# Lecture 14. SDE and Itô's formula

#### Tiejun Li<sup>1,2</sup>

<sup>1</sup>School of Mathematical Sciences (SMS), & <sup>2</sup>Center for Machine Learning Research (CMLR), Peking University, Beijing 100871, P.R. China tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Table of Contents

White noise

ltô integral

ltô's formula

SDE

Stratonovich integral

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

#### White noise in Physics Literature

In physics literature, the physicists usually use the stochastic differential equations (SDEs) like

$$\dot{X}_t = b(X_t, t) + \sigma(X_t, t)\dot{W}_t, \quad X|_{t=0} = X_0,$$

where  $\dot{W}_t$  is called the temporal Gaussian white noise, which is the formal derivative of the Brownian motion  $W_t$  with respect to time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### White noise in Physics Literature

 In physics literature, the physicists usually use the stochastic differential equations (SDEs) like

$$\dot{X}_t = b(X_t, t) + \sigma(X_t, t)\dot{W}_t, \quad X|_{t=0} = X_0,$$

where  $\dot{W}_t$  is called the temporal Gaussian white noise, which is the formal derivative of the Brownian motion  $W_t$  with respect to time.

Its mathematical description is that it is a Gaussian process with mean and covariance functions as

$$m(t) = \mathbb{E}(\dot{W}_t) = 0, \quad K(s,t) = \mathbb{E}(\dot{W}_s \dot{W}_t) = \delta(t-s).$$

#### White noise in Physics Literature

 In physics literature, the physicists usually use the stochastic differential equations (SDEs) like

$$\dot{X}_t = b(X_t, t) + \sigma(X_t, t)\dot{W}_t, \quad X|_{t=0} = X_0,$$

where  $\dot{W}_t$  is called the temporal Gaussian white noise, which is the formal derivative of the Brownian motion  $W_t$  with respect to time.

Its mathematical description is that it is a Gaussian process with mean and covariance functions as

$$m(t) = \mathbb{E}(\dot{W}_t) = 0, \quad K(s,t) = \mathbb{E}(\dot{W}_s \dot{W}_t) = \delta(t-s).$$

It can be formally understood as

$$m(t) = \frac{d}{dt}\mathbb{E}(W_t) = 0,$$

$$K(s,t) = \frac{\partial^2}{\partial s \partial t} \mathbb{E}(W_s W_t) = \frac{\partial^2}{\partial s \partial t} (s \wedge t) = \delta(t-s).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

#### White noise

From the regularity theory of the Brownian motion, the function W is meaningless since W<sub>t</sub> has less than half order smoothness. In fact, it is not a traditional function but a distribution.

### White noise

- From the regularity theory of the Brownian motion, the function W is meaningless since W<sub>t</sub> has less than half order smoothness. In fact, it is not a traditional function but a distribution.
- However, the rigorous mathematical foundation of the white noise calculus can be also established.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

### White noise

- From the regularity theory of the Brownian motion, the function W is meaningless since W<sub>t</sub> has less than half order smoothness. In fact, it is not a traditional function but a distribution.
- However, the rigorous mathematical foundation of the white noise calculus can be also established.
- In this Lecture, we will only introduce the Itô's classical way to establish the well-posedness of the stochastic differential equations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mathematically, the SDEs are often denoted as

 $dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t,$ 

to avoid the ambiguity of the white noise, where  $W_t$  is the standard Wiener process.  $X_t$  can be viewed as a process induced by  $W_t$ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mathematically, the SDEs are often denoted as

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t,$$

to avoid the ambiguity of the white noise, where  $W_t$  is the standard Wiener process.  $X_t$  can be viewed as a process induced by  $W_t$ .

• The effect of  $b(X_t, t)$  is to drive the mean position of the system, while the effect of  $\sigma(X_t, t)dW_t$  is to diffuse around the mean position.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Mathematically, the SDEs are often denoted as

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t,$$

to avoid the ambiguity of the white noise, where  $W_t$  is the standard Wiener process.  $X_t$  can be viewed as a process induced by  $W_t$ .

- The effect of b(X<sub>t</sub>, t) is to drive the mean position of the system, while the effect of σ(X<sub>t</sub>, t)dW<sub>t</sub> is to diffuse around the mean position.
- One natural way is to define  $X_t$  through its integral form

$$X_t = X_0 + \int_0^t b(X_s, s)ds + \int_0^t \sigma(X_s, s)dW_s.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mathematically, the SDEs are often denoted as

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t,$$

to avoid the ambiguity of the white noise, where  $W_t$  is the standard Wiener process.  $X_t$  can be viewed as a process induced by  $W_t$ .

- The effect of  $b(X_t, t)$  is to drive the mean position of the system, while the effect of  $\sigma(X_t, t)dW_t$  is to diffuse around the mean position.
- One natural way is to define X<sub>t</sub> through its integral form

$$X_t = X_0 + \int_0^t b(X_s, s)ds + \int_0^t \sigma(X_s, s)dW_s.$$

• The first mathematical issue is how to define the integral  $\int_0^t \sigma(X_s, s) dW_s$  involving Brownian motion.

# Table of Contents

White noise

Itô integral

ltô's formula

SDE

Stratonovich integral

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Stochastic Integral: Necessity

First suppose X<sub>t</sub> is continuous with respect to time t. For a fixed sample ω, we borrow the idea for defining the Riemann-Stieljes integral to make the definition

$$\int_0^t \sigma(X_s, s) dW_s = \lim_{|\Delta| \to 0} \sum_j \sigma(X_j, t_j^*) \Big( W_{t_{j+1}} - W_{t_j} \Big),$$

where  $\Delta$  is a subdivision of [0, t],  $X_j$  is the function value  $X_{t_j^*}$ and  $t_j^*$  is chosen from the interval  $[t_j, t_{j+1}]$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Stochastic Integral: Necessity

First suppose X<sub>t</sub> is continuous with respect to time t. For a fixed sample ω, we borrow the idea for defining the Riemann-Stieljes integral to make the definition

$$\int_0^t \sigma(X_s, s) dW_s = \lim_{|\Delta| \to 0} \sum_j \sigma(X_j, t_j^*) \Big( W_{t_{j+1}} - W_{t_j} \Big),$$

where  $\Delta$  is a subdivision of [0, t],  $X_j$  is the function value  $X_{t_j^*}$ and  $t_j^*$  is chosen from the interval  $[t_j, t_{j+1}]$ .

One critical issue about the above definition is that it depends on the choice of t<sup>\*</sup><sub>j</sub> when we are handling W<sub>t</sub>, which has unbounded variation in any interval almost surely.

### **Possible Definitions**

Consider the Riemann-Stieltjes integral to  $\int_a^b f(t) dg(t)$ , where f and g are all assumed continuous. So

$$\int_{a}^{b} f(t)dg(t) \approx \sum_{j} f_{j}\Big(g(t_{j+1}) - g(t_{j})\Big).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

#### **Possible Definitions**

Consider the Riemann-Stieltjes integral to  $\int_a^b f(t)dg(t)$ , where f and g are all assumed continuous. So

$$\int_{a}^{b} f(t)dg(t) \approx \sum_{j} f_{j}\Big(g(t_{j+1}) - g(t_{j})\Big).$$

If one takes another value for  $f_j$  in  $[t_j, t_{j+1}]$  under the same subdivision, then

$$\int_{a}^{b} f(t)dg(t) \approx \sum_{j} \tilde{f}_{j} \Big( g(t_{j+1}) - g(t_{j}) \Big).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

BV case

If g(t) has bounded total variation, we subtract the right hand side of the two definitions and obtain

$$\left|\sum_{j} (f_j - \tilde{f}_j) \left(g(t_{j+1}) - g(t_j)\right)\right|$$
  
$$\leq \max_{j} |f_j - \tilde{f}_j| \sum_{j} \left|g(t_{j+1}) - g(t_j)\right|$$
  
$$\leq \max_{j} |f_j - \tilde{f}_j| V(g; [a, b]) \to 0$$

as  $|\Delta| \to 0$  by the uniform continuity of f on [a, b].

BV case

If g(t) has bounded total variation, we subtract the right hand side of the two definitions and obtain

$$\left|\sum_{j} (f_j - \tilde{f}_j) \left(g(t_{j+1}) - g(t_j)\right)\right|$$
  
$$\leq \max_{j} |f_j - \tilde{f}_j| \sum_{j} |g(t_{j+1}) - g(t_j)|$$
  
$$\leq \max_{j} |f_j - \tilde{f}_j| V(g; [a, b]) \to 0$$

as  $|\Delta| \to 0$  by the uniform continuity of f on [a, b].

Thus we get a well-defined definition which is independent of the choice of reference point in the approximation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

BV case

If g(t) has bounded total variation, we subtract the right hand side of the two definitions and obtain

$$\left|\sum_{j} (f_j - \tilde{f}_j) \left(g(t_{j+1}) - g(t_j)\right)\right|$$
  
$$\leq \max_{j} |f_j - \tilde{f}_j| \sum_{j} |g(t_{j+1}) - g(t_j)|$$
  
$$\leq \max_{j} |f_j - \tilde{f}_j| V(g; [a, b]) \to 0$$

as  $|\Delta| \to 0$  by the uniform continuity of f on [a,b].

- Thus we get a well-defined definition which is independent of the choice of reference point in the approximation.
- If  $g(t) = W_t(\omega)$ , what will happen?

Example

Different choices for the stochastic integral  $\int_0^T W_t dW_t$ .

Example

Different choices for the stochastic integral  $\int_0^T W_t dW_t$ .

• Choice 1: Leftmost endpoint integral.

$$\int_0^T W_t dW_t \approx \sum_j W_{t_j} (W_{t_{j+1}} - W_{t_j}) := I_N^L.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example

Different choices for the stochastic integral  $\int_0^T W_t dW_t$ .

• Choice 1: Leftmost endpoint integral.

$$\int_0^T W_t dW_t \approx \sum_j W_{t_j} (W_{t_{j+1}} - W_{t_j}) := I_N^L.$$

Choice 2: Rightmost endpoint integral.

$$\int_0^T W_t dW_t \approx \sum_j W_{t_{j+1}} (W_{t_{j+1}} - W_{t_j}) := I_N^R.$$

Example

Different choices for the stochastic integral  $\int_0^T W_t dW_t$ .

• Choice 1: Leftmost endpoint integral.

$$\int_0^T W_t dW_t \approx \sum_j W_{t_j} (W_{t_{j+1}} - W_{t_j}) := I_N^L.$$

Choice 2: Rightmost endpoint integral.

$$\int_0^T W_t dW_t \approx \sum_j W_{t_{j+1}} (W_{t_{j+1}} - W_{t_j}) := I_N^R.$$

Choice 3: Midpoint integral.

$$\int_0^T W_t dW_t \approx \sum_j W_{t_{j+\frac{1}{2}}} (W_{t_{j+1}} - W_{t_j}) := I_N^M.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Expectation Check

We have the following identities from the statistical average sense.

$$\begin{split} \mathbb{E}(I_N^L) &= \sum_j \mathbb{E}W_{t_j} \mathbb{E}(W_{t_{j+1}} - W_{t_j}) = 0, \\ \mathbb{E}(I_N^R) &= \sum_j \left[ \mathbb{E}(W_{t_{j+1}} - W_{t_j})^2 + \mathbb{E}W_{t_j} \mathbb{E}(W_{t_{j+1}} - W_{t_j}) \right] \\ &= \sum_j \Delta t_j = T, \\ \mathbb{E}(I_N^M) &= \mathbb{E}\Big[ \sum_j W_{t_{j+\frac{1}{2}}} (W_{t_{j+1}} - W_{t_{j+\frac{1}{2}}}) + \sum_j W_{t_{j+\frac{1}{2}}} (W_{t_{j+\frac{1}{2}}} - W_{t_j}) \Big] \\ &= \sum_j \mathbb{E}(W_{t_{j+\frac{1}{2}}} - W_{t_j})^2 = \sum_j (t_{j+\frac{1}{2}} - t_j) = \frac{T}{2}. \end{split}$$

The reason is that the Brownian motion has unbounded variations for any finite interval. Therefore, we should take special attention to stochastic integrals.

# Remark on Stochastic Integral

#### Remark.

The stochastic integrals can not be defined for arbitrary continuous functions f, otherwise the function g must have bounded variations on compacts (by Banach-Steinhaus Theorem).<sup>1</sup> One rescue is to restrict the integrands to be a special class of functions, the adapted processes. That is the key point of the well-known Itô integral.

<sup>1</sup>P. Protter, Stochastic integration and differential equations, Springer N and Statement Stochastic integration and differential equations, Springer N and Statement Statement

# Remark on Stochastic Integral

#### Remark.

- The stochastic integrals can not be defined for arbitrary continuous functions f, otherwise the function g must have bounded variations on compacts (by Banach-Steinhaus Theorem).<sup>1</sup> One rescue is to restrict the integrands to be a special class of functions, the adapted processes. That is the key point of the well-known Itô integral.
- Different choices of the reference point correspond to different consistent definitions of stochastic integrals, but they can be connected by some simple transformation rules.

<sup>&</sup>lt;sup>1</sup>P. Protter, Stochastic integration and differential equations, Springer > 🚊 🔊 🤉

# Remark on Stochastic Integral

#### Remark.

- The stochastic integrals can not be defined for arbitrary continuous functions f, otherwise the function g must have bounded variations on compacts (by Banach-Steinhaus Theorem).<sup>1</sup> One rescue is to restrict the integrands to be a special class of functions, the adapted processes. That is the key point of the well-known Itô integral.
- Different choices of the reference point correspond to different consistent definitions of stochastic integrals, but they can be connected by some simple transformation rules.
- Next, we take the filtration generated by standard Wiener process as \$\mathcal{F}\_t^W\$. The construction of Itô integral takes the leftmost endpoint approximation

$$\int_0^T f(t,\omega) dW_t \approx \sum_j f_{t_j} (W_{t_{j+1}} - W_{t_j}).$$

# Itô integral for Simple Functions

We first establish Itô integral on simple functions.<sup>2</sup>

•  $f(t,\omega)$  is called a *simple function* if

$$f(t,\omega) = \sum_{j=1}^{n} e_j(\omega) \chi_{[t_j,t_{j+1})}(t),$$

where  $e_j(\omega)$  is  $\mathcal{F}_{t_j}^W$ -measurable and  $\chi_{[t_j,t_{j+1})}(t)$  is the indicator function on  $[t_j,t_{j+1})$ .

 $<sup>^2</sup>$ Karatzas and Shreve, Brownian motion and stochastic calculus, Springer.  ${\tt Brownian}$ 

# Itô integral for Simple Functions

We first establish Itô integral on simple functions.<sup>2</sup>

•  $f(t,\omega)$  is called a *simple function* if

$$f(t,\omega) = \sum_{j=1}^{n} e_j(\omega) \chi_{[t_j,t_{j+1})}(t),$$

where  $e_j(\omega)$  is  $\mathcal{F}_{t_j}^W$ -measurable and  $\chi_{[t_j,t_{j+1})}(t)$  is the indicator function on  $[t_j,t_{j+1})$ .

For simple functions, define

$$\int_0^T f(t,\omega)dW_t = \sum_j e_j(\omega)(W_{t_{j+1}} - W_{t_j})$$

 $<sup>^2</sup>$ Karatzas and Shreve, Brownian motion and stochastic calculus, Springer.  $_{\Xi}$ 

## Properties of Itô integral

#### Lemma

For any  $S \leq T$ , the stochastic integral for the simple functions satisfies

(1) 
$$\mathbb{E}\left(\int_{S}^{T} f(t,\omega)dW_{t}\right) = 0,$$
  
(2) (*Itô isometry*)  $\mathbb{E}\left(\int_{S}^{T} f(t,\omega)dW_{t}\right)^{2} = \mathbb{E}\left(\int_{S}^{T} f^{2}(t,\omega)dt\right).$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

## Properties of Itô integral

#### Lemma

For any  $S \leq T$ , the stochastic integral for the simple functions satisfies

(1) 
$$\mathbb{E}\left(\int_{S}^{T} f(t,\omega)dW_{t}\right) = 0,$$
  
(2) (*Itô isometry*) 
$$\mathbb{E}\left(\int_{S}^{T} f(t,\omega)dW_{t}\right)^{2} = \mathbb{E}\left(\int_{S}^{T} f^{2}(t,\omega)dt\right).$$

**Proof.** The first property is straightforward by the independence between  $\Delta W_j := W_{t_{j+1}} - W_{t_j}$  and  $e_j(\omega)$  and  $\Delta W_j \sim N(0, t_{j+1} - t_j)$ .

#### Properties of Itô integral

For the second property, we have

$$\mathbb{E}\left(\int_{S}^{T} f(t,\omega)dW_{t}\right)^{2} = \mathbb{E}\left(\sum_{j} e_{j}\Delta W_{j}\right)^{2} = \mathbb{E}\left(\sum_{j,k} e_{j}e_{k}\Delta W_{j}\Delta W_{k}\right)$$
$$= \mathbb{E}\left(\sum_{j} e_{j}^{2}\Delta W_{j}^{2} + 2\sum_{j
$$= \sum_{j} \mathbb{E}e_{j}^{2} \cdot \mathbb{E}\Delta W_{j}^{2} + \sum_{j
$$= \sum_{j} \mathbb{E}e_{j}^{2}\Delta t_{j} = \mathbb{E}\left(\int_{S}^{T} f^{2}(t,\omega)dt\right).$$$$$$

The last third identity holds because of the independence between  $\Delta W_k$  and  $e_j e_k \Delta W_j$  for j < k.

# Itô integral: Definition

Now we  $f(t,\omega)$  belongs to the class of functions  $\mathcal{V}[S,T]$  which defined as

(i) f is  $\mathcal{B}([0,\infty)) \times \mathcal{F}$ -measurable as a function from  $(t,\omega)$  to  $\mathbb{R}$ , (ii)  $f(t,\omega)$  is  $\mathcal{F}_t^W$ -adapted,

(iii)  $f \in L_P^2 L_t^2$ , that is  $\mathbb{E}\left(\int_S^T f^2(t,\omega) dt\right) < \infty$ .

# Itô integral: Definition

Now we  $f(t,\omega)$  belongs to the class of functions  $\mathcal{V}[S,T]$  which defined as

(i) f is  $\mathcal{B}([0,\infty)) \times \mathcal{F}$ -measurable as a function from  $(t,\omega)$  to  $\mathbb{R}$ , (ii)  $f(t,\omega)$  is  $\mathcal{F}_t^W$ -adapted,

- (iii)  $f \in L_P^2 L_t^2$ , that is  $\mathbb{E}\left(\int_S^T f^2(t,\omega) dt\right) < \infty$ .
  - $\blacktriangleright$  Recall the approximation property through simple functions  $\phi_n(t,\omega)$

$$\mathbb{E}\left(\int_{S}^{T} (f(t,\omega) - \phi_n(t,\omega))^2 dt\right) \to 0,$$

i.e.  $\phi_n \to f$  in  $L_P^2 L_t^2$ .

# Itô integral: Definition

Now we  $f(t,\omega)$  belongs to the class of functions  $\mathcal{V}[S,T]$  which defined as

(i) f is  $\mathcal{B}([0,\infty)) \times \mathcal{F}$ -measurable as a function from  $(t,\omega)$  to  $\mathbb{R}$ , (ii)  $f(t,\omega)$  is  $\mathcal{F}_t^W$ -adapted,

(iii)  $f \in L_P^2 L_t^2$ , that is  $\mathbb{E}\left(\int_S^T f^2(t,\omega)dt\right) < \infty$ .

▶ Recall the approximation property through simple functions  $\phi_n(t,\omega)$ 

$$\mathbb{E}\left(\int_{S}^{T} (f(t,\omega) - \phi_n(t,\omega))^2 dt\right) \to 0,$$

i.e.  $\phi_n \to f$  in  $L_P^2 L_t^2$ .

We define the Itô integral as

$$\int_{S}^{T} f(t,\omega) dW_{t} = \lim_{n \to \infty} \int_{S}^{T} \phi_{n}(t,\omega) dW_{t} \quad \text{in} \quad L_{P}^{2}.$$

From the Itô isometry,  $\int_S^T \phi_n(t,\omega) dW_t$  is in  $L_P^2$  for any simple function  $\phi_n(t,\omega)$  and

$$\mathbb{E}\left(\int_{S}^{T}\phi_{n}dW_{t}-\int_{S}^{T}\phi_{m}dW_{t}\right)^{2}=\mathbb{E}\left(\int_{S}^{T}(\phi_{n}-\phi_{m})^{2}dt\right).$$

From the Itô isometry,  $\int_S^T \phi_n(t,\omega) dW_t$  is in  $L_P^2$  for any simple function  $\phi_n(t,\omega)$  and

$$\mathbb{E}\Big(\int_{S}^{T}\phi_{n}dW_{t}-\int_{S}^{T}\phi_{m}dW_{t}\Big)^{2}=\mathbb{E}\left(\int_{S}^{T}(\phi_{n}-\phi_{m})^{2}dt\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The approximation sequence  $\{\phi_n\}$  is a Cauchy sequence in  $L_P^2(\Omega; L_t^2[S, T])$ . This implies  $\{\int_S^T \phi_n dW_t\}$  is also a Cauchy sequence in  $L_P^2$ .

From the Itô isometry,  $\int_S^T \phi_n(t,\omega) dW_t$  is in  $L_P^2$  for any simple function  $\phi_n(t,\omega)$  and

$$\mathbb{E}\Big(\int_{S}^{T}\phi_{n}dW_{t}-\int_{S}^{T}\phi_{m}dW_{t}\Big)^{2}=\mathbb{E}\left(\int_{S}^{T}(\phi_{n}-\phi_{m})^{2}dt\right).$$

- The approximation sequence  $\{\phi_n\}$  is a Cauchy sequence in  $L^2_P(\Omega; L^2_t[S, T])$ . This implies  $\{\int_S^T \phi_n dW_t\}$  is also a Cauchy sequence in  $L^2_P$ .
- From the completeness of L<sup>2</sup><sub>P</sub>(Ω), it has a unique limit and we define it as

$$\int_{S}^{T} f(t,\omega) dW_t$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From the Itô isometry,  $\int_S^T \phi_n(t,\omega) dW_t$  is in  $L_P^2$  for any simple function  $\phi_n(t,\omega)$  and

$$\mathbb{E}\Big(\int_{S}^{T}\phi_{n}dW_{t}-\int_{S}^{T}\phi_{m}dW_{t}\Big)^{2}=\mathbb{E}\left(\int_{S}^{T}(\phi_{n}-\phi_{m})^{2}dt\right).$$

- The approximation sequence  $\{\phi_n\}$  is a Cauchy sequence in  $L^2_P(\Omega; L^2_t[S, T])$ . This implies  $\{\int_S^T \phi_n dW_t\}$  is also a Cauchy sequence in  $L^2_P$ .
- From the completeness of L<sup>2</sup><sub>P</sub>(Ω), it has a unique limit and we define it as

$$\int_{S}^{T} f(t,\omega) dW_t$$

The independence on the choice of the approximating sequence {φ<sub>n</sub>} is left as an exercise.

# Itô Isometry

Theorem For  $f \in \mathcal{V}[S,T]$ , the Itô integral satisfies

(1) 
$$\mathbb{E}\left(\int_{S}^{T} f(t,\omega)dW_{t}\right) = 0,$$
  
(2) (*Itô isometry*) 
$$\mathbb{E}\left(\int_{S}^{T} f(t,\omega)dW_{t}\right)^{2} = \mathbb{E}\left(\int_{S}^{T} f^{2}(t,\omega)dt\right).$$

Proof. Firstly,

$$\left| \mathbb{E} \left( \int_{S}^{T} f(t, \omega dW_{t}) \right| = \left| \mathbb{E} \left( \int_{S}^{T} f(t, \omega) dW_{t} - \int_{S}^{T} \phi_{n}(t, \omega) dW_{t} \right) \right|$$
$$\leq \left( \mathbb{E} \left( \int_{S}^{T} f(t, \omega) dW_{t} - \int_{S}^{T} \phi_{n}(t, \omega) dW_{t} \right)^{2} \right)^{\frac{1}{2}} \to 0$$

by Hölder's inequality.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

### Ito Isometry

It is a standard result that if  $X_n \to X$  in a Hilbert space H, then  $|X_n| \to |X|$  and thus  $|X_n|^2 \to |X|^2$ , where  $|\cdot|$  is the corresponding norm in Hilbert space H.

#### Ito Isometry

It is a standard result that if  $X_n \to X$  in a Hilbert space H, then  $|X_n| \to |X|$  and thus  $|X_n|^2 \to |X|^2$ , where  $|\cdot|$  is the corresponding norm in Hilbert space H.

So we have

$$\mathbb{E}\left(\int_{S}^{T}\phi_{n}(t,\omega)dW_{t}\right)^{2} \to \mathbb{E}\left(\int_{S}^{T}f(t,\omega)dW_{t}\right)^{2} \qquad \text{in } L^{2}_{P}(\Omega)$$

and

$$\mathbb{E}\left(\int_{S}^{T}\phi_{n}^{2}(t,\omega)dt\right)\to\mathbb{E}\left(\int_{S}^{T}f^{2}(t,\omega)dt\right)\qquad\text{in }L_{P}^{2}(\Omega;L_{t}^{2}[S,T])$$

From the Itô isometry for simple functions, we obtain Itô isometry for  $f \in \mathcal{V}[S,T].$ 

#### Itô integral: Properties

The properties of the Itô integral

# Proposition For $f, g \in \mathcal{V}[S, T]$ and $U \in [S, T]$ , we have (i) $\int_{S}^{T} f dW_{t} = \int_{S}^{U} f dW_{t} + \int_{U}^{T} f dW_{t}$ a.s.. (ii) $\int_{S}^{T} (f + cg) dW_{t} = \int_{S}^{T} f dW_{t} + c \int_{S}^{T} g dW_{t}$ (c is a constant) a.s.. (iii) $\int_{S}^{T} f dW_{t}$ is $\mathcal{F}_{t}^{W}$ -measurable.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

# Itô integral: Properties

The properties of the Itô integral

Proposition  
For 
$$f, g \in \mathcal{V}[S, T]$$
 and  $U \in [S, T]$ , we have  
(i)  $\int_{S}^{T} f dW_{t} = \int_{S}^{U} f dW_{t} + \int_{U}^{T} f dW_{t}$  a.s..  
(ii)  $\int_{S}^{T} (f + cg) dW_{t} = \int_{S}^{T} f dW_{t} + c \int_{S}^{T} g dW_{t}$  (c is a constant) a.s..  
(iii)  $\int_{S}^{T} f dW_{t}$  is  $\mathcal{F}_{t}^{W}$ -measurable.

#### Lemma

For  $f \in \mathcal{V}[0,T]$ ,  $X_t := \int_0^t f(s,\omega) dW_s$  has continuous trajectories in the almost sure sense.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Itô integral: Properties

One can define the multi-dimensional Itô integral  $\int_0^T \boldsymbol{\sigma}(t,\omega) \cdot d\boldsymbol{W}_t$ . To compute their expectation, we have the similar property as the Ito isometry

$$\mathbb{E}\left(\int_{S}^{T}\sigma(t,\omega)dW_{t}^{j}\right) = 0,$$
$$\mathbb{E}\left(\int_{S}^{T}\sigma(t,\omega)dW_{t}^{j}\right)^{2} = \mathbb{E}\left(\int_{S}^{T}\sigma^{2}(t,\omega)dt\right), \quad \forall j.$$

and especially the cross product expectation

$$\mathbb{E}\left(\int_{S}^{T}\sigma_{1}(t,\omega)dW_{t}^{i}\cdot\int_{S}^{T}\sigma_{2}(t,\omega)dW_{t}^{j}\right) = 0, \quad \forall i \neq j,$$
$$\mathbb{E}\left(\int_{S}^{T}\sigma_{1}(t,\omega)dW_{t}^{j}\int_{S}^{T}\sigma_{2}(t,\omega)dW_{t}^{j}\right) = \mathbb{E}\left(\int_{S}^{T}\sigma_{1}(t,\omega)\sigma_{2}(t,\omega)dt\right)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Itô integral: Example

Example With Itô integral we have

$$\int_{0}^{t} W_{s} dW_{s} = \frac{W_{t}^{2}}{2} - \frac{t}{2}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

#### Itô integral: Example

Example With Itô integral we have

$$\int_{0}^{t} W_{s} dW_{s} = \frac{W_{t}^{2}}{2} - \frac{t}{2}.$$

Proof. From the definition of Itô integral

$$\int_{0}^{t} W_{s} dW_{s} \approx \sum_{j} W_{t_{j}} (W_{t_{j+1}} - W_{t_{j}}) = \sum_{j} \frac{2W_{t_{j}} W_{t_{j+1}} - 2W_{t_{j}}^{2}}{2}$$
$$= \sum_{j} \frac{W_{t_{j+1}}^{2} - W_{t_{j}}^{2}}{2} - \sum_{j} \frac{W_{t_{j+1}}^{2} - 2W_{t_{j+1}} W_{t_{j}} + W_{t_{j}}^{2}}{2}$$
$$= \frac{W_{t}^{2}}{2} - \frac{1}{2} \sum_{j} (W_{t_{j+1}} - W_{t_{j}})^{2} \rightarrow \frac{W_{t}^{2}}{2} - \frac{t}{2},$$

where the last limit is due to the fact  $\langle W, W \rangle_{t_{\Box}} = t_{\Box}$ ,  $t_{\Box}$ 

# Table of Contents

White noise

ltô integral

Itô's formula

SDE

Stratonovich integral

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

### Itô's formula: Simplest Case

 $\blacktriangleright$  Let's take the differential form of  $\int_0^t W_s dW_s = \frac{W_t^2}{2} - \frac{t}{2}$  , then we have

$$dW_t^2 = 2W_t dW_t + dt.$$

### Itô's formula: Simplest Case

▶ Let's take the differential form of  $\int_0^t W_s dW_s = \frac{W_t^2}{2} - \frac{t}{2}$ , then we have

$$dW_t^2 = 2W_t dW_t + dt.$$

▶ It is different from the traditional Newton-Leibnitz calculus which suggests  $dW_t^2 = 2W_t dW_t$  with chain rule.

#### Itô's formula: Simplest Case

▶ Let's take the differential form of  $\int_0^t W_s dW_s = \frac{W_t^2}{2} - \frac{t}{2}$ , then we have

$$dW_t^2 = 2W_t dW_t + dt.$$

▶ It is different from the traditional Newton-Leibnitz calculus which suggests  $dW_t^2 = 2W_t dW_t$  with chain rule.

#### Proposition

For any bounded and continuous function  $f(t,\omega)$  in t,

$$\sum_{j} f(t_j^*, \omega) (W_{t_{j+1}} - W_{t_j})^2 \to \int_0^t f(s, \omega) ds, \quad \forall t_j^* \in [t_j, t_{j+1}]$$

in probability when the subdivision size goes to zero. We simply denoted it as  $(dW_t)^2 = dt$ . **Proof.** Using the uniform continuity of f on [0, t], we have

$$\begin{split} & \mathbb{E}\left(\sum_{j} f(t_{j})\Delta W_{t_{j}}^{2} - \sum_{j} f(t_{j})\Delta t_{j}\right)^{2} \\ = & \mathbb{E}\left(\sum_{j,k} f(t_{j})f(t_{k})(\Delta W_{t_{j}}^{2} - \Delta t_{j})(\Delta W_{t_{k}}^{2} - \Delta t_{k})\right) \\ & = & \mathbb{E}\left(\sum_{j} f^{2}(t_{j}) \cdot \mathbb{E}\left((\Delta W_{t_{j}}^{2} - \Delta t_{j})^{2}|\mathcal{F}_{t_{j}}\right)\right) \\ & = & 2\sum_{j} \mathbb{E}f^{2}(t_{j})\Delta t_{j}^{2} \to 0. \end{split}$$

At the same time, we have

$$|\sum_{j} (f(t_{j}^{*}) - f(t_{j})) \Delta W_{t_{j}}^{2}| \leq \sup_{j} |f(t_{j}^{*}) - f(t_{j})| \cdot \sum_{j} \Delta W_{t_{j}}^{2}.$$

The second term of the RHS converges to the quadratic variation of  $W_t$  in probability. Combining the results above leads to the desired conclusion.

#### Itô process

Now let us consider the Itô process defined as

$$X_t = X_0 + \int_0^t b(s,\omega)ds + \int_0^t \sigma(s,\omega)dW_s,$$

which is usually denoted as

$$dX_t = b(t,\omega)dt + \sigma(t,\omega)dW_t, \quad X_t|_{t=0} = X_0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for  $\sigma \in \mathcal{W}[0,T]$ , b is  $\mathcal{F}_t$ -adapted and  $\int_0^T |b(t,\omega)| dt < \infty$  a.s.

#### Theorem (1D ltô's formula)

If  $X_t$  is an Itô process,  $Y_t = f(X_t)$  where f is a twice differentiable function. Then  $Y_t$  is also an Itô process and

$$dY_t = f'(X_t)dX_t + \frac{1}{2}f''(X_t)(dX_t)^2,$$

where the rule of simplification is  $dt^2 = 0$ ,  $dtdW_t = dW_t dt = 0$ and  $(dW_t)^2 = dt$ , i.e.

$$(dX_t)^2 = (bdt + \sigma dW_t)^2 = b^2 dt^2 + 2b\sigma dt dW_t + \sigma^2 (dW_t)^2 = \sigma^2 dt.$$

Thus finally

$$dY_t = \left(b(t,\omega)f'(X_t) + \frac{1}{2}\sigma^2(t,\omega)f''(X_t)\right)dt + \sigma(t,\omega)f'(X_t)dW_t.$$

**Sketch of Proof**. We will only consider the situation that f, f' and f'' are bounded and continuous here.

• At first, if b and  $\sigma$  are simple functions, we have

$$Y_t - Y_0 = \sum_j (f(X_{t_{j+1}}) - f(X_{t_j}))$$
  
=  $\sum_j \left( f'(X_{t_j}) \Delta X_{t_j} + \frac{1}{2} f''(X_{t_j}) \Delta X_{t_j}^2 + R_j \right),$ 

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where  $\Delta X_{t_j} = X_{t_{j+1}} - X_{t_j}$  and  $R_j = o(|\Delta X_{t_j}|^2)$ .

**Sketch of Proof**. We will only consider the situation that f, f' and f'' are bounded and continuous here.

• At first, if b and  $\sigma$  are simple functions, we have

$$Y_t - Y_0 = \sum_j (f(X_{t_{j+1}}) - f(X_{t_j}))$$
  
=  $\sum_j \left( f'(X_{t_j}) \Delta X_{t_j} + \frac{1}{2} f''(X_{t_j}) \Delta X_{t_j}^2 + R_j \right),$ 

where  $\Delta X_{t_j} = X_{t_{j+1}} - X_{t_j}$  and  $R_j = o(|\Delta X_{t_j}|^2)$ .

Without loss of generality we assume the discontinuity of the step functions are embedded in the current subdivision grid points.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**Sketch of Proof**. We will only consider the situation that f, f' and f'' are bounded and continuous here.

• At first, if b and  $\sigma$  are simple functions, we have

$$Y_t - Y_0 = \sum_j (f(X_{t_{j+1}}) - f(X_{t_j}))$$
  
=  $\sum_j \left( f'(X_{t_j}) \Delta X_{t_j} + \frac{1}{2} f''(X_{t_j}) \Delta X_{t_j}^2 + R_j \right),$ 

where  $\Delta X_{t_j} = X_{t_{j+1}} - X_{t_j}$  and  $R_j = o(|\Delta X_{t_j}|^2)$ .

- Without loss of generality we assume the discontinuity of the step functions are embedded in the current subdivision grid points.
- We obtain

$$\sum_{j} f'(X_{t_j}) \Delta X_{t_j} = \sum_{j} f'(X_{t_j}) b(t_j) \Delta t_j + \sum_{j} f'(X_{t_j}) \sigma(t_j) \Delta W_{t_j}$$
$$\rightarrow \int_0^t b(s) f'(X_s) ds + \int_0^t \sigma(s) f'(X_s) dW_s$$



$$\sum_{j} f''(X_{t_j}) \Delta X_{t_j}^2$$
  
=  $\sum_{j} f''(X_{t_j}) \left( b^2(t_j) \Delta t_j^2 + 2b(t_j) \sigma(t_j) \Delta t_j \Delta W_{t_j} + \sigma^2(t_j) \Delta W_{t_j}^2 \right).$ 

・ロト・日本・日本・日本・日本・日本

And

$$\sum_{j} f''(X_{t_j}) \Delta X_{t_j}^2$$
  
=  $\sum_{j} f''(X_{t_j}) \left( b^2(t_j) \Delta t_j^2 + 2b(t_j) \sigma(t_j) \Delta t_j \Delta W_{t_j} + \sigma^2(t_j) \Delta W_{t_j}^2 \right).$ 

 $\blacktriangleright$  Set K be the bound of  $b,\,\sigma$  and f'', we have

$$\left|\sum_{j} f''(X_{t_j})b^2(t_j)\Delta t_j^2\right| \le K \sum_{j} \Delta t_j^2 \le KT \sup_{j} \Delta t_j \to 0,$$

$$|\sum_{j} f''(X_{t_j})b(t_j)\sigma(t_j)\Delta t_j\Delta W_{t_j}| \le K \sum_{j} |\Delta t_j\Delta W_{t_j}| \le KT \sup_{j} |\Delta W_{t_j}| \to 0$$

$$\sum_{j} f''(X_{t_j})\sigma^2(t_j)\Delta W_{t_j}^2 \to \int_0^t \sigma^2(s)f''(X_s)ds \quad \text{in} \quad L_P^2.$$

And

$$\sum_{j} f''(X_{t_j}) \Delta X_{t_j}^2$$
  
=  $\sum_{j} f''(X_{t_j}) \left( b^2(t_j) \Delta t_j^2 + 2b(t_j) \sigma(t_j) \Delta t_j \Delta W_{t_j} + \sigma^2(t_j) \Delta W_{t_j}^2 \right).$ 

• Set K be the bound of b,  $\sigma$  and f'', we have

$$\left|\sum_{j} f''(X_{t_j}) b^2(t_j) \Delta t_j^2\right| \le K \sum_{j} \Delta t_j^2 \le KT \sup_{j} \Delta t_j \to 0,$$

$$|\sum_{j} f''(X_{t_j})b(t_j)\sigma(t_j)\Delta t_j\Delta W_{t_j}| \le K\sum_{j} |\Delta t_j\Delta W_{t_j}| \le KT \sup_{j} |\Delta W_{t_j}| \to 0$$

$$\sum_{j} f''(X_{t_j})\sigma^2(t_j)\Delta W_{t_j}^2 \to \int_0^t \sigma^2(s)f''(X_s)ds \quad \text{in} \quad L_P^2.$$

The general situation can be done by taking approximation through simple functions.

#### Theorem (Multidimensional Itô formula)

If  $d\mathbf{X}_t = \mathbf{b}(t, \omega)dt + \boldsymbol{\sigma}(t, \omega) \cdot d\mathbf{W}_t$ , where  $\mathbf{X}_t \in \mathbb{R}^n$ ,  $\boldsymbol{\sigma} \in \mathbb{R}^{n \times m}$ ,  $\mathbf{W} \in \mathbb{R}^m$ . Define  $Y_t = f(\mathbf{X}_t)$ , where  $f \in C^2(\mathbb{R}^n)$ . Then

$$dY_t = \nabla f(\boldsymbol{X}_t) \cdot d\boldsymbol{X}_t + \frac{1}{2} (d\boldsymbol{X}_t)^T \cdot \nabla^2 f(\boldsymbol{X}_t) \cdot (d\boldsymbol{X}_t),$$

where the rule of simplification is  $dt^2 = 0$ ,  $(dW_t^i)^2 = dt$ ,  $dtdW_t^i = dW_t^i dt = dW_t^i dW_t^j = 0$  ( $i \neq j$ ). That is

$$(d\mathbf{X}_t)^T \cdot \nabla^2 f(\mathbf{X}_t) \cdot (d\mathbf{X}_t) = \sum_{l,k,i,j} dW_t^l \sigma_{il} \partial_{ij}^2 f \sigma_{jk} dW_t^k$$
$$= \sum_{k,i,j} \sigma_{ik} \sigma_{jk} \partial_{ij}^2 f dt = \boldsymbol{\sigma} \boldsymbol{\sigma}^T : \nabla^2 f dt,$$

where  $A : B = \sum_{ij} a_{ij}b_{ji}$  is the twice contraction for second order tensors. Finally

$$dY_t = (\boldsymbol{b} \cdot \nabla f + \frac{1}{2}\boldsymbol{\sigma}\boldsymbol{\sigma}^T : \nabla^2 f)dt + \nabla f \cdot \boldsymbol{\sigma} \cdot d\boldsymbol{W}_t.$$

Itô's formula: Applications

Example

Integration by part

$$\int_0^t s dW_s = tW_t - \int_0^t W_s ds.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Itô's formula: Applications

Example

Integration by part

$$\int_0^t s dW_s = tW_t - \int_0^t W_s ds.$$

**Proof**. Define f(x, y) = xy,  $X_t = t$ ,  $Y_t = W_t$ , then from multidimensional Itô's formula

$$df(X_t, Y_t) = X_t dY_t + Y_t dX_t + dX_t dY_t.$$

With the rule  $dt dW_t = 0$ , we obtain  $d(tW_t) = t dW_t + W_t dt$  and the result follows.

#### Example Iterated Itô integrals

$$\int_0^t dW_{t_1} \int_0^{t_1} dW_{t_2} \dots \int_0^{t_{n-1}} dW_{t_n} = \frac{1}{n!} t^{\frac{n}{2}} h_n\left(\frac{W_t}{\sqrt{t}}\right),$$

where  $h_n(x)$  is the *n*-th order Hermite polynomial

$$h_n(x) = (-1)^n e^{\frac{1}{2}x^2} \frac{d^n}{dx^n} \left( e^{-\frac{1}{2}x^2} \right)$$

.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Example Iterated Itô integrals

$$\int_0^t dW_{t_1} \int_0^{t_1} dW_{t_2} \dots \int_0^{t_{n-1}} dW_{t_n} = \frac{1}{n!} t^{\frac{n}{2}} h_n\left(\frac{W_t}{\sqrt{t}}\right),$$

where  $h_n(x)$  is the *n*-th order Hermite polynomial

$$h_n(x) = (-1)^n e^{\frac{1}{2}x^2} \frac{d^n}{dx^n} \left( e^{-\frac{1}{2}x^2} \right).$$

**Proof**. It is easy to verify that

$$\int_0^t W_s dW_s = \frac{t}{2!} h_2 \left(\frac{W_t}{\sqrt{t}}\right),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where  $h_2(x) = x^2 - 1$  is the second order Hermite polynomial.

In the same fashion, we have

$$\int_0^t \left( \int_0^s W_u dW_u \right) dW_s = \frac{1}{2} \int_0^t (W_s^2 - s) dW_s.$$

In the same fashion, we have

$$\int_0^t \left( \int_0^s W_u dW_u \right) dW_s = \frac{1}{2} \int_0^t (W_s^2 - s) dW_s.$$

Using Itô's formula, we have

$$\int_0^t W_s^2 dW_s = \frac{1}{3}W_t^3 - \int_0^t W_s ds.$$

(ロ)、(型)、(E)、(E)、 E) の(()

In the same fashion, we have

$$\int_0^t \left( \int_0^s W_u dW_u \right) dW_s = \frac{1}{2} \int_0^t (W_s^2 - s) dW_s.$$

Using Itô's formula, we have

$$\int_{0}^{t} W_{s}^{2} dW_{s} = \frac{1}{3} W_{t}^{3} - \int_{0}^{t} W_{s} ds.$$

Hence, using the previous example we obtain

$$\int_0^t \left( \int_0^s W_u dW_u \right) dW_s = \frac{1}{6} W_t^3 - \frac{1}{2} t W_t = \frac{1}{3!} t^{\frac{3}{2}} h_3 \left( \frac{W_t}{\sqrt{t}} \right),$$

where  $h_3(x) = x^3 - 3x$  is the third order Hermite polynomial. The general case is left as an exercise.

# Table of Contents

White noise

ltô integral

ltô's formula

SDE

Stratonovich integral

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

#### SDE: Wellposed-ness

We fist establish the classical well-posedness result for the stochastic differential equation.

$$dX_t = b(X_t, t)dt + \sigma(X_t, t) \cdot dW_t,$$

#### Theorem

Let  $X \in \mathbb{R}^n, W \in \mathbb{R}^m$ . Suppose the coefficients  $b \in \mathbb{R}^n$ ,  $\sigma \in \mathbb{R}^{n \times m}$  satisfy global Lipschitz and linear growth conditions as

$$\begin{aligned} |\boldsymbol{b}(\boldsymbol{x},t) - \boldsymbol{b}(\boldsymbol{y},t)| + |\boldsymbol{\sigma}(\boldsymbol{x},t) - \boldsymbol{\sigma}(\boldsymbol{y},t)| &\leq K |\boldsymbol{x} - \boldsymbol{y}|, \\ |\boldsymbol{b}(\boldsymbol{x},t)|^2 + |\boldsymbol{\sigma}(\boldsymbol{x},t)|^2 &\leq K (1 + |\boldsymbol{x}|^2) \end{aligned}$$

for any  $x, y \in \mathbb{R}^n, t \in [0, T]$ , where K is a positive constant and  $|\cdot|$  means the Frobenius norm. Assume the initial value  $X_0 = \xi$  is a random variable which is independent of  $\mathcal{F}^{W}_{\infty}$  and satisfies  $\mathbb{E}|\xi|^2 < \infty$ . Then SDE has a unique t-continuous solution  $X_t \in \mathcal{V}[0,T]$ .

## Diffusion process

The SDEs driven by Wiener processes is the typical Markov process which is also called the *diffusion processes* in stochastic analysis.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## Diffusion process

- The SDEs driven by Wiener processes is the typical Markov process which is also called the *diffusion processes* in stochastic analysis.
- ► The diffusion process is defined for a Markov process {X<sub>t</sub>} with continuous trajectory and its transition density p(x,t|y,s) (t≥s) satisfies the following conditions for any e > 0:

$$\lim_{t \to s} \frac{1}{t-s} \int_{|\boldsymbol{x}-\boldsymbol{y}| < \epsilon} (\boldsymbol{x}-\boldsymbol{y}) p(\boldsymbol{x},t|\boldsymbol{y},s) d\boldsymbol{x} = \boldsymbol{b}(\boldsymbol{y},s) + O(\epsilon),$$

$$\lim_{t \to s} \frac{1}{t-s} \int_{|\boldsymbol{x}-\boldsymbol{y}| < \epsilon} (\boldsymbol{x}-\boldsymbol{y}) (\boldsymbol{x}-\boldsymbol{y})^T p(\boldsymbol{x},t|\boldsymbol{y},s) d\boldsymbol{x} = \boldsymbol{a}(\boldsymbol{y},s) + O(\epsilon).$$

b(y, s) is called the drift of the considered diffusion process and a(y, s) is called the diffusion matrix at time s and position y.

Example (Ornstein-Uhlenbeck process)

 $dX_t = -\gamma X_t dt + \sigma dW_t.$ 

The Ornstein-Uhlenbeck process (OU process) has fundamental importance in statistical physics since it serves as the simplest model for many complex diffusion dynamics.

Example (Ornstein-Uhlenbeck process)

$$dX_t = -\gamma X_t dt + \sigma dW_t.$$

The Ornstein-Uhlenbeck process (OU process) has fundamental importance in statistical physics since it serves as the simplest model for many complex diffusion dynamics.

Solution. The SDE is equivalent to

$$dX_t + \gamma X_t dt = \sigma dW_t.$$

By applying Ito's formula to  $e^{\gamma t}X_t$ , we get

$$d(e^{\gamma t}X_t) = \gamma e^{\gamma t}X_t dt + e^{\gamma t} dX_t.$$

Integrating from 0 to t we have

$$e^{\gamma t}X_t - X_0 = \int_0^t (\gamma e^{\gamma s}X_s ds + e^{\gamma s} dX_s) = \int_0^t \sigma e^{\gamma s} dW_s.$$

Thus the solution is

$$X_t = e^{-\gamma t} X_0 + \sigma \int_0^t e^{-\gamma (t-s)} dW_s.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thus the solution is

$$X_t = e^{-\gamma t} X_0 + \sigma \int_0^t e^{-\gamma(t-s)} dW_s.$$

Define  $Q_t := \int_0^t e^{-\gamma(t-s)} dW_s$ , then it is easy to show that  $Q_t$  is a Gaussion process with

$$\mathbb{E}Q_t = 0, \qquad \mathbb{E}Q_t^2 = \int_0^t \mathbb{E}e^{-2\gamma(t-s)}ds = \frac{1}{2\gamma}(1 - e^{-2\gamma t}).$$

Therefore,  $X_t$  is also a Gaussian process if  $X_0$  is Gaussian, and the limit behavior of  $X_t$  is

$$X_t \xrightarrow{d} N\left(0, \frac{\sigma^2}{2\gamma}\right), \qquad (t \to +\infty).$$

This equation is called the SDE with additive noise since the coefficient of  $dW_t$  term is just a constant.

Example (Geometric Brownian motion)

 $dN_t = rN_t dt + \alpha N_t dW_t, \quad r, \alpha > 0.$ 

This model has strong background in mathematical finance, in which  $N_t$  represents the asset price, r is the interest rate and  $\alpha$  is called the volatility.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example (Geometric Brownian motion)

 $dN_t = rN_t dt + \alpha N_t dW_t, \quad r, \alpha > 0.$ 

This model has strong background in mathematical finance, in which  $N_t$  represents the asset price, r is the interest rate and  $\alpha$  is called the volatility.

**Solution.** Divide  $N_t$  to both sides we have  $dN_t/N_t = rdt + \alpha dW_t$ . In deterministic calculus  $1/N_t dN_t = d(\log N_t)$ , so we apply Ito's formula to  $\log N_t$ , then

$$d(\log N_t) = \frac{1}{N_t} dN_t - \frac{1}{2N_t^2} (dN_t)^2$$
  
=  $\frac{1}{N_t} dN_t - \frac{1}{2N_t^2} \alpha^2 N_t^2 dt$   
=  $\frac{1}{N_t} dN_t - \frac{\alpha^2}{2} dt.$ 

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目・ のへぐ

Substitute the equation of  $dN_t$  we get

$$d(\log N_t) = (r - \frac{\alpha^2}{2})dt + \alpha dW_t.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Substitute the equation of  $dN_t$  we get

$$d(\log N_t) = (r - \frac{\alpha^2}{2})dt + \alpha dW_t.$$

Integrate from 0 to t to both sides

$$\log N_t - \log N_0 = \left(r - \frac{\alpha^2}{2}\right)t + \alpha W_t,$$
$$N_t = N_0 \exp\left\{\left(r - \frac{\alpha^2}{2}\right)t + \alpha W_t\right\}.$$

This equation is called the SDE with multiplicative noise since the coefficient of  $dW_t$  term depends on  $N_t$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Langevin equation

### Example (Langevin equation)

Mathematically a mesoscopic particle obeys the following well-known Langevin equation by Newton's Second Law

$$\begin{cases} d\boldsymbol{X}_t &= \boldsymbol{V}_t dt, \\ m d\boldsymbol{V}_t &= \left(-\gamma \boldsymbol{V}_t - \nabla V(\boldsymbol{X}_t)\right) dt + \sqrt{2\sigma} d\boldsymbol{W}_t, \end{cases}$$

where  $\gamma$  is frictional coefficient,  $V(\mathbf{X})$  is external potential,  $\mathbf{W}_t$  is standard Wiener process, and  $\sigma$  is the strength of fluctuating force.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Langevin equation

### Example (Langevin equation)

Mathematically a mesoscopic particle obeys the following well-known Langevin equation by Newton's Second Law

$$\begin{cases} d\boldsymbol{X}_t &= \boldsymbol{V}_t dt, \\ m d\boldsymbol{V}_t &= \left(-\gamma \boldsymbol{V}_t - \nabla V(\boldsymbol{X}_t)\right) dt + \sqrt{2\sigma} d\boldsymbol{W}_t, \end{cases}$$

where  $\gamma$  is frictional coefficient,  $V(\mathbf{X})$  is external potential,  $\mathbf{W}_t$  is standard Wiener process, and  $\sigma$  is the strength of fluctuating force. In the case that the external force is zero, we have

$$mdV_t = -\gamma V_t dt + \sqrt{2\sigma} dW_t.$$

This is exactly an Ornstein-Uhlenbeck process for  $V_t$ .

▶ In the limit  $t \to \infty$ , we have

$$\langle \frac{1}{2}m\boldsymbol{V}^2\rangle = \frac{3\sigma}{2\gamma}.$$

(ロ)、(型)、(E)、(E)、 E) の(()

• In the limit  $t \to \infty$ , we have

$$\langle \frac{1}{2}mV^2 
angle = \frac{3\sigma}{2\gamma}.$$

From equilibrium thermodynamics, the average kinetic energy must obey the rule

$$\langle \frac{1}{2}m\boldsymbol{V}^2 \rangle = \frac{3k_BT}{2}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• In the limit  $t \to \infty$ , we have

$$\langle \frac{1}{2}mV^2 \rangle = \frac{3\sigma}{2\gamma}.$$

 From equilibrium thermodynamics, the average kinetic energy must obey the rule

$$\langle \frac{1}{2}m\boldsymbol{V}^2 \rangle = \frac{3k_BT}{2}.$$

Thus we obtain the well-known fluctuation-dissipation relation:

$$\sigma = k_B T \gamma.$$

• In the limit  $t \to \infty$ , we have

$$\langle rac{1}{2}mm{V}^2
angle = rac{3\sigma}{2\gamma}$$

 From equilibrium thermodynamics, the average kinetic energy must obey the rule

$$\langle \frac{1}{2}m\boldsymbol{V}^2 \rangle = \frac{3k_BT}{2}.$$

Thus we obtain the well-known fluctuation-dissipation relation:

$$\sigma = k_B T \gamma.$$

It can be proved that in this case the diffusion coefficient

$$D := \lim_{t \to \infty} \frac{\langle (\boldsymbol{X}_t - \boldsymbol{X}_0)^2 \rangle}{6t} = \frac{k_B T}{\gamma}$$

which is called Einstein's relation.

### Example (Brownian dynamics)

In the high  $\gamma$  case, the velocity  $V_t$  will always stay at an equilibrium Gaussian distribution, which means formally we can take  $dV_t = 0$ . Then the Langevin equation is approximated by

$$d\boldsymbol{X}_t = -\frac{1}{\gamma} \nabla V(\boldsymbol{X}_t) dt + \sqrt{\frac{2k_B T}{\gamma}} d\boldsymbol{W}_t,$$

which is called Brownian dynamics or Smoluchowski approximation.

A D N A 目 N A E N A E N A B N A C N

# Table of Contents

White noise

ltô integral

ltô's formula

SDE

Stratonovich integral

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

### Stratonovich integral: Definition

Definition

The Stratonovich (or Fisk-Stratonovich) integral is defined as the limit of the following approximation

$$\int_0^T f(t,\omega) \circ dW_t \approx \sum_j \frac{f(t_j) + f(t_{j+1})}{2} (W_{t_{j+1}} - W_{t_j}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Stratonovich integral: Definition

#### Definition

The Stratonovich (or Fisk-Stratonovich) integral is defined as the limit of the following approximation

$$\int_0^T f(t,\omega) \circ dW_t \approx \sum_j \frac{f(t_j) + f(t_{j+1})}{2} (W_{t_{j+1}} - W_{t_j}).$$

#### Remark.

- We use the special notation for stochastic integral to distinguish the Itô and Stratonovich integrals.
- Following the similar way as in the definition for the Ito integral, we can also establish a consistent stochastic calculus based on the Stratonovich integral.

Proposition

It turns out that If  $X_t$  satisfies the SDE

$$dX_t = b(X_t, t)dt + \sigma(X_t, t) \circ dW_t$$

in the Stratonovich sense, then  $X_t$  satisfies the modified Itô SDE

$$dX_t = \left(b(X_t, t) + \frac{1}{2}\partial_x \sigma\sigma(X_t, t)\right)dt + \sigma(X_t, t)dW_t$$

Proposition

It turns out that If  $X_t$  satisfies the SDE

$$dX_t = b(X_t, t)dt + \sigma(X_t, t) \circ dW_t$$

in the Stratonovich sense, then  $X_t$  satisfies the modified Itô SDE

$$dX_t = \left(b(X_t, t) + \frac{1}{2}\partial_x \sigma\sigma(X_t, t)\right)dt + \sigma(X_t, t)dW_t.$$

#### Proof.

To understand this, we assume the solution X<sub>t</sub> of the Stratonovich SDE satisfies

$$dX_t = \alpha(X_t, t)dt + \beta(X_t, t)dW_t.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

By the definition of the Stratonovich integral

$$\int_{0}^{t} \sigma(X_{s}, s) \circ dW_{s}$$
  
 
$$\approx \sum_{j} \frac{1}{2} (\sigma(X_{t_{j}}, t_{j}) + \sigma(X_{t_{j+1}}, t_{j+1})) (W_{t_{j+1}} - W_{t_{j}}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

By the definition of the Stratonovich integral

$$\int_{0}^{t} \sigma(X_{s}, s) \circ dW_{s}$$
  

$$\approx \sum_{j} \frac{1}{2} (\sigma(X_{t_{j}}, t_{j}) + \sigma(X_{t_{j+1}}, t_{j+1})) (W_{t_{j+1}} - W_{t_{j}}).$$

Additionally, we have

$$\begin{split} X_{t_{j+1}} &= X_{t_j} + \alpha(X_{t_j}, t_j) \Delta t_j + \beta(X_{t_j}, t_j) \Delta W_{t_j} + h.o.t., \\ &\sum_j \sigma(X_{t_{j+1}}, t_{j+1}) \Delta W_{t_j} \\ &= \sum_j \left( \sigma(X_{t_j}, t_j) \Delta W_{t_j} + \partial_t \sigma(X_{t_j}, t_j) \Delta t_j \Delta W_{t_j} \\ &+ \partial_x \sigma \alpha(X_{t_j}, t_j) \Delta t_j \Delta W_{t_j} + \partial_x \sigma \beta(X_{t_j}, t_j) \Delta W_{t_j}^2 + h.o.t. \right) \\ &\to \int_0^t \sigma(X_s, s) dW_s + \int_0^t \partial_x \sigma \beta(X_s, s) ds \end{split}$$

 $\blacktriangleright$  Summarizing the above results we obtain that  $X_t$  satisfies

$$dX_t = \left(b(X_t, t) + \frac{1}{2}\partial_x \sigma\beta(X_t, t)\right)dt + \sigma(X_t, t)dW_t.$$

 $\blacktriangleright$  Summarizing the above results we obtain that  $X_t$  satisfies

$$dX_t = \left(b(X_t, t) + \frac{1}{2}\partial_x \sigma\beta(X_t, t)\right)dt + \sigma(X_t, t)dW_t.$$

To make the two SDEs consistent, we take

$$\beta(x,t) = \sigma(x,t), \quad \alpha(x,t) = b(x,t) + \frac{1}{2}\partial_x \sigma \sigma(x,t).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Summarizing the above results we obtain that X<sub>t</sub> satisfies

$$dX_t = \left(b(X_t, t) + \frac{1}{2}\partial_x\sigma\beta(X_t, t)\right)dt + \sigma(X_t, t)dW_t.$$

To make the two SDEs consistent, we take

$$\beta(x,t) = \sigma(x,t), \quad \alpha(x,t) = b(x,t) + \frac{1}{2}\partial_x \sigma \sigma(x,t).$$

In the high dimensions, one can derive similarly

$$d\boldsymbol{X}_t = \left(\boldsymbol{b}(\boldsymbol{X}_t, t) + \frac{1}{2}\nabla_x \boldsymbol{\sigma} : \boldsymbol{\sigma}(\boldsymbol{X}_t, t)\right) dt + \boldsymbol{\sigma}(\boldsymbol{X}_t, t) \cdot d\boldsymbol{W}_t$$

where  $(\nabla_x \boldsymbol{\sigma}: \boldsymbol{\sigma})_i := \sum_{jk} \partial_k \sigma_{ij} \sigma_{kj}$ , if  $\boldsymbol{X}$  satisfies

$$d\boldsymbol{X}_t = \boldsymbol{b}(\boldsymbol{X}_t, t)dt + \boldsymbol{\sigma}(\boldsymbol{X}_t, t) \circ d\boldsymbol{W}_t.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Stratonovich integral: Property

#### Properties of the Stratonovich integral

The Stratonovich integral satisfies the Newton-Leibnitz chain rule

$$df(X_t) = f'(X_t) \circ dX_t = f'(X_t)b(X_t, t)dt + f'(X_t)\sigma(X_t, t) \circ dW_t$$

### Stratonovich integral: Property

#### Properties of the Stratonovich integral

 The Stratonovich integral satisfies the Newton-Leibnitz chain rule

$$df(X_t) = f'(X_t) \circ dX_t = f'(X_t)b(X_t, t)dt + f'(X_t)\sigma(X_t, t) \circ dW_t$$

The corresponding multi-dimensional form is

$$df(\mathbf{X}_t) = \nabla f(\mathbf{X}_t) \circ d\mathbf{X}_t$$
  
= \nabla f(\mathbf{X}\_t) \cdot \mathbf{b}(\mathbf{X}\_t, t) dt + \nabla f(\mathbf{X}\_t) \cdot \mathbf{\sigma}(\mathbf{X}\_t, t) \cdot d\mathbf{W}\_t.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Stratonovich integral: Property

#### Properties of the Stratonovich integral

 The Stratonovich integral satisfies the Newton-Leibnitz chain rule

$$df(X_t) = f'(X_t) \circ dX_t = f'(X_t)b(X_t, t)dt + f'(X_t)\sigma(X_t, t) \circ dW_t$$

The corresponding multi-dimensional form is

$$df(\boldsymbol{X}_t) = \nabla f(\boldsymbol{X}_t) \circ d\boldsymbol{X}_t$$
  
= \nabla f(\overline{X}\_t) \cdots \boldsymbol{b}(\overline{X}\_t, t) dt + \nabla f(\overline{X}\_t) \cdots \boldsymbol{\sigma}(\overline{X}\_t, t) \cdots d\overline{W}\_t.

 The Itô isometry and mean zero property no longer hold for the Stratonovich integral.

# Wong-Zakai type theorem

- For each fixed realization ω of W<sub>t</sub>, we want to solve X<sub>t</sub> by treating W<sub>.</sub>(ω) like a deterministic forcing term.
- But the ODE can not be solved in the classical case because of the rough property of the path of the Brownian motion.
- ▶ Note that the  $C^1$  functions on [0,T] are dense in C[0,T], we regularize the Brownian motion path from the following way

 $W^m \to W$  in  $L^{\infty}[0,T]$  norm as  $m \to \infty$ ,

where  $W^m \in C^1[0,T]$ , the differential equation

 $dX_t^m = b(X_t^m, t)dt + \sigma(X_t^m, t)dW_t^m$ 

can be solved in the classical sense.

Then it can be proved that

$$X^m \to X$$
 in  $L^{\infty}[0,T]$ ,  $m \to \infty$ , a.s.

The limit  $X_t$  is precisely the Stratonovich solution of the SDE.

# Wong-Zakai type theorem

Therefore, Stratonovich interpretation is useful in physics.

- In realistic situations, the noise term W is usually not "white" but a smoothed colored noise since the idealistic white noise must be supplied with infinite energy from external environment.
- This smoothed colored noise exactly corresponds to some regularization of the white noise, which falls into the regime in the Wong-Zakai type smoothing argument.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・