Lecture 15. Connections with PDE

Tiejun Li^{1,2}

¹School of Mathematical Sciences (SMS), & ²Center for Machine Learning Research (CMLR), Peking University, Beijing 100871, P.R. China tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Table of Contents

Liouville equation

- Fokker-Planck equation
- **Boundary Condition**
- Backward equation
- Invariant distribution and detailed balance

Further topics on Diffusion Processes

Semigroup and backward Equation Feynman-Kac Formula First exit time

Particle system

Consider ${\cal N}$ non-interacting particles moving according to the following deterministic ODEs

$$\frac{d\boldsymbol{X}_t^i}{dt} = \boldsymbol{b}(\boldsymbol{X}_t^i), \quad \boldsymbol{X}_t^i\big|_{t=0} = \boldsymbol{X}_0^i, \quad i = 1, 2, \dots, N.$$

Empirical distribution at time t:

$$\mu^N(\boldsymbol{x},t) = \frac{1}{N} \sum_{i=1}^N \delta(\boldsymbol{x} - \boldsymbol{X}_t^i),$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Particle system

Consider ${\cal N}$ non-interacting particles moving according to the following deterministic ODEs

$$\frac{d\boldsymbol{X}_t^i}{dt} = \boldsymbol{b}(\boldsymbol{X}_t^i), \quad \boldsymbol{X}_t^i\big|_{t=0} = \boldsymbol{X}_0^i, \quad i = 1, 2, \dots, N.$$

Empirical distribution at time t:

$$\mu^N(\boldsymbol{x},t) = \frac{1}{N} \sum_{i=1}^N \delta(\boldsymbol{x} - \boldsymbol{X}_t^i),$$

Problem: What the transition rule for the distribution of these particles is in macroscopic viewpoint, that is, to describe its distributive law when the number of particles N goes to infinity.

For any compactly supported smooth function $\phi({m x})\in C^\infty_c({\mathbb R}^d)$

$$\begin{split} \frac{d}{dt}(\mu^N,\phi) &= \frac{1}{N}\sum_{i=1}^N \frac{d}{dt} \int_{\mathbb{R}^d} \delta(\boldsymbol{x} - \boldsymbol{X}_t^i)\phi(\boldsymbol{x})d\boldsymbol{x} \\ &= \frac{1}{N}\sum_{i=1}^N \frac{d}{dt}\phi(\boldsymbol{X}_t^i) = \frac{1}{N}\sum_{i=1}^N \nabla_{\boldsymbol{x}}\phi(\boldsymbol{X}_t^i) \cdot \boldsymbol{b}(\boldsymbol{X}_t^i) \\ &= \left(\mu^N, \boldsymbol{b} \cdot \nabla_{\boldsymbol{x}}\phi(\boldsymbol{x})\right), \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where the notation $(f,g) := \int_{\mathbb{R}^d} f(x) \cdot g(x) dx$ is the inner product of functions.

Suppose the initial distribution

$$\mu^N(\boldsymbol{x},0) := \frac{1}{N} \sum_{i=1}^N \delta(\boldsymbol{x} - \boldsymbol{X}_0^i) \stackrel{*}{\rightarrow} \mu_0(\boldsymbol{x}) \in \mathcal{M}(\mathbb{R}^d) \text{ as } N \rightarrow \infty$$

in the sense that $(\mu^N, \phi) \to (\mu, \phi)$ for any $\phi \in C^\infty_c(\mathbb{R}^d)$.

Suppose the initial distribution

$$\mu^N(\boldsymbol{x},0) := \frac{1}{N} \sum_{i=1}^N \delta(\boldsymbol{x} - \boldsymbol{X}_0^i) \stackrel{*}{\rightarrow} \mu_0(\boldsymbol{x}) \in \mathcal{M}(\mathbb{R}^d) \text{ as } N \to \infty$$

in the sense that $(\mu^N, \phi) \to (\mu, \phi)$ for any $\phi \in C_c^{\infty}(\mathbb{R}^d)$.

 \blacktriangleright Establish the limit $\mu^N({\boldsymbol x},t) \stackrel{*}{\rightarrow} \mu({\boldsymbol x},t)$ and indeed μ satisfies

$$rac{d}{dt}(\mu,\phi) = (\mu, oldsymbol{b} \cdot
abla_{oldsymbol{x}}\phi(oldsymbol{x})), \quad \mu(oldsymbol{x},0) = \mu_0(oldsymbol{x}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Suppose the initial distribution

$$\mu^N(\boldsymbol{x},0) := \frac{1}{N} \sum_{i=1}^N \delta(\boldsymbol{x} - \boldsymbol{X}_0^i) \stackrel{*}{\rightarrow} \mu_0(\boldsymbol{x}) \in \mathcal{M}(\mathbb{R}^d) \text{ as } N \to \infty$$

in the sense that $(\mu^N, \phi) \to (\mu, \phi)$ for any $\phi \in C_c^{\infty}(\mathbb{R}^d)$.

 \blacktriangleright Establish the limit $\mu^N({\boldsymbol x},t) \stackrel{*}{\rightarrow} \mu({\boldsymbol x},t)$ and indeed μ satisfies

$$rac{d}{dt}(\mu,\phi) = (\mu, oldsymbol{b} \cdot
abla_{oldsymbol{x}}\phi(oldsymbol{x})), \quad \mu(oldsymbol{x},0) = \mu_0(oldsymbol{x}).$$

• If we assume the probability measure μ has density $\psi(\boldsymbol{x},t) \in C^1(\mathbb{R}^d \times [0,T])$, then we obtain the following hyperbolic equation after integration by parts

$$\partial_t \psi + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{b}\psi) = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Liouville equation

• If the drift vector \boldsymbol{b} satisfies $\nabla_{\boldsymbol{x}} \cdot \boldsymbol{b} = 0$, we get

$$\partial_t \psi + \boldsymbol{b}(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{x}} \psi = 0.$$

This is called the Liouville equation which is well-known in classical mechanics.

Liouville equation

• If the drift vector \boldsymbol{b} satisfies $\nabla_{\boldsymbol{x}} \cdot \boldsymbol{b} = 0$, we get

$$\partial_t \psi + \boldsymbol{b}(\boldsymbol{x}) \cdot \nabla_{\boldsymbol{x}} \psi = 0.$$

This is called the Liouville equation which is well-known in classical mechanics.

The orbit of the equation

$$\frac{d\boldsymbol{x}}{dt} = \boldsymbol{b}(\boldsymbol{x})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is called the characteristics of the above hyperbolic PDE.

Table of Contents

Liouville equation

- Fokker-Planck equation
- **Boundary Condition**
- Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes Semigroup and backward Equation Feynman-Kac Formula First exit time

Stochastic case

Replace the deterministic equations with the following SDEs

$$d\boldsymbol{X}_t = \boldsymbol{b}(\boldsymbol{X}_t, t)dt + \boldsymbol{\sigma}(\boldsymbol{X}_t, t) \cdot d\boldsymbol{W}_t,$$

► We assume the transition probability density function exists and is defined as (t ≥ s)

$$p(\boldsymbol{x},t|\boldsymbol{y},s)d\boldsymbol{x} = \mathbb{P}\{\boldsymbol{X}_t \in [\boldsymbol{x},\boldsymbol{x}+d\boldsymbol{x})|\boldsymbol{X}_s = \boldsymbol{y}\}.$$

Stochastic case

Replace the deterministic equations with the following SDEs

$$d\boldsymbol{X}_t = \boldsymbol{b}(\boldsymbol{X}_t, t)dt + \boldsymbol{\sigma}(\boldsymbol{X}_t, t) \cdot d\boldsymbol{W}_t,$$

► We assume the transition probability density function exists and is defined as (t ≥ s)

$$p(\boldsymbol{x}, t | \boldsymbol{y}, s) d\boldsymbol{x} = \mathbb{P}\{\boldsymbol{X}_t \in [\boldsymbol{x}, \boldsymbol{x} + d\boldsymbol{x}) | \boldsymbol{X}_s = \boldsymbol{y}\}.$$

We have the same question on the probability distribution of X.

 \blacktriangleright For any function $f\in C^\infty_c(\mathbb{R}^d),$ the Ito formula gives

$$df(\mathbf{X}_t) = \nabla f(\mathbf{X}_t) \cdot d\mathbf{X}_t + \frac{1}{2} (d\mathbf{X}_t)^T \cdot \nabla^2 f(\mathbf{X}_t) \cdot (d\mathbf{X}_t)$$
$$= (\mathbf{b} \cdot \nabla f + \frac{1}{2} \boldsymbol{\sigma} \boldsymbol{\sigma}^T : \nabla^2 f) dt + \nabla f \cdot \boldsymbol{\sigma} \cdot d\mathbf{W}_t.$$

 \blacktriangleright For any function $f\in C^\infty_c(\mathbb{R}^d),$ the Ito formula gives

$$df(\mathbf{X}_t) = \nabla f(\mathbf{X}_t) \cdot d\mathbf{X}_t + \frac{1}{2} (d\mathbf{X}_t)^T \cdot \nabla^2 f(\mathbf{X}_t) \cdot (d\mathbf{X}_t)$$

= $(\mathbf{b} \cdot \nabla f + \frac{1}{2} \boldsymbol{\sigma} \boldsymbol{\sigma}^T : \nabla^2 f) dt + \nabla f \cdot \boldsymbol{\sigma} \cdot d\mathbf{W}_t.$

Integrating both sides from s to t we get

$$\begin{split} f(\boldsymbol{X}_t) - f(\boldsymbol{X}_s) &= \int_s^t \nabla f(\boldsymbol{X}_\tau) \cdot \{ \boldsymbol{b}(\boldsymbol{X}_\tau, \tau) d\tau + \boldsymbol{\sigma}(\boldsymbol{X}_\tau, \tau) d\boldsymbol{W}_\tau \} \\ &+ \frac{1}{2} \int_s^t \sum_{i,j} \partial_{ij}^2 f(\boldsymbol{X}_\tau) a_{ij}(\boldsymbol{X}_\tau, \tau) d\tau, \end{split}$$

where the diffusion matrix $\boldsymbol{a}(\boldsymbol{x},t) = \boldsymbol{\sigma}(\boldsymbol{x},t) \boldsymbol{\sigma}^T(\boldsymbol{x},t).$

Now taking expectation on both sides and utilizing the initial condition X_s = y, we have

$$\mathbb{E}f(\boldsymbol{X}_t) - f(\boldsymbol{y}) = \mathbb{E}\int_s^t \mathcal{L}f(\boldsymbol{X}_{\tau}, \tau) d\tau,$$

where the operator $\ensuremath{\mathcal{L}}$ is defined as

$$\mathcal{L}f(\boldsymbol{x},t) = \boldsymbol{b}(\boldsymbol{x},t) \cdot \nabla f(\boldsymbol{x}) + \frac{1}{2} \sum_{i,j} a_{ij}(\boldsymbol{x},t) \partial_{ij}^2 f(\boldsymbol{x}).$$

Now taking expectation on both sides and utilizing the initial condition X_s = y, we have

$$\mathbb{E}f(\boldsymbol{X}_t) - f(\boldsymbol{y}) = \mathbb{E}\int_s^t \mathcal{L}f(\boldsymbol{X}_{\tau}, \tau) d\tau,$$

where the operator \mathcal{L} is defined as

$$\mathcal{L}f(\boldsymbol{x},t) = \boldsymbol{b}(\boldsymbol{x},t) \cdot \nabla f(\boldsymbol{x}) + \frac{1}{2} \sum_{i,j} a_{ij}(\boldsymbol{x},t) \partial_{ij}^2 f(\boldsymbol{x}).$$

▶ In the language of transition pdf $p(\boldsymbol{x}, t | \boldsymbol{y}, s)$, we have

$$\int_{\mathbb{R}^d} f(\boldsymbol{x}) p(\boldsymbol{x},t|\boldsymbol{y},s) d\boldsymbol{x} - f(\boldsymbol{y}) = \int_s^t \int_{\mathbb{R}^d} \mathcal{L}f(\boldsymbol{x},\tau) p(\boldsymbol{x},\tau|\boldsymbol{y},s) d\boldsymbol{x} d\tau.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► The adjoint operator L^{*} is defined through (Lf,g)_{L²} = (f, L^{*}g)_{L²}. The concrete form of L^{*} reads

$$\mathcal{L}^* f(\boldsymbol{x},t) = -\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{b}(\boldsymbol{x},t)f(\boldsymbol{x})) + \frac{1}{2}\nabla_{\boldsymbol{x}}^2 : (\boldsymbol{a}(\boldsymbol{x},t)f(\boldsymbol{x})),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $\nabla^2_{\boldsymbol{x}} : (\boldsymbol{a}f) = \sum_{ij} \partial_{ij}(a_{ij}f).$

► The adjoint operator L^{*} is defined through (Lf,g)_{L²} = (f, L^{*}g)_{L²}. The concrete form of L^{*} reads

$$\mathcal{L}^* f(\boldsymbol{x}, t) = -\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{b}(\boldsymbol{x}, t) f(\boldsymbol{x})) + \frac{1}{2} \nabla_{\boldsymbol{x}}^2 : (\boldsymbol{a}(\boldsymbol{x}, t) f(\boldsymbol{x})),$$

where $\nabla_{\boldsymbol{x}}^2$: $(\boldsymbol{a}f) = \sum_{ij} \partial_{ij}(a_{ij}f)$.

Then the above equation can be simplified to

$$(f, p(\cdot, t | \boldsymbol{y}, s))_{L^2} - f(\boldsymbol{y}) = \int_s^t (f, \mathcal{L}^* p(\cdot, \tau | \boldsymbol{y}, s))_{L^2} d\tau$$

► The adjoint operator L^{*} is defined through (Lf,g)_{L²} = (f, L^{*}g)_{L²}. The concrete form of L^{*} reads

$$\mathcal{L}^* f(\boldsymbol{x}, t) = -\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{b}(\boldsymbol{x}, t) f(\boldsymbol{x})) + \frac{1}{2} \nabla_{\boldsymbol{x}}^2 : (\boldsymbol{a}(\boldsymbol{x}, t) f(\boldsymbol{x})),$$

where $\nabla_{\boldsymbol{x}}^2$: $(\boldsymbol{a}f) = \sum_{ij} \partial_{ij}(a_{ij}f)$.

Then the above equation can be simplified to

$$(f, p(\cdot, t | \boldsymbol{y}, s))_{L^2} - f(\boldsymbol{y}) = \int_s^t (f, \mathcal{L}^* p(\cdot, \tau | \boldsymbol{y}, s))_{L^2} d\tau$$

This is exactly the definition of the weak solution of the PDE with respect to t and x

$$\partial_t p = \mathcal{L}^*_{\boldsymbol{x}} p(\boldsymbol{x}, t | \boldsymbol{y}, s), \quad p(\boldsymbol{x}, t | \boldsymbol{y}, s)|_{t=s} = \delta(\boldsymbol{x} - \boldsymbol{y}), \quad t \ge s,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

in the sense of distribution.

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

The "forward" means it is for the forward time variable t > s and its corresponding space variable x.

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

- The "forward" means it is for the forward time variable t > s and its corresponding space variable x.
- When we consider the equation for the backward time variable s < t and y, we will call it backward equation.</p>

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

- The "forward" means it is for the forward time variable t > s and its corresponding space variable x.
- When we consider the equation for the backward time variable s < t and y, we will call it backward equation.</p>
- By analogy with the deterministic case, the SDE may be regarded as the "stochastic characteristics" of the parabolic equation.

The above equation is well-known as the Kolmogorov's forward equation, or the Fokker-Planck equation in physics.

- The "forward" means it is for the forward time variable t > s and its corresponding space variable x.
- When we consider the equation for the backward time variable s < t and y, we will call it backward equation.</p>
- By analogy with the deterministic case, the SDE may be regarded as the "stochastic characteristics" of the parabolic equation.
- The joint distribution p(x, t; y, s) and the distribution density p(x, t) starting from some initial distribution both satisfy the forward Kolmogorov type equation with respect to x and t.

Brownian motion

► The SDE reads

$$d\boldsymbol{X}_t = d\boldsymbol{W}_t, \quad \boldsymbol{X}_0 = 0.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Brownian motion

The SDE reads

$$d\boldsymbol{X}_t = d\boldsymbol{W}_t, \quad \boldsymbol{X}_0 = 0.$$

The Fokker-Planck equation is

$$\partial_t p = \frac{1}{2}\Delta p, \quad p(\boldsymbol{x}, 0) = \delta(\boldsymbol{x}).$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Brownian motion

The SDE reads

$$d\boldsymbol{X}_t = d\boldsymbol{W}_t, \quad \boldsymbol{X}_0 = 0.$$

The Fokker-Planck equation is

$$\partial_t p = \frac{1}{2}\Delta p, \quad p(\boldsymbol{x}, 0) = \delta(\boldsymbol{x}).$$

It is well-known from PDE that its unique solution is the heat kernal

$$p(\boldsymbol{x},t) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{\boldsymbol{x}^2}{2t}\right),$$

which is exactly the pdf of N(0, tI). The PDE gives another characterization of the Brownian motion.

► The SDE reads

$$d\boldsymbol{X}_t = -\frac{1}{\gamma}\nabla V(\boldsymbol{X}_t)dt + \sqrt{\frac{2k_BT}{\gamma}}d\boldsymbol{W}_t.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The SDE reads

$$d\boldsymbol{X}_t = -\frac{1}{\gamma} \nabla V(\boldsymbol{X}_t) dt + \sqrt{\frac{2k_B T}{\gamma}} d\boldsymbol{W}_t.$$

The Fokker-Planck equation is

$$\partial_t p - \nabla \cdot \left(\frac{1}{\gamma} \nabla V(\boldsymbol{x}) p\right) = \frac{k_B T}{\gamma} \Delta p = D \Delta p,$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where $D = k_B T / \gamma$ is the diffusion coefficient.

The SDE reads

$$d\boldsymbol{X}_t = -\frac{1}{\gamma} \nabla V(\boldsymbol{X}_t) dt + \sqrt{\frac{2k_B T}{\gamma}} d\boldsymbol{W}_t.$$

The Fokker-Planck equation is

$$\partial_t p - \nabla \cdot \left(\frac{1}{\gamma} \nabla V(\boldsymbol{x}) p\right) = \frac{k_B T}{\gamma} \Delta p = D \Delta p,$$

where $D = k_B T / \gamma$ is the diffusion coefficient.

Define the free energy associated with the pdf p as

$$\mathcal{F}(p) = \int_{\mathbb{R}^d} \left(k_B T p(\boldsymbol{x}) \ln p(\boldsymbol{x}) + V(\boldsymbol{x}) p(\boldsymbol{x}) \right) d\boldsymbol{x},$$

where the first term $k_B \int_{\mathbb{R}^d} p(\boldsymbol{x}) \ln p(\boldsymbol{x}) d\boldsymbol{x}$ corresponds to the negative entropy -S in thermodynamics, and the second term $\int_{\mathbb{R}^d} V(\boldsymbol{x}) p(\boldsymbol{x}) d\boldsymbol{x}$ is the internal energy U.

• The chemical potential μ is then given by

$$\mu = \frac{\delta \mathcal{F}}{\delta p} = k_B T (1 + \ln p(\boldsymbol{x})) + V(\boldsymbol{x}).$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• The chemical potential μ is then given by

$$\mu = \frac{\delta \mathcal{F}}{\delta p} = k_B T (1 + \ln p(\boldsymbol{x})) + V(\boldsymbol{x}).$$

• The velocity field $\boldsymbol{u}(\boldsymbol{x})$ is given by the Fick's Law

$$oldsymbol{u}(oldsymbol{x}) = rac{1}{\gamma}oldsymbol{f} = -rac{1}{\gamma}
abla \mu,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\boldsymbol{f}=abla \mu$ is the force field.

• The chemical potential μ is then given by

$$\mu = \frac{\delta \mathcal{F}}{\delta p} = k_B T (1 + \ln p(\boldsymbol{x})) + V(\boldsymbol{x}).$$

• The velocity field $oldsymbol{u}(oldsymbol{x})$ is given by the Fick's Law

$$oldsymbol{u}(oldsymbol{x}) = rac{1}{\gamma}oldsymbol{f} = -rac{1}{\gamma}
abla \mu,$$

where $\boldsymbol{f} = -\nabla \mu$ is the force field.

The current density is defined as

$$\boldsymbol{j}(\boldsymbol{x}) := p(\boldsymbol{x})\boldsymbol{u}(\boldsymbol{x})$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• The chemical potential μ is then given by

$$\mu = \frac{\delta \mathcal{F}}{\delta p} = k_B T (1 + \ln p(\boldsymbol{x})) + V(\boldsymbol{x}).$$

• The velocity field $oldsymbol{u}(oldsymbol{x})$ is given by the Fick's Law

$$oldsymbol{u}(oldsymbol{x}) = rac{1}{\gamma}oldsymbol{f} = -rac{1}{\gamma}
abla \mu,$$

where $\boldsymbol{f} = -\nabla \mu$ is the force field.

The current density is defined as

$$\boldsymbol{j}(\boldsymbol{x}) := p(\boldsymbol{x})\boldsymbol{u}(\boldsymbol{x})$$

Then the Smoluchowski's equation is a consequence of the continuity equation

$$\partial_t p + \nabla \cdot \boldsymbol{j} = 0.$$

This approach via deterministic PDE to describe the Brownian dynamics is more common in physics.

Other SDE form

 If the underlying stochastic dynamics is a Stratonovich SDE, we will have its transition pdf satisfies the following type of PDE

$$\partial_t p + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{b}p) = \frac{1}{2} \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma}p)),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma} p)) = \partial_i (\sigma_{ik} \partial_j (\sigma_{jk} p)).$

Other SDE form

 If the underlying stochastic dynamics is a Stratonovich SDE, we will have its transition pdf satisfies the following type of PDE

$$\partial_t p + \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{b}p) = \frac{1}{2} \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma}p)),$$

where $\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma} \cdot \nabla_{\boldsymbol{x}} \cdot (\boldsymbol{\sigma} p)) = \partial_i (\sigma_{ik} \partial_j (\sigma_{jk} p)).$

 If the underlying stochastic dynamics is defined through the backward stochastic integral,

$$d\boldsymbol{X}_t = \boldsymbol{b}(\boldsymbol{x}, t)dt + \boldsymbol{\sigma}(\boldsymbol{x}, t) * d\boldsymbol{W}_t,$$

then $p(\boldsymbol{x},t)$ satisfies

$$\partial_t p + \partial_i \Big[(b_i + \partial_k \sigma_{ij} \sigma_{kj}) p \Big] = \frac{1}{2} \partial_{ij} : (\sigma_{ik} \sigma_{jk} p),$$

where the Einstein summation convention is assumed. In the one-dimensional case, it can be simplified to

$$\partial_t p + \partial_x (bp) = \frac{1}{2} \partial_x (\sigma^2 \partial_x p).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ
Table of Contents

Liouville equation

Fokker-Planck equation

Boundary Condition

Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes Semigroup and backward Equation Feynman-Kac Formula First exit time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Probability flux

Many stochastic problems occur in a bounded domain, in which case the boundary conditions are needed.

To pose suitable boundary conditions in different situations, we need to understand the probability current

$$\boldsymbol{j}(\boldsymbol{x},t) = \boldsymbol{b}(\boldsymbol{x},t)p(\boldsymbol{x},t) - \frac{1}{2}\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{a}(\boldsymbol{x},t)p(\boldsymbol{x},t))$$

in the Fokker-Planck equation

$$\partial_t p(\boldsymbol{x}, t) + \nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x}, t) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

more intuitively at first.

Probability flux

Many stochastic problems occur in a bounded domain, in which case the boundary conditions are needed.

To pose suitable boundary conditions in different situations, we need to understand the probability current

$$\boldsymbol{j}(\boldsymbol{x},t) = \boldsymbol{b}(\boldsymbol{x},t)p(\boldsymbol{x},t) - \frac{1}{2}\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{a}(\boldsymbol{x},t)p(\boldsymbol{x},t))$$

in the Fokker-Planck equation

$$\partial_t p(\boldsymbol{x}, t) + \nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x}, t) = 0$$

more intuitively at first.

It has the structure of the continuity equations in fluid dynamics.

Boundary Condition

Three commonly used boundary conditions are as follows.

▶ Reflecting barrier. The particles will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across ∂D, i.e.

$$\boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t) = 0 \quad \boldsymbol{x} \in \partial D.$$

Note that in this case the total probability is conserved since

$$\frac{d}{dt}\int_D p(\boldsymbol{x},t)d\boldsymbol{x} = -\int_D \nabla_{\boldsymbol{x}} \cdot \boldsymbol{j}(\boldsymbol{x},t)d\boldsymbol{x} = -\int_{\partial D} \boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x},t)dS = 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Boundary Condition

Three commonly used boundary conditions are as follows.

Reflecting barrier. The particles will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across ∂D, i.e.

$$\boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t) = 0 \quad \boldsymbol{x} \in \partial D.$$

Note that in this case the total probability is conserved since

$$\frac{d}{dt}\int_D p(\boldsymbol{x},t)d\boldsymbol{x} = -\int_D \nabla_{\boldsymbol{x}}\cdot\boldsymbol{j}(\boldsymbol{x},t)d\boldsymbol{x} = -\int_{\partial D}\boldsymbol{n}\cdot\boldsymbol{j}(\boldsymbol{x},t)dS = 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Absorbing barrier. The particles will be absorbed (or removed) once it hits the boundary ∂D.

$$p(\boldsymbol{x},t) = 0 \quad \boldsymbol{x} \in \partial D.$$

The total probability is no longer conserved in this case.

Boundary Condition

Three commonly used boundary conditions are as follows.

▶ Reflecting barrier. The particles will be reflected once it hits the boundary ∂D. Thus there will be no probability flux across ∂D, i.e.

$$\boldsymbol{n} \cdot \boldsymbol{j}(\boldsymbol{x}, t) = 0 \quad \boldsymbol{x} \in \partial D.$$

Note that in this case the total probability is conserved since

$$\frac{d}{dt}\int_D p(\boldsymbol{x},t)d\boldsymbol{x} = -\int_D \nabla_{\boldsymbol{x}}\cdot\boldsymbol{j}(\boldsymbol{x},t)d\boldsymbol{x} = -\int_{\partial D}\boldsymbol{n}\cdot\boldsymbol{j}(\boldsymbol{x},t)dS = 0.$$

Absorbing barrier. The particles will be absorbed (or removed) once it hits the boundary ∂D.

$$p(\boldsymbol{x},t) = 0 \quad \boldsymbol{x} \in \partial D.$$

The total probability is no longer conserved in this case.

Periodic boundary condition. In the periodic case with period L_j in the x_j-direction for j = 1,...,d, i.e.

$$p(x_j + L_j, t) = p(x_j, t), \quad j = 1, 2, \dots, d.$$

Table of Contents

Liouville equation

Fokker-Planck equation

Boundary Condition

Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes Semigroup and backward Equation Feynman-Kac Formula First exit time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Now let us consider the equation for the transition pdf p(x, t | y, s) with respect to variable y and s.

▶ Suppose X_t satisfies the above SDEs. For any given $f(x) \in C_c^{\infty}(\mathbb{R}^d)$, we define

$$u(\boldsymbol{y},s) = \mathbb{E}^{\boldsymbol{y},s} f(\boldsymbol{X}_t) = \int_{\mathbb{R}^d} f(\boldsymbol{x}) p(\boldsymbol{x},t|\boldsymbol{y},s) d\boldsymbol{x}, \quad s \leq t.$$

Assume that $p(\pmb{x},t|\pmb{y},s)$ is C^1 in s and C^2 in $\pmb{y},$ then we have

$$du(\boldsymbol{X}_{\tau},\tau) = (\partial_{\tau}u + \mathcal{L}u)(\boldsymbol{X}_{\tau},\tau)d\tau + \nabla u \cdot \boldsymbol{\sigma} \cdot d\boldsymbol{W}_{\tau}$$

by Ito formula.

Now let us consider the equation for the transition pdf p(x, t | y, s) with respect to variable y and s.

▶ Suppose X_t satisfies the above SDEs. For any given $f(x) \in C_c^{\infty}(\mathbb{R}^d)$, we define

$$u(\boldsymbol{y},s) = \mathbb{E}^{\boldsymbol{y},s} f(\boldsymbol{X}_t) = \int_{\mathbb{R}^d} f(\boldsymbol{x}) p(\boldsymbol{x},t|\boldsymbol{y},s) d\boldsymbol{x}, \quad s \leq t.$$

Assume that $p(\boldsymbol{x},t|\boldsymbol{y},s)$ is C^1 in s and C^2 in \boldsymbol{y} , then we have

$$du(\boldsymbol{X}_{\tau},\tau) = (\partial_{\tau}u + \mathcal{L}u)(\boldsymbol{X}_{\tau},\tau)d\tau + \nabla u \cdot \boldsymbol{\sigma} \cdot d\boldsymbol{W}_{\tau}$$

by Ito formula.

Taking expectation we obtain

$$\lim_{t \to s} \frac{1}{t-s} (\mathbb{E}^{\boldsymbol{y},s} u(\boldsymbol{X}_t, t) - u(\boldsymbol{y}, s)) = \lim_{t \to s} \frac{1}{t-s} \int_s^t \mathbb{E}^{\boldsymbol{y},s} (\partial_\tau u + \mathcal{L}u)(\boldsymbol{X}_\tau, \tau) d\tau = \partial_s u(\boldsymbol{y}, s) + \mathcal{L}u(\boldsymbol{y}, s).$$

On the other hand it is obvious that

$$\mathbb{E}^{\boldsymbol{y},s}u(\boldsymbol{X}_t,t) = \mathbb{E}^{\boldsymbol{y},s}f(\boldsymbol{X}_t) = u(\boldsymbol{y},s)$$

and thus

$$\partial_s u(\boldsymbol{y},s) + \mathcal{L}u(\boldsymbol{y},s) = 0.$$

On the other hand it is obvious that

$$\mathbb{E}^{\boldsymbol{y},s}u(\boldsymbol{X}_t,t) = \mathbb{E}^{\boldsymbol{y},s}f(\boldsymbol{X}_t) = u(\boldsymbol{y},s)$$

and thus

$$\partial_s u(\boldsymbol{y},s) + \mathcal{L}u(\boldsymbol{y},s) = 0.$$

From the arbitrariness of f, we obtain

$$\partial_s p(\boldsymbol{x},t|\boldsymbol{y},s) + \mathcal{L}_{\boldsymbol{y}} p(\boldsymbol{x},t|\boldsymbol{y},s) = 0, \quad p(\boldsymbol{x},t|\boldsymbol{y},t) = \delta(\boldsymbol{x}-\boldsymbol{y}), \quad s < t.$$

This is the well-know Kolmogorov backward equation for the transition density since the time variable *s* goes backward.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Table of Contents

Liouville equation

- Fokker-Planck equation
- **Boundary Condition**
- Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes

Semigroup and backward Equation Feynman-Kac Formula First exit time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Invariant distribution

In the following discussion, we consider the situation that the drift ${\pmb b}$ and diffusion coefficient ${\pmb \sigma}$ does not depend on t.

In this case, the process {X_t} is a time-homogeneous Markov process since the transition rule only depends on the states other than the time.

Invariant distribution

In the following discussion, we consider the situation that the drift ${\pmb b}$ and diffusion coefficient ${\pmb \sigma}$ does not depend on t.

- In this case, the process {X_t} is a time-homogeneous Markov process since the transition rule only depends on the states other than the time.
- It is interesting to study the case when the system achieves a steady state: that is, the pdf is independent of the time, if the system admits such a solution.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Invariant distribution

In the following discussion, we consider the situation that the drift ${\pmb b}$ and diffusion coefficient ${\pmb \sigma}$ does not depend on t.

- In this case, the process {X_t} is a time-homogeneous Markov process since the transition rule only depends on the states other than the time.
- It is interesting to study the case when the system achieves a steady state: that is, the pdf is independent of the time, if the system admits such a solution.
- The steady state pdf satisfies the following PDE

$$\nabla_{\boldsymbol{x}} \cdot (\boldsymbol{b}(\boldsymbol{x}) p_s(\boldsymbol{x})) = \frac{1}{2} \nabla_{\boldsymbol{x}}^2 : (\boldsymbol{a}(\boldsymbol{x}) \ p_s(\boldsymbol{x}))$$

with suitable boundary conditions. This $p_s(x)$ is called the stationary distribution or invariant distribution of the considered system.

Detailed balance

Specially for the Langevin equation , the invariant distribution satisfies

$$\nabla \cdot \boldsymbol{j}_s(\boldsymbol{x}) = 0,$$

Detailed balance

Specially for the Langevin equation , the invariant distribution satisfies

$$\nabla \cdot \boldsymbol{j}_s(\boldsymbol{x}) = 0,$$

▶ In particular, we are interested in the equilibrium solution with a stronger condition $j_s = 0$, i.e. the detailed balance condition in the continuous case, which implies the chemical potential

 $\mu = \text{constant}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Detailed balance

Specially for the Langevin equation , the invariant distribution satisfies

$$\nabla \cdot \boldsymbol{j}_s(\boldsymbol{x}) = 0,$$

▶ In particular, we are interested in the equilibrium solution with a stronger condition $j_s = 0$, i.e. the detailed balance condition in the continuous case, which implies the chemical potential

 $\mu = \text{constant}.$

It is not difficult to deduce the following well-known Gibbs distribution for the equilibrium

$$p_s(\boldsymbol{x}) = \frac{1}{Z} \exp\left(-\frac{V(\boldsymbol{x})}{k_B T}\right)$$

as long as the normalization constant

$$Z = \int_{\mathbb{R}^d} e^{-\frac{V(\boldsymbol{x})}{k_B T}} d\boldsymbol{x}$$

is finite.

▲□▶▲□▶▲□▶▲□▶ = のへの

Table of Contents

Liouville equation

- Fokker-Planck equation
- **Boundary Condition**
- Backward equation

Invariant distribution and detailed balance

Further topics on Diffusion Processes Semigroup and backward Equation Feynman-Kac Formula

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

First exit time

For the time-homogeneous SDEs, the translational invariance of time for its transition kernel p(·, t|y, s)

$$p(A, t+s|\boldsymbol{y}, s) = p(A, t|\boldsymbol{y}, 0), \quad s, t \ge 0$$

for any $\boldsymbol{y} \in \mathbb{R}^d$ and $A \in \mathcal{B}(\mathbb{R}^d)$, where $p(A, t | \boldsymbol{y}, s) := \mathbb{E}^{\boldsymbol{y}, s} \mathbf{1}_A(\boldsymbol{X}_t) = \int_A p(d\boldsymbol{x}, t | \boldsymbol{y}, s).$

For the time-homogeneous SDEs, the translational invariance of time for its transition kernel p(·, t|y, s)

$$p(A, t+s|\boldsymbol{y}, s) = p(A, t|\boldsymbol{y}, 0), \quad s, t \ge 0$$

for any $\boldsymbol{y} \in \mathbb{R}^d$ and $A \in \mathcal{B}(\mathbb{R}^d)$, where $p(A, t | \boldsymbol{y}, s) := \mathbb{E}^{\boldsymbol{y}, s} \mathbf{1}_A(\boldsymbol{X}_t) = \int_A p(d\boldsymbol{x}, t | \boldsymbol{y}, s).$

• Define the operator T_t on any function $f \in C_0(\mathbb{R}^d)$ as

$$T_t f(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} f(\boldsymbol{X}_t) = \int_{\mathbb{R}^d} f(\boldsymbol{z}) p(d\boldsymbol{z}, t | \boldsymbol{x}, 0).$$

Then we have $T_0 f(\boldsymbol{x}) = f(\boldsymbol{x})$ and the following semigroup property for any $t,s \geq 0$

$$T_t \circ T_s f(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} (\mathbb{E}^{\boldsymbol{X}_t} f(\boldsymbol{X}_s))$$

$$= \int p(d\boldsymbol{y}, t | \boldsymbol{x}, 0) \int f(\boldsymbol{z}) p(d\boldsymbol{z}, s | \boldsymbol{y}, 0)$$

$$= \int f(\boldsymbol{z}) \int p(d\boldsymbol{z}, s + t | \boldsymbol{y}, t) p(d\boldsymbol{y}, t | \boldsymbol{x}, 0)$$

$$= \mathbb{E}^{\boldsymbol{x}} (f(\boldsymbol{X}_{t+s})) = T_{t+s} f(\boldsymbol{x}).$$

• Under the condition that \boldsymbol{b} and $\boldsymbol{\sigma}$ are bounded and Lipschitz, one can further show $T_t: C_0(\mathbb{R}^d) \to C_0(\mathbb{R}^d)$ and it is strongly continuous in the sense that

$$\lim_{t\to 0+} \|T_t f - f\|_{\infty} = 0, \quad \text{for any } f \in C_0(\mathbb{R}^d).$$

 T_t is called Feller semigroup in the literature. With this setup, we can utilize the tools from semigroup theory to study T_t .

• Under the condition that \boldsymbol{b} and $\boldsymbol{\sigma}$ are bounded and Lipschitz, one can further show $T_t: C_0(\mathbb{R}^d) \to C_0(\mathbb{R}^d)$ and it is strongly continuous in the sense that

$$\lim_{t \to 0+} \|T_t f - f\|_{\infty} = 0, \quad \text{for any } f \in C_0(\mathbb{R}^d).$$

 T_t is called Feller semigroup in the literature. With this setup, we can utilize the tools from semigroup theory to study T_t .

• The infinitesimal generator \mathcal{A} of T_t is defined as

$$\mathcal{A}f(\boldsymbol{x}) = \lim_{t \to 0+} \frac{\mathbb{E}^{\boldsymbol{x}}f(\boldsymbol{X}_t) - f(\boldsymbol{x})}{t},$$

where $f \in D(\mathcal{A}) := \{ f \in C_0(\mathbb{R}^d) \text{ such that the limit exists} \}.$

• Under the condition that \boldsymbol{b} and $\boldsymbol{\sigma}$ are bounded and Lipschitz, one can further show $T_t: C_0(\mathbb{R}^d) \to C_0(\mathbb{R}^d)$ and it is strongly continuous in the sense that

$$\lim_{t\to 0+} \|T_t f - f\|_{\infty} = 0, \quad \text{for any } f \in C_0(\mathbb{R}^d).$$

 T_t is called Feller semigroup in the literature. With this setup, we can utilize the tools from semigroup theory to study T_t .

• The infinitesimal generator \mathcal{A} of T_t is defined as

$$\mathcal{A}f(\boldsymbol{x}) = \lim_{t \to 0+} \frac{\mathbb{E}^{\boldsymbol{x}}f(\boldsymbol{X}_t) - f(\boldsymbol{x})}{t},$$

where $f \in D(\mathcal{A}) := \{ f \in C_0(\mathbb{R}^d) \text{ such that the limit exists} \}$. For $f \in C_c^2(\mathbb{R}^d) \subset D(\mathcal{A})$ we have

$$\mathcal{A}f(\boldsymbol{x}) = \mathcal{L}f(\boldsymbol{x}) = \boldsymbol{b}(\boldsymbol{x}) \cdot \nabla f(\boldsymbol{x}) + \frac{1}{2}(\boldsymbol{\sigma}\boldsymbol{\sigma}^T) : \nabla^2 f(\boldsymbol{x}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

from Ito formula.

We will show that $u(x,t) = \mathbb{E}^x f(X_t)$ satisfies the backward equation for $f \in C^2_c(\mathbb{R}^d)$

$$\partial_t u = \mathcal{A}u(\boldsymbol{x}), \quad u|_{t=0} = f(\boldsymbol{x}).$$

Proof. At first it is not difficult to observe that u(x,t) is differentiable with respect to t from Ito's formula and the condition $f \in C_c^2(\mathbb{R}^d)$. For any fixed t > 0, define g(x) = u(x,t). Then we have

$$\begin{aligned} \mathcal{A}g(\boldsymbol{x}) &= \lim_{s \to 0+} \frac{1}{s} \Big(\mathbb{E}^{\boldsymbol{x}} g(\boldsymbol{X}_s) - g(\boldsymbol{x}) \Big) \\ &= \lim_{s \to 0+} \frac{1}{s} \Big(\mathbb{E}^{\boldsymbol{x}} \mathbb{E}^{\boldsymbol{X}_s} f(\boldsymbol{X}_t) - \mathbb{E}^{\boldsymbol{x}} f(\boldsymbol{X}_t) \Big) \\ &= \lim_{s \to 0+} \frac{1}{s} \Big(\mathbb{E}^{\boldsymbol{x}} f(\boldsymbol{X}_{t+s}) - \mathbb{E}^{\boldsymbol{x}} f(\boldsymbol{X}_t) \Big) \\ &= \lim_{s \to 0+} \frac{1}{s} (u(\boldsymbol{x}, t+s) - u(\boldsymbol{x}, t)) = \partial_t u(\boldsymbol{x}, t). \end{aligned}$$

This means $u(\cdot,t) \in D(\mathcal{A})$ and the proof is complete.

Feynman-Kac Formula

Theorem

(Feynman-Kac Formula) Let $f \in C_0^2(\mathbb{R}^d)$ and $q \in C(\mathbb{R}^d)$. Assume that q is lower bounded, then

$$v(\boldsymbol{x},t) = \mathbb{E}^{\boldsymbol{x}} \Big(\exp(\int_{0}^{t} q(\boldsymbol{X}_{s}) ds) f(\boldsymbol{X}_{t}) \Big)$$

satisfies the PDE

$$\partial_t v = \mathcal{A}v + qv, \quad v|_{t=0} = f(\boldsymbol{x}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Feynman-Kac Formula

Theorem

(Feynman-Kac Formula) Let $f \in C_0^2(\mathbb{R}^d)$ and $q \in C(\mathbb{R}^d)$. Assume that q is lower bounded, then

$$v(\boldsymbol{x},t) = \mathbb{E}^{x} \Big(\exp(\int_{0}^{t} q(\boldsymbol{X}_{s}) ds) f(\boldsymbol{X}_{t}) \Big)$$

satisfies the PDE

$$\partial_t v = \mathcal{A}v + qv, \quad v|_{t=0} = f(\boldsymbol{x}).$$

▶ Intuitive explanation: In the absence of Brownian motion, the SDE becomes $\frac{dX_t}{dt} = b(X_t), X_0 = x$ and the PDE becomes

$$\partial_t v = \boldsymbol{b} \cdot \nabla v + qv, \quad v|_{t=0} = f(\boldsymbol{x}).$$

The method of characteristics gives us

$$v(\boldsymbol{x},t) = \exp(\int_0^t q(\boldsymbol{X}_s) ds) f(\boldsymbol{X}_t).$$

Feynman-Kac Formula

The Feynmann-Kac formula tells us the solution of that parabolic PDE can be represented by the ensemble of solution for the ODEs with stochastic characteristics originated from x.

Figure: Schematics of Feynmann-Kac formula.

Proof

Let $Y_t = f(\mathbf{X}_t), Z_t = \exp(\int_0^t q(\mathbf{X}_s) ds)$, define $v(\mathbf{x}, t) = \mathbb{E}^{\mathbf{x}}(Y_t Z_t)$. With the similar reason as the previous section, we have $v(\mathbf{x}, t)$ is differentiable with respect to t and

$$\begin{split} &\frac{1}{s} \Big(\mathbb{E}^{\boldsymbol{x}} v(\boldsymbol{X}_{s},t) - v(\boldsymbol{x},t) \Big) \\ &= \frac{1}{s} \Big(\mathbb{E}^{\boldsymbol{x}} \mathbb{E}^{\boldsymbol{X}_{s}} Z_{t} f(\boldsymbol{X}_{t}) - \mathbb{E}^{\boldsymbol{x}} Z_{t} f(\boldsymbol{X}_{t}) \Big) \\ &= \frac{1}{s} \Big(\mathbb{E}^{\boldsymbol{x}} \exp(\int_{0}^{t} q(\boldsymbol{X}_{r+s}) dr) f(\boldsymbol{X}_{t+s}) - \mathbb{E}^{\boldsymbol{x}} Z_{t} f(\boldsymbol{X}_{t}) \Big) \\ &= \frac{1}{s} \mathbb{E}^{\boldsymbol{x}} \Big(\exp(-\int_{0}^{s} q(\boldsymbol{X}_{r}) dr) Z_{t+s} f(\boldsymbol{X}_{t+s}) - Z_{t} f(\boldsymbol{X}_{t}) \Big) \\ &= \frac{1}{s} \mathbb{E}^{\boldsymbol{x}} \Big(Z_{t+s} f(\boldsymbol{X}_{t+s}) - Z_{t} f(\boldsymbol{X}_{t}) \Big) \\ &+ \frac{1}{s} \mathbb{E}^{\boldsymbol{x}} \Big(Z_{t+s} f(\boldsymbol{X}_{t+s}) (\exp(-\int_{0}^{s} q(\boldsymbol{X}_{r}) dr) - 1) \Big) \\ &\to \partial_{t} v - q(\boldsymbol{x}) v(\boldsymbol{x}, t) \quad \text{as } s \to 0. \end{split}$$

The left hand side is Av(x,t) by definition. The proof is complete.

First exit time

Theorem

Suppose $D \subset \mathbb{R}^d$ is a bounded open set and the boundary ∂D is of C^2 type. The coefficients $\mathbf{b}, \boldsymbol{\sigma}$ of the SDEs satisfy the Lipschitz condition on \overline{D} and the diffusion matrix \mathbf{a} is coercive which is defined as

$$\sum_{i,j}a_{ij}(oldsymbol{x})\xi_i\xi_j\geq K|\xi|^2 \quad ext{for }oldsymbol{x}\in D, \ \xi\in \mathbb{R}^d, \ K>0.$$

Then for $f \in C(\partial D)$, the solution of PDE

$$\mathcal{A}u = 0$$
 in D , $u = f(\boldsymbol{x})$ on ∂D

can be represented as $u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}}(f(\boldsymbol{X}_{\tau_D}))$, where τ_D is the first exit time from domain D defined as $\tau_D := \inf_t \{t \ge 0, \boldsymbol{X}_t \notin D\}$ and thus \boldsymbol{X}_{τ_D} is the first exit point. Specially, if $\mathcal{A}u = \frac{1}{2}\Delta u$, then $u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}}(f(\boldsymbol{W}_{\tau_D}))$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Heuristic

• Heuristic proof. From PDE theory, one has the solution $u \in C^2(D) \cap C(\overline{D})$. So we can apply the Ito's formula to $u(\mathbf{X}_t)$ and take expectation

$$\mathbb{E}^{\boldsymbol{x}}u(\boldsymbol{X}_{\tau_D}) - u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} \int_0^{\tau_D} \mathcal{A}u(\boldsymbol{X}_t) dt = 0.$$

Thus

$$u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} u(\boldsymbol{X}_{\tau_D}) = \mathbb{E}^{\boldsymbol{x}} (f(\boldsymbol{X}_{\tau_D})).$$

Heuristic

• Heuristic proof. From PDE theory, one has the solution $u \in C^2(D) \cap C(\overline{D})$. So we can apply the Ito's formula to $u(\mathbf{X}_t)$ and take expectation

$$\mathbb{E}^{\boldsymbol{x}}u(\boldsymbol{X}_{\tau_D}) - u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} \int_0^{\tau_D} \mathcal{A}u(\boldsymbol{X}_t) dt = 0.$$

Thus

$$u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} u(\boldsymbol{X}_{\tau_D}) = \mathbb{E}^{\boldsymbol{x}} (f(\boldsymbol{X}_{\tau_D})).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Note that in the above derivations we naively take the expectation of the stochastic integral term to be zero. But this is not true in general because \(\tau_D\) is a random time. In fact, it is the result of the following useful Dynkin's formula.

Heuristic

• Heuristic proof. From PDE theory, one has the solution $u \in C^2(D) \cap C(\overline{D})$. So we can apply the Ito's formula to $u(\mathbf{X}_t)$ and take expectation

$$\mathbb{E}^{\boldsymbol{x}}u(\boldsymbol{X}_{\tau_D}) - u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} \int_0^{\tau_D} \mathcal{A}u(\boldsymbol{X}_t) dt = 0.$$

Thus

$$u(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} u(\boldsymbol{X}_{\tau_D}) = \mathbb{E}^{\boldsymbol{x}} (f(\boldsymbol{X}_{\tau_D})).$$

Note that in the above derivations we naively take the expectation of the stochastic integral term to be zero. But this is not true in general because \(\tau_D\) is a random time. In fact, it is the result of the following useful Dynkin's formula.

Lemma (Dynkin's formula)

Let $f \in C_0^2(\mathbb{R}^d)$. Suppose τ is a stopping time with $\mathbb{E}^x \tau < \infty$, then

$$\mathbb{E}^{\boldsymbol{x}}f(\boldsymbol{X}_{\tau}) = f(\boldsymbol{x}) + \mathbb{E}^{\boldsymbol{x}}\int_{0}^{\tau} \mathcal{A}u(\boldsymbol{X}_{t})dt.$$

On the condition $\mathbb{E}^{x} \tau_{D} < \infty$

▶ To prove $\mathbb{E}^{\boldsymbol{x}} \tau_D < \infty$, we define an auxiliary function $h(\boldsymbol{x}) = -A \exp(\lambda x_1)$. Then for sufficiently large $A, \lambda > 0$ we have

$$\mathcal{A}h(\boldsymbol{x}) = rac{1}{2}\sum_{ij}a_{ij}(\boldsymbol{x})\partial_{ij}h(\boldsymbol{x}) + \sum_i b_i(\boldsymbol{x})\partial_ih(\boldsymbol{x}) \leq -1, \quad \boldsymbol{x} \in D.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

On the condition $\mathbb{E}^{x} \tau_{D} < \infty$

▶ To prove $\mathbb{E}^{\boldsymbol{x}} \tau_D < \infty$, we define an auxiliary function $h(\boldsymbol{x}) = -A \exp(\lambda x_1)$. Then for sufficiently large $A, \lambda > 0$ we have

$$\mathcal{A}h(oldsymbol{x}) = rac{1}{2}\sum_{ij}a_{ij}(oldsymbol{x})\partial_{ij}h(oldsymbol{x}) + \sum_i b_i(oldsymbol{x})\partial_ih(oldsymbol{x}) \leq -1, \quad oldsymbol{x}\in D.$$

$$\mathbb{E}^{\boldsymbol{x}} h(\boldsymbol{X}_{\tau_D \wedge T}) - h(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} \int_0^{\tau_D \wedge T} \mathcal{A} h(\boldsymbol{X}_s) ds \leq -\mathbb{E}^{\boldsymbol{x}}(\tau_D \wedge T)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for any fixed T > 0.

On the condition $\mathbb{E}^{x} \tau_{D} < \infty$

▶ To prove $\mathbb{E}^{x}\tau_{D} < \infty$, we define an auxiliary function $h(x) = -A \exp(\lambda x_{1})$. Then for sufficiently large $A, \lambda > 0$ we have

$$\mathcal{A}h(oldsymbol{x}) = rac{1}{2}\sum_{ij}a_{ij}(oldsymbol{x})\partial_{ij}h(oldsymbol{x}) + \sum_i b_i(oldsymbol{x})\partial_ih(oldsymbol{x}) \leq -1, \quad oldsymbol{x}\in D.$$

$$\mathbb{E}^{\boldsymbol{x}} h(\boldsymbol{X}_{\tau_D \wedge T}) - h(\boldsymbol{x}) = \mathbb{E}^{\boldsymbol{x}} \int_0^{\tau_D \wedge T} \mathcal{A} h(\boldsymbol{X}_s) ds \leq -\mathbb{E}^{\boldsymbol{x}}(\tau_D \wedge T)$$

for any fixed T > 0.

• Since $|h(\boldsymbol{x})| \leq C$ for $\boldsymbol{x} \in D$, we have

$$\mathbb{E}^{\boldsymbol{x}}(\tau_D \wedge T) \leq 2C.$$

Taking $T \to \infty$ and using the monotone convergence theorem we obtain $\mathbb{E}^{\boldsymbol{x}}(\tau_D) \leq 2C$.