbol{x}} \cdot(\boldsymbol{b} p)=\frac{1}{2} \nabla_{\boldsymbol{x}} \cdot\left(\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot(\boldsymbol{\sigma} p)\right), \\
\text { where } \nabla_{\boldsymbol{x}} \cdot\left(\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot(\boldsymbol{\sigma} p)\right)=\partial_{i}\left(\sigma_{i k} \partial_{j}\left(\sigma_{j k} p\right)\right)
\end{aligned}
$$

Other SDE form

- If the underlying stochastic dynamics is a Stratonovich SDE, we will have its transition pdf satisfies the following type of PDE

$$
\begin{aligned}
& \partial_{t} p+\nabla_{\boldsymbol{x}} \cdot(\boldsymbol{b} p)=\frac{1}{2} \nabla_{\boldsymbol{x}} \cdot\left(\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot(\boldsymbol{\sigma} p)\right), \\
& \text { where } \nabla_{\boldsymbol{x}} \cdot\left(\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot(\boldsymbol{\sigma} p)\right)=\partial_{i}\left(\sigma_{i k} \partial_{j}\left(\sigma_{j k} p\right)\right)
\end{aligned}
$$

- If the underlying stochastic dynamics is defined through the backward stochastic integral,

$$
d \boldsymbol{X}_{t}=\boldsymbol{b}(\boldsymbol{x}, t) d t+\boldsymbol{\sigma}(\boldsymbol{x}, t) * d \boldsymbol{W}_{t}
$$

then $p(\boldsymbol{x}, t)$ satisfies

$$
\partial_{t} p+\partial_{i}\left[\left(b_{i}+\partial_{k} \sigma_{i j} \sigma_{k j}\right) p\right]=\frac{1}{2} \partial_{i j}:\left(\sigma_{i k} \sigma_{j k} p\right)
$$

where the Einstein summation convention is assumed. In the one-dimensional case, it can be simplified to

$$
\partial_{t} p+\partial_{x}(b p)=\frac{1}{2} \partial_{x}\left(\sigma^{2} \partial_{x} p\right) .
$$

Table of Contents

```
Liouville equation
Fokker-Planck equation
```

Boundary Condition

Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes
Semigroup and backward Equation
Feynman-Kac Formula
First exit time

Probability flux

Many stochastic problems occur in a bounded domain, in which case the boundary conditions are needed.

- To pose suitable boundary conditions in different situations, we need to understand the probability current

$$
\boldsymbol{j}(\boldsymbol{x}, t)=\boldsymbol{b}(\boldsymbol{x}, t) p(\boldsymbol{x}, t)-\frac{1}{2} \nabla_{\boldsymbol{x}} \cdot(\boldsymbol{a}(\boldsymbol{x}, t) p(\boldsymbol{x}, t))
$$

in the Fokker-Planck equation

$$
\partial_{t} p(\boldsymbol{x}, t)+\nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x}, t)=0
$$

more intuitively at first.

Probability flux

Many stochastic problems occur in a bounded domain, in which case the boundary conditions are needed.

- To pose suitable boundary conditions in different situations, we need to understand the probability current

$$
\boldsymbol{j}(\boldsymbol{x}, t)=\boldsymbol{b}(\boldsymbol{x}, t) p(\boldsymbol{x}, t)-\frac{1}{2} \nabla_{\boldsymbol{x}} \cdot(\boldsymbol{a}(\boldsymbol{x}, t) p(\boldsymbol{x}, t))
$$

in the Fokker-Planck equation

$$
\partial_{t} p(\boldsymbol{x}, t)+\nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x}, t)=0
$$

more intuitively at first.

- It has the structure of the continuity equations in fluid dynamics.

Boundary Condition

Three commonly used boundary conditions are as follows.

- Reflecting barrier. The particles will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across ∂D, i.e.

$$
\boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t)=0 \quad \boldsymbol{x} \in \partial D
$$

Note that in this case the total probability is conserved since

$$
\frac{d}{d t} \int_{D} p(\boldsymbol{x}, t) d \boldsymbol{x}=-\int_{D} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x}, t) d \boldsymbol{x}=-\int_{\partial D} \boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t) d S=0
$$

Boundary Condition

Three commonly used boundary conditions are as follows.

- Reflecting barrier. The particles will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across ∂D, i.e.

$$
\boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t)=0 \quad \boldsymbol{x} \in \partial D
$$

Note that in this case the total probability is conserved since

$$
\frac{d}{d t} \int_{D} p(\boldsymbol{x}, t) d \boldsymbol{x}=-\int_{D} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x}, t) d \boldsymbol{x}=-\int_{\partial D} \boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t) d S=0
$$

- Absorbing barrier. The particles will be absorbed (or removed) once it hits the boundary ∂D.

$$
p(\boldsymbol{x}, t)=0 \quad \boldsymbol{x} \in \partial D
$$

The total probability is no longer conserved in this case.

Boundary Condition

Three commonly used boundary conditions are as follows.

- Reflecting barrier. The particles will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across ∂D, i.e.

$$
\boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t)=0 \quad \boldsymbol{x} \in \partial D
$$

Note that in this case the total probability is conserved since

$$
\frac{d}{d t} \int_{D} p(\boldsymbol{x}, t) d \boldsymbol{x}=-\int_{D} \nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x}, t) d \boldsymbol{x}=-\int_{\partial D} \boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t) d S=0
$$

- Absorbing barrier. The particles will be absorbed (or removed) once it hits the boundary ∂D.

$$
p(\boldsymbol{x}, t)=0 \quad \boldsymbol{x} \in \partial D
$$

The total probability is no longer conserved in this case.

- Periodic boundary condition. In the periodic case with period L_{j} in the x_{j}-direction for $j=1, \ldots, d$, i.e.

$$
p\left(x_{j}+L_{j}, t\right)=p\left(x_{j}, t\right), \quad j=1,2, \ldots, d
$$

Table of Contents

Liouville equation
Fokker-Planck equation
\section*{Boundary Condition}
Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes
Semigroup and backward Equation
Feynman-Kac Formula
First exit time

Backward equation

Now let us consider the equation for the transition pdf $p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)$ with respect to variable \boldsymbol{y} and s.

- Suppose \boldsymbol{X}_{t} satisfies the above SDEs. For any given $f(\boldsymbol{x}) \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we define

$$
u(\boldsymbol{y}, s)=\mathbb{E}^{\boldsymbol{y}, s} f\left(\boldsymbol{X}_{t}\right)=\int_{\mathbb{R}^{d}} f(\boldsymbol{x}) p(\boldsymbol{x}, t \mid \boldsymbol{y}, s) d \boldsymbol{x}, \quad s \leq t
$$

Assume that $p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)$ is C^{1} in s and C^{2} in \boldsymbol{y}, then we have

$$
d u\left(\boldsymbol{X}_{\tau}, \tau\right)=\left(\partial_{\tau} u+\mathcal{L} u\right)\left(\boldsymbol{X}_{\tau}, \tau\right) d \tau+\nabla u \cdot \boldsymbol{\sigma} \cdot d \boldsymbol{W}_{\tau}
$$

by Ito formula.

Backward equation

Now let us consider the equation for the transition pdf $p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)$ with respect to variable \boldsymbol{y} and s.

- Suppose \boldsymbol{X}_{t} satisfies the above SDEs. For any given $f(\boldsymbol{x}) \in C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$, we define

$$
u(\boldsymbol{y}, s)=\mathbb{E}^{\boldsymbol{y}, s} f\left(\boldsymbol{X}_{t}\right)=\int_{\mathbb{R}^{d}} f(\boldsymbol{x}) p(\boldsymbol{x}, t \mid \boldsymbol{y}, s) d \boldsymbol{x}, \quad s \leq t
$$

Assume that $p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)$ is C^{1} in s and C^{2} in \boldsymbol{y}, then we have

$$
d u\left(\boldsymbol{X}_{\tau}, \tau\right)=\left(\partial_{\tau} u+\mathcal{L} u\right)\left(\boldsymbol{X}_{\tau}, \tau\right) d \tau+\nabla u \cdot \boldsymbol{\sigma} \cdot d \boldsymbol{W}_{\tau}
$$

by Ito formula.

- Taking expectation we obtain

$$
\begin{aligned}
& \lim _{t \rightarrow s} \frac{1}{t-s}\left(\mathbb{E}^{\boldsymbol{y}, s} u\left(\boldsymbol{X}_{t}, t\right)-u(\boldsymbol{y}, s)\right) \\
& =\lim _{t \rightarrow s} \frac{1}{t-s} \int_{s}^{t} \mathbb{E}^{\boldsymbol{y}, s}\left(\partial_{\tau} u+\mathcal{L} u\right)\left(\boldsymbol{X}_{\tau}, \tau\right) d \tau=\partial_{s} u(\boldsymbol{y}, s)+\mathcal{L} u(\boldsymbol{y}, s) .
\end{aligned}
$$

Backward equation

- On the other hand it is obvious that

$$
\mathbb{E}^{\boldsymbol{y}, s} u\left(\boldsymbol{X}_{t}, t\right)=\mathbb{E}^{\boldsymbol{y}, s} f\left(\boldsymbol{X}_{t}\right)=u(\boldsymbol{y}, s)
$$

and thus

$$
\partial_{s} u(\boldsymbol{y}, s)+\mathcal{L} u(\boldsymbol{y}, s)=0
$$

Backward equation

- On the other hand it is obvious that

$$
\mathbb{E}^{\boldsymbol{y}, s} u\left(\boldsymbol{X}_{t}, t\right)=\mathbb{E}^{\boldsymbol{y}, s} f\left(\boldsymbol{X}_{t}\right)=u(\boldsymbol{y}, s)
$$

and thus

$$
\partial_{s} u(\boldsymbol{y}, s)+\mathcal{L} u(\boldsymbol{y}, s)=0
$$

- From the arbitrariness of f, we obtain
$\partial_{s} p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)+\mathcal{L}_{\boldsymbol{y}} p(\boldsymbol{x}, t \mid \boldsymbol{y}, s)=0, \quad p(\boldsymbol{x}, t \mid \boldsymbol{y}, t)=\delta(\boldsymbol{x}-\boldsymbol{y}), \quad s<t$.
This is the well-know Kolmogorov backward equation for the transition density since the time variable s goes backward.

Table of Contents

```
Liouville equation
Fokker-Planck equation
Boundary Condition
Backward equation
```

Invariant distribution and detailed balance

Further topics on Diffusion Processes
Semigroup and backward Equation
Feynman-Kac Formula
First exit time

Invariant distribution

In the following discussion, we consider the situation that the drift \boldsymbol{b} and diffusion coefficient $\boldsymbol{\sigma}$ does not depend on t.

- In this case, the process $\left\{\boldsymbol{X}_{t}\right\}$ is a time-homogeneous Markov process since the transition rule only depends on the states other than the time.

Invariant distribution

In the following discussion, we consider the situation that the drift \boldsymbol{b} and diffusion coefficient $\boldsymbol{\sigma}$ does not depend on t.

- In this case, the process $\left\{\boldsymbol{X}_{t}\right\}$ is a time-homogeneous Markov process since the transition rule only depends on the states other than the time.
- It is interesting to study the case when the system achieves a steady state: that is, the pdf is independent of the time, if the system admits such a solution.

Invariant distribution

In the following discussion, we consider the situation that the drift \boldsymbol{b} and diffusion coefficient $\boldsymbol{\sigma}$ does not depend on t.

- In this case, the process $\left\{\boldsymbol{X}_{t}\right\}$ is a time-homogeneous Markov process since the transition rule only depends on the states other than the time.
- It is interesting to study the case when the system achieves a steady state: that is, the pdf is independent of the time, if the system admits such a solution.
- The steady state pdf satisfies the following PDE

$$
\nabla_{\boldsymbol{x}} \cdot\left(\boldsymbol{b}(\boldsymbol{x}) p_{s}(\boldsymbol{x})\right)=\frac{1}{2} \nabla_{\boldsymbol{x}}^{2}:\left(\boldsymbol{a}(\boldsymbol{x}) p_{s}(\boldsymbol{x})\right)
$$

with suitable boundary conditions. This $p_{s}(\boldsymbol{x})$ is called the stationary distribution or invariant distribution of the considered system.

Detailed balance

- Specially for the Langevin equation, the invariant distribution satisfies

$$
\nabla \cdot \boldsymbol{j}_{s}(\boldsymbol{x})=0
$$

Detailed balance

- Specially for the Langevin equation, the invariant distribution satisfies

$$
\nabla \cdot \boldsymbol{j}_{s}(\boldsymbol{x})=0
$$

- In particular, we are interested in the equilibrium solution with a stronger condition $\boldsymbol{j}_{s}=0$, i.e. the detailed balance condition in the continuous case, which implies the chemical potential

$$
\mu=\text { constant }
$$

Detailed balance

- Specially for the Langevin equation, the invariant distribution satisfies

$$
\nabla \cdot \boldsymbol{j}_{s}(\boldsymbol{x})=0
$$

- In particular, we are interested in the equilibrium solution with a stronger condition $\boldsymbol{j}_{s}=0$, i.e. the detailed balance condition in the continuous case, which implies the chemical potential

$$
\mu=\mathrm{constant}
$$

- It is not difficult to deduce the following well-known Gibbs distribution for the equilibrium

$$
p_{s}(\boldsymbol{x})=\frac{1}{Z} \exp \left(-\frac{V(\boldsymbol{x})}{k_{B} T}\right)
$$

as long as the normalization constant

$$
Z=\int_{\mathbb{R}^{d}} e^{-\frac{V(\boldsymbol{x})}{k_{B} T}} d \boldsymbol{x}
$$

is finite.

Table of Contents

Liouville equation

Fokker-Planck equation

Boundary Condition

Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes
Semigroup and backward Equation
Feynman-Kac Formula
First exit time

Semigroup

- For the time-homogeneous SDEs, the translational invariance of time for its transition kernel $p(\cdot, t \mid \boldsymbol{y}, s)$

$$
p(A, t+s \mid \boldsymbol{y}, s)=p(A, t \mid \boldsymbol{y}, 0), \quad s, t \geq 0
$$

for any $\boldsymbol{y} \in \mathbb{R}^{d}$ and $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, where

$$
p(A, t \mid \boldsymbol{y}, s):=\mathbb{E}^{\boldsymbol{y}, s} 1_{A}\left(\boldsymbol{X}_{t}\right)=\int_{A} p(d \boldsymbol{x}, t \mid \boldsymbol{y}, s) .
$$

Semigroup

- For the time-homogeneous SDEs, the translational invariance of time for its transition kernel $p(\cdot, t \mid \boldsymbol{y}, s)$

$$
p(A, t+s \mid \boldsymbol{y}, s)=p(A, t \mid \boldsymbol{y}, 0), \quad s, t \geq 0
$$

for any $\boldsymbol{y} \in \mathbb{R}^{d}$ and $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, where $p(A, t \mid \boldsymbol{y}, s):=\mathbb{E}^{\boldsymbol{y}, s} 1_{A}\left(\boldsymbol{X}_{t}\right)=\int_{A} p(d \boldsymbol{x}, t \mid \boldsymbol{y}, s)$.

- Define the operator T_{t} on any function $f \in C_{0}\left(\mathbb{R}^{d}\right)$ as

$$
T_{t} f(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{t}\right)=\int_{\mathbb{R}^{d}} f(\boldsymbol{z}) p(d \boldsymbol{z}, t \mid \boldsymbol{x}, 0)
$$

Then we have $T_{0} f(\boldsymbol{x})=f(\boldsymbol{x})$ and the following semigroup property for any $t, s \geq 0$

$$
\begin{aligned}
T_{t} \circ T_{s} f(\boldsymbol{x}) & =\mathbb{E}^{\boldsymbol{x}}\left(\mathbb{E}^{\boldsymbol{X}_{t}} f\left(\boldsymbol{X}_{s}\right)\right) \\
& =\int p(d \boldsymbol{y}, t \mid \boldsymbol{x}, 0) \int f(\boldsymbol{z}) p(d \boldsymbol{z}, s \mid \boldsymbol{y}, 0) \\
& =\int f(\boldsymbol{z}) \int p(d \boldsymbol{z}, s+t \mid \boldsymbol{y}, t) p(d \boldsymbol{y}, t \mid \boldsymbol{x}, 0) \\
& =\mathbb{E}^{\boldsymbol{x}}\left(f\left(\boldsymbol{X}_{t+s}\right)\right)=T_{t+s} f(\boldsymbol{x})
\end{aligned}
$$

Semigroup

- Under the condition that \boldsymbol{b} and σ are bounded and Lipschitz, one can further show $T_{t}: C_{0}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$ and it is strongly continuous in the sense that

$$
\lim _{t \rightarrow 0+}\left\|T_{t} f-f\right\|_{\infty}=0, \quad \text { for any } f \in C_{0}\left(\mathbb{R}^{d}\right)
$$

T_{t} is called Feller semigroup in the literature. With this setup, we can utilize the tools from semigroup theory to study T_{t}.

Semigroup

- Under the condition that \boldsymbol{b} and σ are bounded and Lipschitz, one can further show $T_{t}: C_{0}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$ and it is strongly continuous in the sense that

$$
\lim _{t \rightarrow 0+}\left\|T_{t} f-f\right\|_{\infty}=0, \quad \text { for any } f \in C_{0}\left(\mathbb{R}^{d}\right)
$$

T_{t} is called Feller semigroup in the literature. With this setup, we can utilize the tools from semigroup theory to study T_{t}.

- The infinitesimal generator \mathcal{A} of T_{t} is defined as

$$
\mathcal{A} f(\boldsymbol{x})=\lim _{t \rightarrow 0+} \frac{\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{t}\right)-f(\boldsymbol{x})}{t}
$$

where $f \in D(\mathcal{A}):=\left\{f \in C_{0}\left(\mathbb{R}^{d}\right)\right.$ such that the limit exists $\}$.

Semigroup

- Under the condition that \boldsymbol{b} and σ are bounded and Lipschitz, one can further show $T_{t}: C_{0}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$ and it is strongly continuous in the sense that

$$
\lim _{t \rightarrow 0+}\left\|T_{t} f-f\right\|_{\infty}=0, \quad \text { for any } f \in C_{0}\left(\mathbb{R}^{d}\right)
$$

T_{t} is called Feller semigroup in the literature. With this setup, we can utilize the tools from semigroup theory to study T_{t}.

- The infinitesimal generator \mathcal{A} of T_{t} is defined as

$$
\mathcal{A} f(\boldsymbol{x})=\lim _{t \rightarrow 0+} \frac{\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{t}\right)-f(\boldsymbol{x})}{t}
$$

where $f \in D(\mathcal{A}):=\left\{f \in C_{0}\left(\mathbb{R}^{d}\right)\right.$ such that the limit exists $\}$.

- For $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right) \subset D(\mathcal{A})$ we have

$$
\mathcal{A} f(\boldsymbol{x})=\mathcal{L} f(\boldsymbol{x})=\boldsymbol{b}(\boldsymbol{x}) \cdot \nabla f(\boldsymbol{x})+\frac{1}{2}\left(\boldsymbol{\sigma} \boldsymbol{\sigma}^{T}\right): \nabla^{2} f(\boldsymbol{x})
$$

from Ito formula.

Backward Equation

We will show that $u(\boldsymbol{x}, t)=\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{t}\right)$ satisfies the backward equation for $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$

$$
\partial_{t} u=\mathcal{A} u(\boldsymbol{x}),\left.\quad u\right|_{t=0}=f(\boldsymbol{x})
$$

Proof. At first it is not difficult to observe that $u(\boldsymbol{x}, t)$ is differentiable with respect to t from Ito's formula and the condition $f \in C_{c}^{2}\left(\mathbb{R}^{d}\right)$. For any fixed $t>0$, define $g(\boldsymbol{x})=u(\boldsymbol{x}, t)$. Then we have

$$
\begin{aligned}
\mathcal{A} g(\boldsymbol{x}) & =\lim _{s \rightarrow 0+} \frac{1}{s}\left(\mathbb{E}^{\boldsymbol{x}} g\left(\boldsymbol{X}_{s}\right)-g(\boldsymbol{x})\right) \\
& =\lim _{s \rightarrow 0+} \frac{1}{s}\left(\mathbb{E}^{\boldsymbol{x}} \mathbb{E}^{\boldsymbol{X}_{s}} f\left(\boldsymbol{X}_{t}\right)-\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{t}\right)\right) \\
& =\lim _{s \rightarrow 0+} \frac{1}{s}\left(\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{t+s}\right)-\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{t}\right)\right) \\
& =\lim _{s \rightarrow 0+} \frac{1}{s}(u(\boldsymbol{x}, t+s)-u(\boldsymbol{x}, t))=\partial_{t} u(\boldsymbol{x}, t)
\end{aligned}
$$

This means $u(\cdot, t) \in D(\mathcal{A})$ and the proof is complete.

Feynman-Kac Formula

Theorem
(Feynman-Kac Formula) Let $f \in C_{0}^{2}\left(\mathbb{R}^{d}\right)$ and $q \in C\left(\mathbb{R}^{d}\right)$. Assume that q is lower bounded, then

$$
v(\boldsymbol{x}, t)=\mathbb{E}^{x}\left(\exp \left(\int_{0}^{t} q\left(\boldsymbol{X}_{s}\right) d s\right) f\left(\boldsymbol{X}_{t}\right)\right)
$$

satisfies the PDE

$$
\partial_{t} v=\mathcal{A} v+q v,\left.\quad v\right|_{t=0}=f(\boldsymbol{x})
$$

Feynman-Kac Formula

Theorem
(Feynman-Kac Formula) Let $f \in C_{0}^{2}\left(\mathbb{R}^{d}\right)$ and $q \in C\left(\mathbb{R}^{d}\right)$. Assume that q is lower bounded, then

$$
v(\boldsymbol{x}, t)=\mathbb{E}^{x}\left(\exp \left(\int_{0}^{t} q\left(\boldsymbol{X}_{s}\right) d s\right) f\left(\boldsymbol{X}_{t}\right)\right)
$$

satisfies the PDE

$$
\partial_{t} v=\mathcal{A} v+q v,\left.\quad v\right|_{t=0}=f(\boldsymbol{x})
$$

- Intuitive explanation: In the absence of Brownian motion, the SDE becomes $\frac{d \boldsymbol{X}_{t}}{d t}=\boldsymbol{b}\left(\boldsymbol{X}_{t}\right), \boldsymbol{X}_{0}=\boldsymbol{x}$ and the PDE becomes

$$
\partial_{t} v=\boldsymbol{b} \cdot \nabla v+q v,\left.\quad v\right|_{t=0}=f(\boldsymbol{x})
$$

The method of characteristics gives us

$$
v(\boldsymbol{x}, t)=\exp \left(\int_{0}^{t} q\left(\boldsymbol{X}_{s}\right) d s\right) f\left(\boldsymbol{X}_{t}\right)
$$

Feynman-Kac Formula

The Feynmann-Kac formula tells us the solution of that parabolic PDE can be represented by the ensemble of solution for the ODEs with stochastic characteristics originated from \boldsymbol{x}.

Figure: Schematics of Feynmann-Kac formula.

Proof

Let $Y_{t}=f\left(\boldsymbol{X}_{t}\right), Z_{t}=\exp \left(\int_{0}^{t} q\left(\boldsymbol{X}_{s}\right) d s\right)$, define $v(\boldsymbol{x}, t)=\mathbb{E}^{\boldsymbol{x}}\left(Y_{t} Z_{t}\right)$. With the similar reason as the previous section, we have $v(\boldsymbol{x}, t)$ is differentiable with respect to t and

$$
\begin{aligned}
& \frac{1}{s}\left(\mathbb{E}^{x} v\left(\boldsymbol{X}_{s}, t\right)-v(\boldsymbol{x}, t)\right) \\
& =\frac{1}{s}\left(\mathbb{E}^{\boldsymbol{x}} \mathbb{E}^{\boldsymbol{X}_{s}} Z_{t} f\left(\boldsymbol{X}_{t}\right)-\mathbb{E}^{x} Z_{t} f\left(\boldsymbol{X}_{t}\right)\right) \\
& =\frac{1}{s}\left(\mathbb{E}^{x} \exp \left(\int_{0}^{t} q\left(\boldsymbol{X}_{r+s}\right) d r\right) f\left(\boldsymbol{X}_{t+s}\right)-\mathbb{E}^{\boldsymbol{x}} Z_{t} f\left(\boldsymbol{X}_{t}\right)\right) \\
& =\frac{1}{s} \mathbb{E}^{x}\left(\exp \left(-\int_{0}^{s} q\left(\boldsymbol{X}_{r}\right) d r\right) Z_{t+s} f\left(\boldsymbol{X}_{t+s}\right)-Z_{t} f\left(\boldsymbol{X}_{t}\right)\right) \\
& =\frac{1}{s} \mathbb{E}^{x}\left(Z_{t+s} f\left(\boldsymbol{X}_{t+s}\right)-Z_{t} f\left(\boldsymbol{X}_{t}\right)\right) \\
& +\frac{1}{s} \mathbb{E}^{x}\left(Z_{t+s} f\left(\boldsymbol{X}_{t+s}\right)\left(\exp \left(-\int_{0}^{s} q\left(\boldsymbol{X}_{r}\right) d r\right)-1\right)\right) \\
& \rightarrow \partial_{t} v-q(\boldsymbol{x}) v(\boldsymbol{x}, t) \quad \text { as } s \rightarrow 0 .
\end{aligned}
$$

The left hand side is $\mathcal{A} v(\boldsymbol{x}, t)$ by definition. The proof is complete.

First exit time

Theorem
Suppose $D \subset \mathbb{R}^{d}$ is a bounded open set and the boundary ∂D is of C^{2} type. The coefficients $\boldsymbol{b}, \boldsymbol{\sigma}$ of the SDEs satisfy the Lipschitz condition on \bar{D} and the diffusion matrix \boldsymbol{a} is coercive which is defined as

$$
\sum_{i, j} a_{i j}(\boldsymbol{x}) \xi_{i} \xi_{j} \geq K|\xi|^{2} \quad \text { for } \boldsymbol{x} \in D, \xi \in \mathbb{R}^{d}, K>0
$$

Then for $f \in C(\partial D)$, the solution of $P D E$

$$
\mathcal{A} u=0 \text { in } D, \quad u=f(\boldsymbol{x}) \text { on } \partial D
$$

can be represented as $u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}}\left(f\left(\boldsymbol{X}_{\tau_{D}}\right)\right)$, where τ_{D} is the first exit time from domain D defined as $\tau_{D}:=\inf _{t}\left\{t \geq 0, \boldsymbol{X}_{t} \notin D\right\}$ and thus $\boldsymbol{X}_{\tau_{D}}$ is the first exit point. Specially, if $\mathcal{A} u=\frac{1}{2} \Delta u$, then $u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}}\left(f\left(\boldsymbol{W}_{\tau_{D}}\right)\right)$.

Heuristic

- Heuristic proof. From PDE theory, one has the solution $u \in C^{2}(D) \cap C(\bar{D})$. So we can apply the Ito's formula to $u\left(\boldsymbol{X}_{t}\right)$ and take expectation

$$
\mathbb{E}^{\boldsymbol{x}} u\left(\boldsymbol{X}_{\tau_{D}}\right)-u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} \int_{0}^{\tau_{D}} \mathcal{A} u\left(\boldsymbol{X}_{t}\right) d t=0
$$

Thus

$$
u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} u\left(\boldsymbol{X}_{\tau_{D}}\right)=\mathbb{E}^{\boldsymbol{x}}\left(f\left(\boldsymbol{X}_{\tau_{D}}\right)\right)
$$

Heuristic

- Heuristic proof. From PDE theory, one has the solution $u \in C^{2}(D) \cap C(\bar{D})$. So we can apply the Ito's formula to $u\left(\boldsymbol{X}_{t}\right)$ and take expectation

$$
\mathbb{E}^{\boldsymbol{x}} u\left(\boldsymbol{X}_{\tau_{D}}\right)-u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} \int_{0}^{\tau_{D}} \mathcal{A} u\left(\boldsymbol{X}_{t}\right) d t=0
$$

Thus

$$
u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} u\left(\boldsymbol{X}_{\tau_{D}}\right)=\mathbb{E}^{\boldsymbol{x}}\left(f\left(\boldsymbol{X}_{\tau_{D}}\right)\right) .
$$

- Note that in the above derivations we naively take the expectation of the stochastic integral term to be zero. But this is not true in general because τ_{D} is a random time. In fact, it is the result of the following useful Dynkin's formula.

Heuristic

- Heuristic proof. From PDE theory, one has the solution $u \in C^{2}(D) \cap C(\bar{D})$. So we can apply the Ito's formula to $u\left(\boldsymbol{X}_{t}\right)$ and take expectation

$$
\mathbb{E}^{\boldsymbol{x}} u\left(\boldsymbol{X}_{\tau_{D}}\right)-u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} \int_{0}^{\tau_{D}} \mathcal{A} u\left(\boldsymbol{X}_{t}\right) d t=0
$$

Thus

$$
u(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} u\left(\boldsymbol{X}_{\tau_{D}}\right)=\mathbb{E}^{\boldsymbol{x}}\left(f\left(\boldsymbol{X}_{\tau_{D}}\right)\right) .
$$

- Note that in the above derivations we naively take the expectation of the stochastic integral term to be zero. But this is not true in general because τ_{D} is a random time. In fact, it is the result of the following useful Dynkin's formula.
Lemma (Dynkin's formula)
Let $f \in C_{0}^{2}\left(\mathbb{R}^{d}\right)$. Suppose τ is a stopping time with $\mathbb{E}^{x} \tau<\infty$, then

$$
\mathbb{E}^{\boldsymbol{x}} f\left(\boldsymbol{X}_{\tau}\right)=f(\boldsymbol{x})+\mathbb{E}^{\boldsymbol{x}} \int_{0}^{\tau} \mathcal{A} u\left(\boldsymbol{X}_{t}\right) d t
$$

On the condition $\mathbb{E}^{x} \tau_{D}<\infty$

- To prove $\mathbb{E}^{\boldsymbol{x}} \tau_{D}<\infty$, we define an auxiliary function $h(\boldsymbol{x})=-A \exp \left(\lambda x_{1}\right)$. Then for sufficiently large $A, \lambda>0$ we have

$$
\mathcal{A} h(\boldsymbol{x})=\frac{1}{2} \sum_{i j} a_{i j}(\boldsymbol{x}) \partial_{i j} h(\boldsymbol{x})+\sum_{i} b_{i}(\boldsymbol{x}) \partial_{i} h(\boldsymbol{x}) \leq-1, \quad \boldsymbol{x} \in D .
$$

On the condition $\mathbb{E}^{x} \tau_{D}<\infty$

- To prove $\mathbb{E}^{\boldsymbol{x}} \tau_{D}<\infty$, we define an auxiliary function $h(\boldsymbol{x})=-A \exp \left(\lambda x_{1}\right)$. Then for sufficiently large $A, \lambda>0$ we have

$$
\mathcal{A} h(\boldsymbol{x})=\frac{1}{2} \sum_{i j} a_{i j}(\boldsymbol{x}) \partial_{i j} h(\boldsymbol{x})+\sum_{i} b_{i}(\boldsymbol{x}) \partial_{i} h(\boldsymbol{x}) \leq-1, \quad \boldsymbol{x} \in D .
$$

- By Itô's formula

$$
\mathbb{E}^{\boldsymbol{x}} h\left(\boldsymbol{X}_{\tau_{D} \wedge T}\right)-h(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} \int_{0}^{\tau_{D} \wedge T} \mathcal{A} h\left(\boldsymbol{X}_{s}\right) d s \leq-\mathbb{E}^{\boldsymbol{x}}\left(\tau_{D} \wedge T\right)
$$

for any fixed $T>0$.

On the condition $\mathbb{E}^{x} \tau_{D}<\infty$

- To prove $\mathbb{E}^{\boldsymbol{x}} \tau_{D}<\infty$, we define an auxiliary function $h(\boldsymbol{x})=-A \exp \left(\lambda x_{1}\right)$. Then for sufficiently large $A, \lambda>0$ we have

$$
\mathcal{A} h(\boldsymbol{x})=\frac{1}{2} \sum_{i j} a_{i j}(\boldsymbol{x}) \partial_{i j} h(\boldsymbol{x})+\sum_{i} b_{i}(\boldsymbol{x}) \partial_{i} h(\boldsymbol{x}) \leq-1, \quad \boldsymbol{x} \in D .
$$

- By Itô's formula

$$
\mathbb{E}^{x} h\left(\boldsymbol{X}_{\tau_{D} \wedge T}\right)-h(\boldsymbol{x})=\mathbb{E}^{\boldsymbol{x}} \int_{0}^{\tau_{D} \wedge T} \mathcal{A} h\left(\boldsymbol{X}_{s}\right) d s \leq-\mathbb{E}^{\boldsymbol{x}}\left(\tau_{D} \wedge T\right)
$$

for any fixed $T>0$.

- Since $|h(\boldsymbol{x})| \leq C$ for $\boldsymbol{x} \in D$, we have

$$
\mathbb{E}^{x}\left(\tau_{D} \wedge T\right) \leq 2 C
$$

Taking $T \rightarrow \infty$ and using the monotone convergence theorem we obtain $\mathbb{E}^{\boldsymbol{x}}\left(\tau_{D}\right) \leq 2 C$.

