
Lecture 12. Stochastic Process and Brownian
Motion

Tiejun Li1,2

1School of Mathematical Sciences (SMS),
&

2Center for Machine Learning Research (CMLR),
Peking University,
Beijing 100871,

P.R. China
tieli@pku.edu.cn

Office: No. 1 Science Building, Room 1376E



Table of Contents

Axiomatic Construction of Stochastic Process

Filtration and Stopping Time

Gaussian Process

Wiener Process



Fair coin tossing process

Example (Coin tossing game)

Consider the independent fair coin tossing process described by the
sequence

X = (X1, X2, . . . , Xn, . . .) ∈ {0, 1}N,

where Xn = 0 or 1 if the nth output is ‘Tail’ (T) or ‘Head’ (H),
respectively. Different trials are assumed to be independent and
P(Xn = 0) = P(Xn = 1) = 1/2.

I The number of all possible outputs is uncountable. One can
not define the probability of an event through summation of
the probability of each atom as the case of discrete random
variables.

I In fact, if we define Ω = {H,T}N, the probability of an atom
ω = (ω1, ω2, . . . , ωn, . . .) ∈ {H,T}N is 0, i.e.

P(X1(ω) = k1, . . . , Xn(ω) = kn, . . .) = lim
n→∞

(1

2

)n
= 0.

Events like {Xn(ω) = 1} involve uncountably many atoms.
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Fair coin tossing process: Construction
Now we set up a probability space (Ω,F ,P) for this process.

I It is natural to take Ω = {H,T}N.

I The σ-algebra F as the smallest σ-algebra containing all
events of the form:

C =
{
ω|ω ∈ Ω, (ωj)j=1:m ∈ Cm

}
, Cm ⊂ {H,T}m,m ∈ N,

i.e. the sets whose finite time projections are specified. These
sets are called cylinder sets.

I The probability measure P of a cylinder set is defined to be

P(C) =
1

2m
|C|.

I Denote C the set of cylinder sets. C is an algebra which is
only closed under finite union/intersection operation. To
extend the probability measure P from C to F , we need to
verify that P is countably additive on C.
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An Important Lemma

Lemma
If An ↓ A and An ∈ C is non-empty, then A is non-empty.

Proof. Denote

An = {ω|(ω1, ω2, . . . , ωmn) ∈ Cn}

where ωk ∈ {H,T}. From the non-empty condition of An, there
exists ωn ∈ An. Consider

ω1
1 ω2

1 ω3
1 · · ·

ω1
2 ω2

2 ω3
2 · · ·

ω1
3 ω2

3 ω3
3 · · ·

...
...

...
. . . ,

then there exists an infinite subsequence {n1
k}k∈N such that

ω
n1
k

1 = H or T always in the first row.



An Important Lemma

Lemma
If An ↓ A and An ∈ C is non-empty, then A is non-empty.

Proof. Denote

An = {ω|(ω1, ω2, . . . , ωmn) ∈ Cn}

where ωk ∈ {H,T}. From the non-empty condition of An, there
exists ωn ∈ An. Consider

ω1
1 ω2

1 ω3
1 · · ·

ω1
2 ω2

2 ω3
2 · · ·

ω1
3 ω2

3 ω3
3 · · ·

...
...

...
. . . ,

then there exists an infinite subsequence {n1
k}k∈N such that

ω
n1
k

1 = H or T always in the first row.



An Important Lemma

Pick up the sub-columns according to {n1
k}k∈N. Then the similar

argument can be applied to the continued rows by an subsequence
trick. Take the diagonal indices and define nk := nkk and
uk := ωnkk for k = 1, 2, . . .. Denote u = (u1, u2, . . .).

For any r, if k ≥ r, one has ωnkj = uj for 1 ≤ j ≤ r.
For any n, if k ≥ n, then nk ≥ n, and ωnk ∈ Ank ⊂ An. So
(ωnk1 , ωnk2 , . . . , ωnkmn) ∈ Cn.
Take k ≥ mn. We get ωnkj = uj for 1 ≤ j ≤ mn, i.e. u ∈ An for
any n.

In summary, u ∈ A and we are done.
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Fair coin tossing process: Construction

Theorem (Measure extension)

A finite measure µ, i.e., µ(Ω) <∞, on an algebra F0 ⊂ F can be
uniquely extended to a measure on σ(F0).

I With the previous lemma, we obtain if An ↓ ∅, then
P(An) ↓ 0, which is equivalent to the countable additivity.
This shows P is a measure on the cylinder sets C.

I From the extension theorem of measures, the probability
measure P is well-defined on F = σ(C), i.e., the σ-algebra
generated by C.
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General stochastic process: State Space
I A stochastic process is a parameterized random variables
{Xt}t∈T defined on a probability space (Ω,F ,P) taking
values in R. T can be N, [0,+∞) or some finite interval.

I For any fixed t ∈ T, we have a random variable

Xt : Ω→ R ω� Xt(ω).

For any fixed ω ∈ Ω, we have a real-valued measurable
function on T

X·(ω) : T→ R t� Xt(ω),

which is called a trajectory or sample path of X.
I As a bi-variate function, a stochastic process can also be

viewed as a measurable function from Ω×T to R

(ω, t)� X(ω, t) := Xt(ω),

with the σ-algebra in Ω×T been chosen as F × T , and T is
the Borel σ-algebra on T.
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Cylinder Sets

I The largest probability space that one can take is the infinite
product space Ω = RT, i.e. Ω is the space of all real-valued
functions on T. F can be taken as the infinite product
σ-algebra BT, which is the smallest σ-algebra containing all
cylinder sets

C = {ω ∈ RT|(ω(t1), ω(t2), . . . , ω(tk)) ∈ A,A ∈ Bk, ti ∈ T},

where B,Bk is the Borel σ-algebra on R and Rk, respectively.

I When T = N and Xt only takes values in {0, 1}, we are back
to the setting of the Fair coin tossing example.
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Finite Dimensional Distribution

I Finite dimensional distributions are particularly interesting for
a stochastic process, since they are the ones we can really
observe.

I Let

µt1,...,tk(F1 × F2 × · · · × Fk) = P[Xt1 ∈ F1, . . . , Xtk ∈ Fk]

for all F1, F2, . . . , Fk ∈ B. µt1,...,tk is called the finite
dimensional distributions of {Xt}t∈T at the time slice
(t1, . . . , tk), where ti ∈ T for i = 1, 2, . . . , k.

I Kolmogorov’s extension theorem states that an abstract
probability space (Ω,F ,P) can be established for a stochastic
process X by knowing its all finite dimensional distributions
with suitable consistency conditions.
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Kolmogorov’s extension theorem

Theorem (Kolmogorov’s extension theorem)

Assume that a family of finite dimensional distributions {µt1,...,tk}
satisfy the following two consistency conditions for arbitrary sets of
t1, t2, . . . , tk ∈ T, k ∈ N:
(i) For any permutation σ of {1, 2, . . . , k},

µtσ(1),...,tσ(k) (F1 × · · · × Fk) = µt1,...,tk (Fσ−1(1) × · · · × Fσ−1(k)).

(ii) For any m ∈ N,

µt1,...,tk (F1 × F2 × · · · × Fk)

=µt1,...,tk,tk+1,...,tk+m (F1 × · · · × Fk × R× · · · × R).

Then there exists a probability space (Ω,F ,P) and a stochastic
process {Xt}t∈T such that

µt1,...,tk (F1 × F2 × · · · × Fm) = P(Xt1 ∈ F1, Xt2 ∈ F2, . . . , Xtm ∈ Fm)

for any t1, t2, . . . , tm ∈ T, m ∈ N.
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Filtration

The more we observe about a stochastic process, the more
information we have at our disposal. This gives rise to a family of
increasingly larger σ-algebras, which we call the filtration
associated with the stochastic process.

Definition (Filtration)

Given the probability space (Ω,F ,P), the filtration is a
nondecreasing family of σ-algebras {Ft}t≥0 such that
Fs ⊂ Ft ⊂ F for any 0 ≤ s < t.

I The filtration is the main conceptual difference between the
random variables and and stochastic processes.

I A stochastic process {Xt} is called Ft-adapted if Xt is
Ft-measurable, i.e. X−1

t (B) ∈ Ft, for any t ≥ 0 and B ∈ B.
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Filtration: Intuition

I Given a stochastic process {Xt}, one can define the filtration
generated by this process by: FXt = σ(Xs, s ≤ t), which is
the smallest σ-algebra such that the {Xs}s≤t are measurable.

I FXt is the smallest filtration such that the process {Xt} is
adapted.

I The filtration FXt can be thought of as the information
supplied by the process up to time t.
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Filtration: Example

Taking the independent coin tossing as an example:

I Ω = {H,T}N. T = N and the filtration is {FXn }n≥0.

I When n = 0, the σ-algebra is trivial

FX0 = {∅,Ω},

which means that we do not know any information about the
output of the coin tossing.

I When n = 1, the σ-algebra is

FX1 = {∅,Ω, {H}, {T}}

since the first output gives either Head or Tail and we only
know this information about the first output.
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Filtration: Example

I When n = 2, we have

FX2 = {∅,Ω, {H·}, {T ·}, {·H}, {·T}, {HH}, {HT}, {TH}, {TT}, . . .},

which contains all possible combinations of the outputs for
the first two rounds of experiments.

I Sets like
{HH · · ·T} or {HH · · ·H}

are not contained in FX0 , FX1 or FX2 since the first two
outputs can not tell such information.

I It is obvious that FXn becomes finer and finer as n increases.
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Stopping Time: Discrete Case

Definition (Stopping time: Discrete case)

A random variable T taking values in {1, 2, . . .} ∪ {∞} is said to
be a stopping time if for any n <∞

{T ≤ n} ∈ Fn.

I One simple example of stopping time for the coin tossing
process is

T = inf
{
n : there exists three consecutive 0 in {Xk}k≤n

}
.

I It is easy to show that the condition {T ≤ n} ∈ Fn is
equivalent to {T = n} ∈ Fn for discrete time processes.
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Stopping Time: Simple Properties

Proposition (Properties of stopping times)

For the Markov process {Xn}n∈N, we have

1. If T1, T2 are stopping times, then T1 ∧ T2, T1 ∨ T2 and
T1 + T2 are also stopping times.

2. If {Tk}k≥1 are stopping times, then

sup
k
Tk, inf

k
Tk, lim sup

k
Tk, lim inf

k
Tk

are stopping times.



Stopping Time: Continuous Case

Definition (Stopping time: Continuous case)

A random variable T taking values in R̄+ is said to be a stopping
time if for any t ∈ R+

{T ≤ t} ∈ Ft.

I In this case we no longer have the equivalence between
{T ≤ t} ∈ Ft and {T = t} ∈ Ft. Previous proposition also
holds for the continuous time case if the filtration is right
continuous, i.e. Ft = Ft+ := ∩s>tFs.
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Gaussian Distribution

I Any Gaussian vector X = (X1, X2, . . . , Xn)T is completely
determined by its first moment m = EX and second moment
K = E(X −m)(X −m)T , where mi = EXi and
Kij = E(Xi −mi)(Xj −mj).

I If K is invertible, the corresponding pdf is

p(x) =
1

Z
e−

1
2

(x−m)TK−1(x−m),

where Z is a normalization constant.

I For the general case, we can represent X via the characteristic
function

Eeiξ·X = eiξ·m−
1
2
ξTKξ.
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Gaussian Process

Definition
A Gaussian process means that all of the finite dimensional
distributions µt1,...,tk are Gaussian for any t1, t2, . . . , tk ∈ T .

I From the properties of Gaussian vectors, a Gaussian process is
uniquely determined by the mean function m(t) = EXt and
the covariance function K(s, t) = E(Xs −m(s))(Xt −m(t)).

I If we consider the finite dimensional distribution at the time
slice (t1, t2, . . . , tn), then m(t) and K(s, t) give the first
moment

M =
(
m(t1),m(t2), . . . ,m(tn)

)
and second moment

K =


K(t1, t1) K(t1, t2) · · · K(t1, tn)
K(t2, t1) K(t2, t2) · · · K(t2, tn)

...
...

. . .
...

K(tn, t1) K(tn, t2) · · · K(tn, tn)

 .
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Gaussian Process: Characteristic Functional
I For any x = (x1, x2, . . . , xn), we have∑

i,j

K(ti, tj)xixj = E
(∑

i

(Xti −m(ti))xi

)2
≥ 0.

Thus we may view m(t) as an infinite dimensional vector, and
K(s, t) as an infinite dimensional positive semi-definite matrix.

I The Gaussian process X can be explained as a Gaussian
random element in an infinite dimensional space L2(T ) since

Eei(ξ,X) = ei(ξ,m)− 1
2

(ξ,Kξ),

where (ξ,m) =
∫ b
a ξ(t)m(t)dt, and

(Kξ)(t) =
∫ b
a K(t, s)ξ(s)ds is the action of the kernel

function K on the function ξ.

I Based on the Kolmogorov’s extension theorem, we can
construct a Gaussian process X from a given mean function
m(t) and covariance function K(s, t).
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Covariance Kernel

The covariance function K is obviously symmetric, i.e.
K(t, s) = K(s, t), by definition. In addition, we have the
semi-positivity of K in the following sense.

Theorem
Assume the Gaussian process (Xt)t∈[0,T ] possesses the regularity
X ∈ L2

ωL
2
t in the sense that X ∈ L2(Ω;L2[0, T ]), i.e.

E
∫ T

0
X2
t dt <∞.

We have m ∈ L2
t and the operator

Kf(s) :=

∫ T

0
K(s, t)f(t)dt, s ∈ [0, T ]

is a positive, compact operator on L2
t .



Covariance Kernel
Proof. The mean function m ∈ L2

t is obvious since∫ T

0
m2(t)dt =

∫ T

0
(EXt)

2dt ≤
∫ T

0
EX2

t dt <∞.

In addition, we have∫ T

0

∫ T

0
K2(s, t)dsdt =

∫ T

0

∫ T

0

(
E(Xt −m(t))(Xs −m(s))

)2
dsdt

≤
∫ T

0

∫ T

0
E(Xt −m(t))2E(Xs −m(s))2dsdt ≤

(∫ T

0
EX2

t dt
)2
,

which means K ∈ L2([0, T ]× [0, T ]). Thus K is a compact
operator on L2

t .
It is easy to find that the adjoint operator of K is

K∗f(s) :=

∫ T

0
K(t, s)f(t)dt, s ∈ [0, T ].



Covariance Kernel

From the symmetry of K(s, t), we know that K is self-adjoint.
To show the positivity of K, we have

(Kf, f) =

∫ T

0

∫ T

0
E(Xt −m(t))(Xs −m(s))f(t)f(s)dsdt

= E
(∫ T

0
(Xt −m(t))f(t)dt

)2
≥ 0.



Closure Property

Theorem (Closure property for Gaussian random variables)

Suppose X1, X2, . . . are a sequence of Gaussian random variables
and Xn converges to X in probability. Then X is also Gaussian.

Proof.
Let us denote

mk = EXk, σ2
k = varXk.

Then by dominated convergence theorem we have

eiξmk−
1
2
σ2
kξ

2
= EeiξXk → EeiξX for any ξ ∈ R.

From the existence of the limit of the above equation, there are
numbers m and σ2 such that

m = limmk, σ2 = limσ2
k

and EeiξX = eiξm−
1
2
σ2ξ2 .
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Wiener Process: Definition

Definition (Brownian motion)

The one dimensional Brownian motion (or Wiener process) Wt is
defined as

1. It is a Gaussian process.

2. It has mean function m(t) = 0, and covariance function
K(s, t) = s ∧ t = min(s, t).

3. With probability one, t 7→Wt is continuous.

I The m-dimensional Brownian motion Wt has the form
Wt = (W 1

t ,W
2
t , . . . ,W

m
t ), where each component W j

t is a
Brownian motion and they are independent each other.

I The Brownian motion (m-dimensional Brownian motion) is
usually denoted as Wt or Bt (Wt or Bt).
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Wiener Process: Equivalent Definition
It is not difficult to prove that the three conditions are equivalent
to the following definition.

1′. For any t0 < t1 < · · · < tn, the random variables
Wt0 ,Wt1 −Wt0 , . . . ,Wtn −Wtn−1 are independent.

2′. For any s, t ≥ 0, Ws+t −Ws ∼ N(0, t).

3. With probability one, t 7→Wt is continuous.

I Then we obtain the joint probability distribution density for
(Wt1 ,Wt2 , . . . ,Wtn) (t1 < t2 < · · · < tn) as

pn(w1, w2, . . . , wn)

=
1

√
2πt1

e
−
w2

1
2t1

1√
2π(t2 − t1)

e
− (w2−w1)2

2(t2−t1) · · ·
1√

2π(tn − tn−1)
e
−

(wn−wn−1)2

2(tn−tn−1) .

I More compactly,

pn(w1, w2, . . . , wn) =
1

Zn
exp(−In(w)).
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Wiener Process: Basic Properties

I It’s easy to show the stationarity and Markovianity of the
Brownian motion with transition kernel function p(x, t|y, s)

P(Wt ∈ B|Ws = y) =

∫
B

1√
2π(t− s)

e
− (x−y)2

2(t−s) dx

=

∫
B
p(x, t|y, s)dx

where s < t and B is a Borel set on R.

I The transition probability density p(x, t|y, s) satisfies the
stationarity p(x, t|y, s) = p(x− y, t− s|0, 0) and p(x, t|0, 0)
satisfies the PDE

∂p

∂t
=

1

2

∂2p

∂x2
, p(x, 0|0, 0) = δ(x).
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Wiener Process: Existence

Mathematically the first question is “Is there a process with these
properties?”

I From Kolmogorov’s extension theorem we can construct a
probability space on (R[0,∞),R[0,∞)) by the consistency of
the finite dimensional distributions,

I But it is not straightforward that the condition 3 in the
Definition must be satisfied automatically.

I In fact, define the set

C = {ω|ω ∈ RT , ω is continuous on T}.

we will show that C is not a measurable set in RT !
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Wiener Process: Existence

Theorem
For any family of real functions Xt : Ω→ R, t ∈ T .

(i) If A ∈ σ{Xt, t ∈ T} and ω ∈ A, and if Xt(ω
′) = Xt(ω) for all

t ∈ T , then we have ω′ ∈ A.

(ii) If A ∈ σ{Xt, t ∈ T}, then A ∈ σ{Xt, t ∈ S} for some
countable subset S ⊂ T .

I To apply the above theorem, we take T = [0,∞) and S a
countable dense subset of T . We will have C ∈ RS if
C ∈ RT by the second statement.

I From the first statement, C should contain all functions which
have the same value with some f ∈ C on S. This should
contain lots of discontinuous functions. This contradicts with
that C is the set of continuous functions.

I We need the concept “modification” of a process.
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have the same value with some f ∈ C on S. This should
contain lots of discontinuous functions. This contradicts with
that C is the set of continuous functions.

I We need the concept “modification” of a process.



Wiener Process: Existence

Theorem
For any family of real functions Xt : Ω→ R, t ∈ T .

(i) If A ∈ σ{Xt, t ∈ T} and ω ∈ A, and if Xt(ω
′) = Xt(ω) for all
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C ∈ RT by the second statement.

I From the first statement, C should contain all functions which
have the same value with some f ∈ C on S. This should
contain lots of discontinuous functions. This contradicts with
that C is the set of continuous functions.

I We need the concept “modification” of a process.



Modification

Definition (Modification)

Two processes X and X ′ defined on the same probability space are
said to be modifications of each other if for each t,

Xt = X ′t a.s.

They are called indistinguishable if for almost all ω

Xt(ω) = X ′t(ω) for every t.

I It is clear that if X and X ′ are modifications of each other,
they have the same finite dimensional distribution.

I If X and X ′ are modifications of each other and are almost
surely continuous, they are indistinguishable.
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Kolmogorov’s continuity theorem: Wiener Path Continuity

Theorem (Kolmogorov’s continuity theorem)

A real-valued process X for which there exist three strictly positive
constants α, β, C such that

E(|Xt −Xs|α) ≤ C|t− s|1+β

for any s, t ≥ 0, then there is a modification X̃ of X which is
almost-surely continuous.

For Brownian motion, the condition of the above theorem is
satisfied with α = 4, β = 1 and thus the continuity of Brownian
motion can be ensured in the sense of modifications.
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