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Construction of Wiener Process

We will show three approaches to construct the Wiener process.
Different forms play different roles in different circumstances.

I Construction from invariance principle

I Construction from Karhunen-Loeve Expansion

I Construction from Haar basis



Construction from invariance principle

The construction from the invariance principle embodies the idea
of taking continuum limit of symmetric random walk.

Theorem (Invariance Principle)

Suppose {ξi} are i.i.d. N(0, 1) random variables, define
Sn =

∑n
i=1 ξi and Xn

t as follows:

Xn
t =


sk√
n
, t =

k

n
,

(1− θ) sk√
n

+ θ
sk+1√
n
, t ∈

(
k

n
,
k + 1

n

)
, θ = nt− k,

then Xn ∈ C[0,∞) and

Xn d−→W,

where
d→ is the weak convergence on the function space C[0,∞)

to be defined below.



Construction from invariance principle

I Let us consider a special case by taking

P (ξi) =

{
1/2, ξi = 1,
1/2, ξi = −1,

then Eξi = 0, varξi = 1. The state of Xn
t at the time

tk = k/n is nothing but the random walk considered before.

I The construction from invariance principle indicates that the
standard Brownian motion is just the rescaled limit of the
random walk with spatial scale l = 1/

√
n and time scale

τ = 1/n. The relation l2/τ = 1 is exactly the regime
considered before.

I This approximation is the most common one in computations.
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Construction from invariance principle

Heuristic check for invariance principle:

I From the definition Sn =
∑n

i=1 ξi, where {ξi} are i.i.d.
N(0, 1) random variables, then by the central limit theorem

Sk√
n

=

√
k√
n
· Sk√

k

d−→ N(0, t), as k, n→∞ and t =
k

n
.

I The limit X of Xn is then a Gaussian process formally with
X0 = 0 and

EXtXs ∼ EXn
t X

n
s

= EXn
t∧s(X

n
t∨s −Xn

t∧s +Xn
t∧s)

= E(Xn
t∧s)

2 + EXn
t∧s(X

n
t∨s −Xn

t∧s)

→ t ∧ s. for t = k/n, s = l/n and k, l, n→∞.

The last identity holds because of the independence between
Xn
t∧s and Xn

t∨s −Xn
t∧s, and E(Xn

t∧s −Xn
t∨s) = 0.
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Construction from invariance principle

Remark.

I Heuristically the key point in the invariance principle is CLT
when n, k is sufficiently large.

I This implies the condition ξn ∼ i.i.d. N(0, 1) may be relaxed
to ξn be i.i.d. with mean 0 and variance 1. The distribution
of ξn is not important.

I That is why the theorem is called “invanriance” principle.



Construction from Karhunen-Loeve Expansion

Theorem (Karhunen-Loeve expansion)

Let Xt (t ∈ [0, 1]) be a Gaussian process with mean function
m(t) = 0 and continuous covariance function K(s, t). Consider the
following eigenvalue problem∫ 1

0
K(s, t)φk(t)dt = λkφk(s), k = 1, 2, · · ·

where

∫ 1

0
φkφjdt = δkj . We have

Xt =

∞∑
k=1

αk
√
λkφk(t),

in the sense that the series XN
t =

∑N
k=1 αk

√
λkφk(t)→ Xt, in

L∞t L
2
P , i.e. limN→∞ supt∈[0,1] E|XN

t −Xt|2 = 0. Here αk are
i.i.d. N(0, 1) random variables.



Construction from Karhunen-Loeve Expansion

Proof.

I The operator K : L2[0, 1]→ L2[0, 1] defined as

(Kφ)(s) :=

∫ 1

0
K(s, t)φ(t)dt

is nonnegative, self-adjoint and compact. due to the
non-negativity, symmetry and continuity of K(s, t) on [0, 1]2.

I From the theory of functional analysis, there are countable
real eigenvalues, and 0 is the only possible accumulation
point. For each nonzero eigenvalue, the eigensubspace is finite
dimensional.
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Construction from Karhunen-Loeve Expansion

I From Mercer’s theorem (stronger version of Hilbert-Schmidt
Theorem) which states that the convergence

N∑
k=1

λkφk(s)φk(t)→ K(s, t), s, t ∈ [0, 1], N →∞

holds in the uniform sense (i.e., L∞[0, 1]) when K is
continuous, we have for N > M

E|XN
t −XM

t |2 =
N∑

k=M+1

λkφ
2
k(t)→ 0

in the uniform sense when N,M →∞.

I This implies XN
t is a Cauchy sequence in the Banach space

L∞t L
2
P , thus the limit Xt exists and is unique in this space.
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Construction from Karhunen-Loeve Expansion

I For each fixed t, the mean square convergence of the Gaussian
random vector (XN

t1 , X
N
t2 , . . . , X

N
tm) to (Xt1 , Xt2 , . . . , Xtm)

implies the convergence in probability for any
t1, t2, . . . , tm ∈ [0, 1].

I The closure property ensures that the limit Xt is indeed a
Gaussian process. It is not difficult to prove that

EXt = lim
N→∞

EXN
t = 0,

EXsXt = lim
N→∞

EXN
s X

N
t =

∞∑
k=1

λkφk(s)φk(t) = K(s, t)

by the convergence of XN to X in L∞t L
2
P .
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Construction from Karhunen-Loeve Expansion
Application to Brownian motion. Obtain the eigensystem
{λk, φk(t)}
I We have ∫ 1

0
(s ∧ t)φk(t)dt = λkφk(s)

and thus ∫ s

0
tφk(t)dt+

∫ 1

s
sφk(t)dt = λkφk(s).

I Taking differentiation with respect to s we obtain

λkφ
′
k(s) = sφk(s) +

∫ 1

s
sφk(t)dt− sφk(s) =

∫ 1

s
sφk(t)dt.

I Differentiating once again gives a Sturm-Liouville problem

λkφ
′′
k(s) = −φk(s).

I It’s easy to check that λk 6= 0, φk(0) = 0, φ′k(1) = 0.
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Construction from Karhunen-Loeve Expansion

I Solving this boundary value problem, we obtain

λk =

(
(k − 1

2
)π

)−2

, φk(s) =
√

2 sin

(
(k − 1

2
)πs

)
.

I Thus we get another representation of Brownian motion

Wt =

∞∑
k=1

αk

√
2

(k − 1
2)π

sin

(
(k − 1

2
)πt

)
.

It is easy to find that W0 = 0 with this representation.

I To understand why it is almost surely continuous, we need the
following theorem.
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Construction from Karhunen-Loeve Expansion

Theorem
For the Karhunen-Loeve expansion to the Gaussian random field
Xt with the same condition as in Theorem (KLE), if additionally∫ 1

0
(− lnu)1/2dp(u) <∞,

where p(u) := max{σ(s, t) : |s− t| ≤ |u|} and

σ(s, t) =

∞∑
k=1

λk(φk(s)− φk(t))2 = K(s, s) +K(t, t)− 2K(s, t),

then XN
t converges to Xt uniformly for t ∈ [0, 1] with probability

one, and thus X has continuous trajectory almost surely.

I For the Wiener process, σ(s, t) = t ∨ s− t ∧ s and p(u) = |u|,
so the condition is satisfied and we have the continuity of the
constructed Wt almost surely.
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Construction from Karhunen-Loeve Expansion

Example

Compute the expectation

E exp
(
− 1

2

∫ 1

0
W 2
t dt
)
.

Solution. From the Karhunen-Loeve expansion,∫ 1

0
W 2
t dt =

∫ 1

0

∑
k,l

√
λkλlαkαlφk(t)φl(t)dt

=
∑
k

∫ 1

0
λkα

2
kφ

2
k(t)dt =

∑
k

λkα
2
k.

Then

E exp
(
− 1

2

∫ 1

0
W 2
t dt
)

= E
(∏

k

exp(−1

2
λkα

2
k)
)

=
∏
k

E exp(−1

2
λkα

2
k).
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Construction from Karhunen-Loeve Expansion

E exp(−1

2
λkα

2
k) =

∫ +∞

−∞

1√
2π
e−

x2

2 · e−
1
2
λkx

2
dx =

√
1

1 + λk

we obtain

E exp
(
− 1

2

∫ 1

0
W 2
t dt
)

=
∏
k

√
1

1 + λk
:= M,

where

M−2 =

∞∏
k=1

(
1 +

4

(2k − 1)2π2

)
.

From the identities for infinite product series we have

cosh(x) =

∞∏
n=1

(
1 +

4x2

(2n− 1)2π2

)
,

where cosh(x) = (ex + e−x)/2. Thus

M = (cosh(1))−
1
2 =

√
2e

1 + e2
.



Construction from Karhunen-Loeve Expansion
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Construction from Haar basis

I At first we define the mother function

ψ(t) =


1, t ∈ [0, 1/2),
−1, t ∈ [1/2, 1),

0, otherwise.

I Defined the multilevel Haar functions {H(n)
k } as H

(0)
0 (t) = 1

H
(n)
k (t) = 2

n−1
2 ψ(2n−1t−k), n ≥ 1, k ∈ In := {0, . . . , 2n−1−1}

for t ∈ [0, 1], where n is the level and we take the convention
that I0 = {0}.

I It is a standard result that the Haar system {H(n)
k } for n ∈ N

and k ∈ In forms an orthonormal basis in L2[0, 1].
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Construction from Haar basis

Theorem
Let the random variables {α(n)

k } i.i.d. N(0, 1). Then

WN
t =

N∑
n=0

∑
k∈In

α
(n)
k

∫ t

0
H

(n)
k (s)ds −→Wt, N →∞,

uniformly in t ∈ [0, 1] in the almost sure sense.

A direct check on the finite terms approximation:

I

EWN
t =

N∑
n=0

∑
k∈In

Eα(n)
k

∫ t

0
H

(n)
k (s)ds = 0,
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Construction from Haar basis
I

EWN
t W

N
s

=

N∑
n,m=0

∑
k∈In,l∈Im

E(α
(n)
k α

(m)
l )

∫ t

0
H

(n)
k (τ)dτ

∫ s

0
H

(m)
l (τ)dτ

=

N∑
n=0

∑
k∈In

∫ t

0
H

(n)
k (τ)dτ

∫ s

0
H

(n)
k (τ)dτ

=

N∑
n=0

∑
k∈In

∫ 1

0
H

(n)
k (τ)χ[0,t](τ)dτ

∫ 1

0
H

(n)
k (τ)χ[0,s](τ)dτ

→
∫ 1

0
χ[0,t]χ[0,s](τ)dτ = t ∧ s.

Here χ[0,t](τ) is the indicator function on [0, t]. The last
convergence in the above equations is due to Parseval’s

identity because {H(n)
k } is an orthonormal basis.



Construction from Haar basis

Proof. At first, we show WN
t uniformly converges to some

continuous function Wt in the almost sure sense.

I We have the following tail estimate for any Gaussian
distributed random variable ξ ∼ N(0, 1). For x > 0,

P(|ξ| > x) =

√
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2 dy
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k |, then we obtain

P(an > n) = P
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|α(n)
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√
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π
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n2
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n
, n ≥ 1.
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Construction from Haar basis

I From
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n2

2

n <∞, the Borel-Cantelli lemma

implies that there exists a set Ω̃ with P(Ω̃) = 1 such that for
any ω ∈ Ω̃ there is a N(ω) satisfying am(ω) ≤ m for any
m ≥ N(ω).

I In this case, ∣∣∣∣∣∣
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which shows the uniform convergence of WN
t to a continuous

function Wt in the almost sure sense.
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Construction from Haar basis

Now we show that Wt is indeed a standard Brownian motion.

I From the uniform convergence of WN
t with respect to t in the

almost sure sense, the limit Wt is indeed a Gaussian process.

I From the initial condition W0 = 0 and the covariance function
relation, we obtain a new representation of the Wiener process
Wt.
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Properties of Wiener path

Theorem (Basic properties)

Suppose Wt is a standard Brownian motion, then

1. Time-homogeneity: For any s > 0, Wt+s −Ws, t ≥ 0, is a
Brownian motion;

2. Symmetry: The process −Wt, t ≥ 0, is a Brownian motion;

3. Scaling: For every c > 0, the process cWt/c2 , t ≥ 0, is a
Brownian motion;

4. Time-inversion: The process X defined by X0 = 0,
Xt = tW1/t for t > 0, is a Brownian motion.

I Remark. The scaling property 3 states Wkt ∼
√
kWt,

Ẇkt ∼ 1√
k
Ẇt, where Ẇt means the formal derivative. For a

standard smooth function f(t) with the change of variable
t = kτ , we have df

dt (kτ) = 1
k
df
dτ (kτ).
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The regularity of the Brownian motion
I The total variation of a specific path of the process X on

[a, b] is defined as

V (X(ω); [a, b]) = sup
∆

∑
k

|Xtk+1
(ω)−Xtk(ω)|,

where ∆ = ∪k[tk, tk+1] is any fixed subdivision of [a, b].

I The discrete quadratic variation of X on [0, t] with
subdivision ∆ is defined as Q∆

t =
∑

k |Xtk+1
(ω)−Xtk(ω)|2.

I If for any t and any sequence ∆n of subdivisions of [0, t] such
that |∆n| goes to zero, there exists a finite process 〈X,X〉
such that

Q∆n
t → 〈X,X〉t in Probability as n→∞,

then 〈X,X〉 is called the quadratic variation process of X.
I Obviously, 〈X,X〉 is increasing. The definition can be

straightforwardly extended to the case on the interval [a, b] as

Q∆n

[a,b] → 〈X,X〉b − 〈X,X〉a as n→∞.
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The regularity of the Brownian motion

Proposition

For any t and subdivision ∆ of [0, t], we have for Wiener process W

E(Q∆
t − t)2 = 2

∑
k

(tk+1 − tk)2,

thus we get
Q∆
t −→ t in L2(P) as |∆| → 0

and 〈W,W 〉t = t a.s.

This result is sometimes formally stated as (dWt)
2 = dt.



The regularity of the Brownian motion

Theorem (Unbounded variation of the Wiener path)

The Wiener paths are a.s. of infinite variations on any interval.

Proof. Suppose the probability space is (Ω,F ,P). Based on the
subsequence argument, there is a set Ω0 ⊂ Ω such that P(Ω0) = 1,
and there exits a subsequence of the subdivisions, still denoted as
∆n, such that for any rational pair p < q,

Q∆n

[p,q] → q − p, on Ω0.

Now for any rational interval [p, q], we have

q− p←
∑
k

(Wtk+1
−Wtk)2 ≤ sup

k
|Wtk+1

−Wtk | · V (W (ω), [p, q]).

From the uniform continuity of W on [p, q],
supk |Wtk+1

−Wtk | → 0, thus we complete the proof.
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The regularity of the Brownian motion

Theorem (Smoothness of the Wiener path)

Consider the Wiener process on the probability space (Ω,F ,P).
Define Ωα the set of functions that are Hölder continuous with
exponent α (0 < α < 1)

Ωα =

{
f ∈ C[0, 1], sup

0≤s,t≤1

|f(t)− f(s)|
|t− s|α

<∞

}
.

Then if 0 ≤ α < 1
2 , P(Wt ∈ Ωα) = 1; if α ≥ 1

2 , P(Wt ∈ Ωα) = 0.

I This result shows that the Brownian motion has very curious
smoothness.

I Each trajectory is continuous and nowhere differentiable in a
almost sure sense.
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The regularity of the Brownian motion

Theorem (Generalized Kolmogorov’s continuity theorem)

Let Xt (t ∈ [0, 1]d) be a Banach-valued process for which there
exist three strictly positive constants γ, c, ε such that

E(|Xt −Xs|γ) ≤ c|t− s|d+ε,

then there is a modification X̃ of X such that

E
(

sup
s 6=t

(|X̃t − X̃s|/|t− s|α)
)γ

<∞

for every α ∈ [0, ε/γ). In particular, the paths of X̃ are Hölder
continuous of order α.



The regularity of the Brownian motion
Proof of the Theorem (Smoothness of the Wiener path).

I When α < 1/2, according to the generalized Kolmogorov
continuity theorem and the following identity

E|Wt|2p = Ctp

for any p ∈ N, we have ε/γ = (p− 1)/2p = 1/2− 1/2p. Thus
for α < 1/2, P(Wt ∈ Ωα) = 1.

I When α > 1/2, if there exists rational interval [p, q] such that
|Wt −Ws| ≤ c|t− s|α for any p ≤ s, t ≤ q then

q − p←
∑
k

(Wtk+1
−Wtk)2 ≤ c2

∑
k

|tk+1 − tk|2α−1|tk+1 − tk|

≤ c2(q − p) sup
k
|tk+1 − tk|2α−1 → 0,

which is a contradiction.

I For the critical case α = 1/2, one should apply the deep
theorem on Lévy’s modulus of continuity.
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More properties of Brownian motion

Theorem (Local law of the iterated logarithm)

For the standard Brownian motion, we have

P
(

lim sup
t→0

Wt√
−2t ln ln t

= 1
)

= 1.

Correspondingly

P
(

lim inf
t→0

Wt√
−2t ln ln t

= −1
)

= 1.

Theorem (Strong Law of Large Numbers)

For the standard Brownian motion, we have

lim
t→∞

Wt

t
= 0, a.s.
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Summary

The Brownian motion is a very subtle and strange mathematical
object.

I The Brownian path is always fluctuating and it is a very noisy
curve.

I Each trajectory is continuous and nowhere differentiable and it
has unbounded variation in any finite interval.
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