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Particle system

Consider N non-interacting particles moving according to the
following deterministic ODEs

dXi
t

dt
= b(Xi

t), Xi
t

∣∣
t=0

= Xi
0, i = 1, 2, . . . , N.

I Empirical distribution at time t:

µN (x, t) =
1

N

N∑
i=1

δ(x−Xi
t),

I Problem: What the transition rule for the distribution of these
particles is in macroscopic viewpoint, that is, to describe its
distributive law when the number of particles N goes to
infinity.
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Transition rule

For any compactly supported smooth function φ(x) ∈ C∞c (Rd)

d

dt
(µN , φ) =

1

N

N∑
i=1

d

dt

∫
Rd

δ(x−Xi
t)φ(x)dx

=
1

N

N∑
i=1

d

dt
φ(Xi

t) =
1

N

N∑
i=1

∇xφ(Xi
t) · b(Xi

t)

=
(
µN , b · ∇xφ(x)

)
,

where the notation (f , g) :=
∫
Rd f(x) · g(x)dx is the inner

product of functions.



Transition rule

I Suppose the initial distribution

µN (x, 0) :=
1

N

N∑
i=1

δ(x−Xi
0)
∗→ µ0(x) ∈M(Rd) as N →∞

in the sense that (µN , φ)→ (µ, φ) for any φ ∈ C∞c (Rd).

I Establish the limit µN (x, t)
∗→ µ(x, t) and indeed µ satisfies

d

dt
(µ, φ) = (µ, b · ∇xφ(x)), µ(x, 0) = µ0(x).

I If we assume the probability measure µ has density
ψ(x, t) ∈ C1(Rd × [0, T ]), then we obtain the following
hyperbolic equation after integration by parts

∂tψ +∇x · (bψ) = 0.
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Liouville equation

I If the drift vector b satisfies ∇x · b = 0, we get

∂tψ + b(x) · ∇xψ = 0.

This is called the Liouville equation which is well-known in
classical mechanics.

I The orbit of the equation

dx

dt
= b(x)

is called the characteristics of the above hyperbolic PDE.
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Stochastic case

Replace the deterministic equations with the following SDEs

dXt = b(Xt, t)dt+ σ(Xt, t) · dWt,

I We assume the transition probability density function exists
and is defined as (t ≥ s)

p(x, t|y, s)dx = P{Xt ∈ [x,x+ dx)|Xs = y}.

I We have the same question on the probability distribution of
X.
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Fokker-Planck equation

I For any function f ∈ C∞c (Rd), the Ito formula gives

df(Xt) = ∇f(Xt) · dXt +
1

2
(dXt)

T · ∇2f(Xt) · (dXt)

= (b · ∇f +
1

2
σσT : ∇2f)dt+∇f · σ · dWt.

I Integrating both sides from s to t we get

f(Xt)− f(Xs) =

∫ t

s
∇f(Xτ ) · {b(Xτ , τ)dτ + σ(Xτ , τ)dWτ}

+
1

2

∫ t

s

∑
i,j

∂2ijf(Xτ )aij(Xτ , τ)dτ,

where the diffusion matrix a(x, t) = σ(x, t)σT (x, t).
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Fokker-Planck equation

I Now taking expectation on both sides and utilizing the initial
condition Xs = y, we have

Ef(Xt)− f(y) = E
∫ t

s
Lf(Xτ , τ)dτ,

where the operator L is defined as

Lf(x, t) = b(x, t) · ∇f(x) +
1

2

∑
i,j

aij(x, t)∂
2
ijf(x).

I In the language of transition pdf p(x, t|y, s), we have∫
Rd

f(x)p(x, t|y, s)dx− f(y) =

∫ t

s

∫
Rd

Lf(x, τ)p(x, τ |y, s)dxdτ.
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Fokker-Planck equation

I The adjoint operator L∗ is defined through
(Lf, g)L2 = (f,L∗g)L2 . The concrete form of L∗ reads

L∗f(x, t) = −∇x · (b(x, t)f(x)) +
1

2
∇2

x : (a(x, t)f(x)),

where ∇2
x : (af) =

∑
ij ∂ij(aijf).

I Then the above equation can be simplified to

(f, p(·, t|y, s))L2 − f(y) =

∫ t

s
(f,L∗p(·, τ |y, s))L2dτ

I This is exactly the definition of the weak solution of the PDE
with respect to t and x

∂tp = L∗xp(x, t|y, s), p(x, t|y, s)|t=s = δ(x− y), t ≥ s,

in the sense of distribution.
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Fokker-Planck equation

The above equation is well-known as the Kolmogorov’s forward
equation, or the Fokker-Planck equation in physics.

I The “forward” means it is for the forward time variable t > s
and its corresponding space variable x.

I When we consider the equation for the backward time variable
s < t and y, we will call it backward equation.

I By analogy with the deterministic case, the SDE may be
regarded as the “stochastic characteristics” of the parabolic
equation.

I The joint distribution p(x, t;y, s) and the distribution density
p(x, t) starting from some initial distribution both satisfy the
forward Kolmogorov type equation with respect to x and t.
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Brownian motion

I The SDE reads

dXt = dWt, X0 = 0.

I The Fokker-Planck equation is

∂tp =
1

2
∆p, p(x, 0) = δ(x).

I It is well-known from PDE that its unique solution is the heat
kernal

p(x, t) =
1√
2πt

exp
(
− x

2

2t

)
,

which is exactly the pdf of N(0, tI). The PDE gives another
characterization of the Brownian motion.
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Brownian dynamics
I The SDE reads

dXt = −1

γ
∇V (Xt)dt+

√
2kBT

γ
dWt.

I The Fokker-Planck equation is

∂tp−∇ ·
(1

γ
∇V (x)p

)
=
kBT

γ
∆p = D∆p,

where D = kBT/γ is the diffusion coefficient.

I Define the free energy associated with the pdf p as

F(p) =

∫
Rd

(
kBTp(x) ln p(x) + V (x)p(x)

)
dx,

where the first term kB
∫
Rd p(x) ln p(x)dx corresponds to the

negative entropy −S in thermodynamics, and the second term∫
Rd V (x)p(x)dx is the internal energy U .
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Brownian dynamics
I The chemical potential µ is then given by

µ =
δF
δp

= kBT (1 + ln p(x)) + V (x).

I The velocity field u(x) is given by the Fick’s Law

u(x) =
1

γ
f = −1

γ
∇µ,

where f = −∇µ is the force field.
I The current density is defined as

j(x) := p(x)u(x)

I Then the Smoluchowski’s equation is a consequence of the
continuity equation

∂tp+∇ · j = 0.

This approach via deterministic PDE to describe the Brownian
dynamics is more common in physics.
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Other SDE form
I If the underlying stochastic dynamics is a Stratonovich SDE,

we will have its transition pdf satisfies the following type of
PDE

∂tp+∇x · (bp) =
1

2
∇x · (σ · ∇x · (σp)),

where ∇x · (σ · ∇x · (σp)) = ∂i(σik∂j(σjkp)).

I If the underlying stochastic dynamics is defined through the
backward stochastic integral,

dXt = b(x, t)dt+ σ(x, t) ∗ dWt,

then p(x, t) satisfies

∂tp+ ∂i

[
(bi + ∂kσijσkj)p

]
=

1

2
∂ij : (σikσjkp),

where the Einstein summation convention is assumed. In the
one-dimensional case, it can be simplified to

∂tp+ ∂x(bp) =
1

2
∂x(σ2∂xp).
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Probability flux

Many stochastic problems occur in a bounded domain, in which
case the boundary conditions are needed.

I To pose suitable boundary conditions in different situations,
we need to understand the probability current

j(x, t) = b(x, t)p(x, t)− 1

2
∇x · (a(x, t)p(x, t))

in the Fokker-Planck equation

∂tp(x, t) +∇x · j(x, t) = 0

more intuitively at first.

I It has the structure of the continuity equations in fluid
dynamics.
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Boundary Condition
Three commonly used boundary conditions are as follows.
I Reflecting barrier. The particles will be reflected once it hits

the boundary ∂D. Thus there will be no probability flux
across ∂D, i.e.

n · j(x, t) = 0 x ∈ ∂D.
Note that in this case the total probability is conserved since

d

dt

∫
D
p(x, t)dx = −

∫
D
∇x · j(x, t)dx = −

∫
∂D
n · j(x, t)dS = 0.

I Absorbing barrier. The particles will be absorbed (or removed)
once it hits the boundary ∂D.

p(x, t) = 0 x ∈ ∂D.
The total probability is no longer conserved in this case.

I Periodic boundary condition. In the periodic case with period
Lj in the xj-direction for j = 1, . . . , d, i.e.

p(xj + Lj , t) = p(xj , t), j = 1, 2, . . . , d.
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Backward equation
Now let us consider the equation for the transition pdf p(x, t|y, s)
with respect to variable y and s.

I Suppose Xt satisfies the above SDEs. For any given
f(x) ∈ C∞c (Rd), we define

u(y, s) = Ey,sf(Xt) =

∫
Rd

f(x)p(x, t|y, s)dx, s ≤ t.

Assume that p(x, t|y, s) is C1 in s and C2 in y, then we have

du(Xτ , τ) = (∂τu+ Lu)(Xτ , τ)dτ +∇u · σ · dWτ
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Backward equation

I On the other hand it is obvious that

Ey,su(Xt, t) = Ey,sf(Xt) = u(y, s)

and thus
∂su(y, s) + Lu(y, s) = 0.

I From the arbitrariness of f , we obtain

∂sp(x, t|y, s)+Lyp(x, t|y, s) = 0, p(x, t|y, t) = δ(x−y), s < t.

This is the well-know Kolmogorov backward equation for the
transition density since the time variable s goes backward.
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Invariant distribution

In the following discussion, we consider the situation that the drift
b and diffusion coefficient σ does not depend on t.

I In this case, the process {Xt} is a time-homogeneous Markov
process since the transition rule only depends on the states
other than the time.

I It is interesting to study the case when the system achieves a
steady state: that is, the pdf is independent of the time, if the
system admits such a solution.

I The steady state pdf satisfies the following PDE

∇x · (b(x)ps(x)) =
1

2
∇2

x : (a(x) ps(x))

with suitable boundary conditions. This ps(x) is called the
stationary distribution or invariant distribution of the
considered system.
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Detailed balance
I Specially for the Langevin equation , the invariant distribution

satisfies
∇ · js(x) = 0,

I In particular, we are interested in the equilibrium solution with
a stronger condition js = 0, i.e. the detailed balance condition
in the continuous case, which implies the chemical potential

µ = constant.

I It is not difficult to deduce the following well-known Gibbs
distribution for the equilibrium

ps(x) =
1

Z
exp

(
− V (x)

kBT

)
as long as the normalization constant

Z =

∫
Rd

e
−V (x)

kBT dx

is finite.
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Semigroup
I For the time-homogeneous SDEs, the translational invariance

of time for its transition kernel p(·, t|y, s)
p(A, t+ s|y, s) = p(A, t|y, 0), s, t ≥ 0

for any y ∈ Rd and A ∈ B(Rd), where
p(A, t|y, s) := Ey,s1A(Xt) =

∫
A p(dx, t|y, s).

I Define the operator Tt on any function f ∈ C0(Rd) as

Ttf(x) = Exf(Xt) =

∫
Rd

f(z)p(dz, t|x, 0).

Then we have T0f(x) = f(x) and the following semigroup
property for any t, s ≥ 0

Tt ◦ Tsf(x) = Ex(EXtf(Xs))

=

∫
p(dy, t|x, 0)

∫
f(z)p(dz, s|y, 0)

=

∫
f(z)

∫
p(dz, s+ t|y, t)p(dy, t|x, 0)

= Ex(f(Xt+s)) = Tt+sf(x).



Semigroup
I For the time-homogeneous SDEs, the translational invariance

of time for its transition kernel p(·, t|y, s)
p(A, t+ s|y, s) = p(A, t|y, 0), s, t ≥ 0

for any y ∈ Rd and A ∈ B(Rd), where
p(A, t|y, s) := Ey,s1A(Xt) =

∫
A p(dx, t|y, s).

I Define the operator Tt on any function f ∈ C0(Rd) as

Ttf(x) = Exf(Xt) =

∫
Rd

f(z)p(dz, t|x, 0).

Then we have T0f(x) = f(x) and the following semigroup
property for any t, s ≥ 0

Tt ◦ Tsf(x) = Ex(EXtf(Xs))

=

∫
p(dy, t|x, 0)

∫
f(z)p(dz, s|y, 0)

=

∫
f(z)

∫
p(dz, s+ t|y, t)p(dy, t|x, 0)

= Ex(f(Xt+s)) = Tt+sf(x).



Semigroup
I Under the condition that b and σ are bounded and Lipschitz,

one can further show Tt : C0(Rd)→ C0(Rd) and it is strongly
continuous in the sense that

lim
t→0+

‖Ttf − f‖∞ = 0, for any f ∈ C0(Rd).

Tt is called Feller semigroup in the literature. With this setup,
we can utilize the tools from semigroup theory to study Tt .

I The infinitesimal generator A of Tt is defined as

Af(x) = lim
t→0+

Exf(Xt)− f(x)

t
,

where f ∈ D(A) := {f ∈ C0(Rd) such that the limit exists}.
I For f ∈ C2

c (Rd) ⊂ D(A) we have

Af(x) = Lf(x) = b(x) · ∇f(x) +
1

2
(σσT ) : ∇2f(x).

from Ito formula.
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Backward Equation
We will show that u(x, t) = Exf(Xt) satisfies the backward
equation for f ∈ C2

c (Rd)

∂tu = Au(x), u|t=0 = f(x).

Proof. At first it is not difficult to observe that u(x, t) is
differentiable with respect to t from Ito’s formula and the condition
f ∈ C2

c (Rd). For any fixed t > 0, define g(x) = u(x, t). Then we
have

Ag(x) = lim
s→0+

1

s

(
Exg(Xs)− g(x)

)
= lim

s→0+

1

s

(
ExEXsf(Xt)− Exf(Xt)

)
= lim

s→0+

1

s

(
Exf(Xt+s)− Exf(Xt)

)
= lim

s→0+

1

s
(u(x, t+ s)− u(x, t)) = ∂tu(x, t).

This means u(·, t) ∈ D(A) and the proof is complete.



Feynman-Kac Formula

Theorem
(Feynman-Kac Formula) Let f ∈ C2

0 (Rd) and q ∈ C(Rd). Assume
that q is lower bounded, then

v(x, t) = Ex
(

exp(

∫ t

0

q(Xs)ds)f(Xt)
)

satisfies the PDE

∂tv = Av + qv, v|t=0 = f(x).

I Intuitive explanation: In the absence of Brownian motion,
the SDE becomes dXt

dt = b(Xt),X0 = x and the PDE
becomes

∂tv = b · ∇v + qv, v|t=0 = f(x).

The method of characteristics gives us

v(x, t) = exp(

∫ t

0

q(Xs)ds)f(Xt).
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Feynman-Kac Formula

The Feynmann-Kac formula tells us the solution of that parabolic
PDE can be represented by the ensemble of solution for the ODEs
with stochastic characteristics originated from x.

0

t

Deterministic Characteristics

Stochastic Characteristics

x

(x,t)

Figure: Schematics of Feynmann-Kac formula.



Proof
Let Yt = f(Xt), Zt = exp(

∫ t
0 q(Xs)ds), define v(x, t) = Ex(YtZt).

With the similar reason as the previous section, we have v(x, t) is
differentiable with respect to t and

1

s

(
Exv(Xs, t)− v(x, t)

)
=

1

s

(
ExEXsZtf(Xt)− ExZtf(Xt)

)
=

1

s

(
Ex exp(

∫ t

0

q(Xr+s)dr)f(Xt+s)− ExZtf(Xt)
)

=
1

s
Ex
(

exp(−
∫ s

0

q(Xr)dr)Zt+sf(Xt+s)− Ztf(Xt)
)

=
1

s
Ex
(
Zt+sf(Xt+s)− Ztf(Xt)

)
+

1

s
Ex
(
Zt+sf(Xt+s)(exp(−

∫ s

0

q(Xr)dr)− 1)
)

→ ∂tv − q(x)v(x, t) as s→ 0.

The left hand side is Av(x, t) by definition. The proof is complete.



First exit time

Theorem
Suppose D ⊂ Rd is a bounded open set and the boundary ∂D is of
C2 type. The coefficients b,σ of the SDEs satisfy the Lipschitz
condition on D̄ and the diffusion matrix a is coercive which is
defined as∑

i,j

aij(x)ξiξj ≥ K|ξ|2 for x ∈ D, ξ ∈ Rd, K > 0.

Then for f ∈ C(∂D), the solution of PDE

Au = 0 in D, u = f(x) on ∂D

can be represented as u(x) = Ex
(
f(XτD)

)
, where τD is the first

exit time from domain D defined as τD := inft{t ≥ 0,Xt /∈ D}
and thus XτD is the first exit point.
Specially, if Au = 1

2∆u, then u(x) = Ex
(
f(WτD)

)
.



Heuristic
I Heuristic proof. From PDE theory, one has the solution
u ∈ C2(D) ∩ C(D̄) . So we can apply the Ito’s formula to
u(Xt) and take expectation

Exu(XτD)− u(x) = Ex

∫ τD

0
Au(Xt)dt = 0.

Thus
u(x) = Exu(XτD) = Ex

(
f(XτD)

)
.

I Note that in the above derivations we naively take the
expectation of the stochastic integral term to be zero. But
this is not true in general because τD is a random time. In
fact, it is the result of the following useful Dynkin’s formula.

Lemma (Dynkin’s formula)

Let f ∈ C2
0 (Rd). Suppose τ is a stopping time with Exτ <∞,

then

Exf(Xτ ) = f(x) + Ex

∫ τ

0
Au(Xt)dt.
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On the condition ExτD <∞
I To prove ExτD <∞, we define an auxiliary function
h(x) = −A exp(λx1). Then for sufficiently large A, λ > 0 we
have

Ah(x) =
1

2

∑
ij

aij(x)∂ijh(x)+
∑
i

bi(x)∂ih(x) ≤ −1, x ∈ D.

I By Itô’s formula

Exh(XτD∧T )−h(x) = Ex

∫ τD∧T

0
Ah(Xs)ds ≤ −Ex(τD ∧T )

for any fixed T > 0.

I Since |h(x)| ≤ C for x ∈ D, we have

Ex(τD ∧ T ) ≤ 2C.

Taking T →∞ and using the monotone convergence theorem
we obtain Ex(τD) ≤ 2C.
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