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1D Random Walk — Connection with Markov Chains
I 1D Symmetric Random Walk: Suppose a particle suffers

displacements along a straight line from the origin, denote its
position Xn ∈ Z. Let ξi are i.i.d. random moves such that
ξi = ±1 with probability 1

2 , and let

Xn = ξ1 + ξ2 + . . .+ ξn (i.e. X0 = 0)

I {Xn} is called a unconstrained symmetric random walk on Z.
Given Xn = i, we have

P{Xn+1 = i± 1| Xn = i} =
1

2
,

P{Xn+1 = anything else| Xn = i} = 0.

It is a typical example of the simplest Markov chains.

I After taking N steps, the particle could be at any of the points

−N,−N + 2, . . . , . . . , N − 2, N.
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1D Random Walk — Distribution of XN

I One basic question is the probability
W (m,N) = Prob{XN = m} that the particle arrives at the
point m after suffering N displacements.

I It is not difficult to find that W (m,N) obeys binomial
distribution

W (m,N) =
N !

(N+m
2 )!(N−m2 )!

(1

2

)N
,

and it is easy to note that m can be odd or even only
according as N is odd or even.

I The expectation position and mean square deviation are

EXN = 0, EX2
N = N,

then the root mean square displacement is
√
N .
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Diffusion Coefficient

Definition (Diffusion coefficient)

The 1D diffusion coefficient D is defined as

D =
〈(XN −X0)2〉

2N
.

It is assumed EXN = X0 here. In general continuous case, it is
defined as

D = lim
t→∞

〈(Xt −X0)2〉
2dt

,

where d is the space dimension.

For this simplest random walk, D = 1
2 .



Scaling limit of 1D random walk

I Now suppose we rescale the random walk with the spatial
steplength l and the time spacing τ for each movement, we
take the limit in the following sense when considering the
point (x, t)

N,m→∞, l, τ → 0, and Nτ = t, ml = x.

I To make the continuum limit physically reasonable, we also
ask to fix the diffusion coefficient

D =
〈(XNτ −X0)2〉

2Nτ
=

l2

2τ

in the limit. That is, we take the scaling l ∼ O(
√
τ).
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1D Random Walk: Distribution

I So we consider the case N,m� 1, and m� N since
m/N = x/t · τ/l→ 0 for any fixed x, t when l ∼ O(

√
τ).

I By Stirling’s formula

log n! = (n+
1

2
) log n− n+

1

2
log 2π +O(n−1) (n→ +∞),

we have

logW (m,N) ≈ (N +
1

2
) logN − 1

2
(N +m+ 1) log

[N
2
(1 +

m

N
)
]

−1

2
(N −m+ 1) log

[N
2
(1− m

N
)
]
− 1

2
log 2π −N log 2.
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1D Random Walk: Distribution

I Since m� N we have Taylor series expansion for x� 1

log(1 + x) = x− 1

2
x2 +O(x3),

thus

logW (m,N) ≈ −1

2
logN+log 2−1

2
log 2π−m

2

2N
+O
((m

N

)2)
.

I In other words, one obtains the the asymptotic formula

W (m,N) ≈
( 2

πN

) 1
2

exp(−m
2

2N
).
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Scaling limit of 1D random walk
I Consider the intervals ∆x which are large compared with the

length l. The probability that y ∈ (x−∆x/2, x+ ∆x/2) for
the continuous probability density W (x, t) satisfies

W (x, t)∆x ≈
∫ x+∆x/2

x−∆x/2
W (y, t)dy ≈

∑
m′∈{m,m±2,m±4,...}

m′l∈(x−∆x/2,x+∆x/2)

W (m′, N)

≈W (m,N)
∆x

2l
, (x = ml)

I since m can take only even or odd values depending on
whether N is even or odd. Combining the results above one
has

W (x, t)∆x =
1√

2πt l
2

τ

exp(− x2

2t l
2

τ

)∆x,

thus the limiting probability density at time t

W (x, t) =
1√

4πDt
exp(− x2

4Dt
).
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Random walk with reflecting Barriers
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Figure: Schematics of reflection principle.



Random walk with reflecting Barriers

Case 1. A reflecting barrier at m = m1:

I Suppose m1 > 0. We now ask the probability Wr(m,N ;m1)
that the particle will arrive at m(≤ m1) after N steps.

I This problem may be solved very efficiently in the m-N plane
in a neat way.

I From the Figure, the actual sample paths are shown with solid
lines (including the reflected path), and the paths crossing the
barrier m1 in the unrestricted random walk case are shown
with dashed lines. These paths can be classified into two
classes:

1. One class only contains the paths not hitting m1 and finally
reaching m;

2. the other class contains the paths hitting m1 before time N
and finally reaching m1 or 2m1 −m.
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RW with reflecting Barriers: Reflection Principle

The following three observations are important on these paths:

I In the unrestricted random walk, all of the sample paths have
equal probability 1/2N ;

I The probability of the reflected paths which hits m1 is equal
to the sum of the probability of the paths hitting m1 and
reaching m and the paths reaching 2m1 −m; (Consider below
simple identity in terms of path decomposition. Suppose the
reflected path hits the axis x = m1 for k times. We have

1k =

(
1

2
+

1

2

)k
→ (R+ L)k = R . . . RR+ · · ·+ LL . . . LL.

Each term on the RHS corresponding a free path. )

I The number of the paths hitting m1 and hitting m finally is
equal to that of the paths hitting 2m1 −m finally.
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RW with reflecting Barriers: Distribution and Scaling Limit
These assertions are called the reflection principle, which is the
basis of the following calculations for reflection and absorbing
barrier problem.
I So we have the following identity

Wr(m,N ;m1) = W (m,N) +W (2m1 −m,N).

I If we take large N limit we have

Wr(m,N ;m1) ≈
( 2

πN

) 1
2 [

exp(−m
2

2N
+ exp(−(2m1 −m)2

2N

]
,

I Then passing to the continuum limit we have

Wr(x, t;x1) =
1√

4πDt

[
exp(− x2

4Dt
) + exp(−(2x1 − x)2

4Dt
)
]
,

and we may note in this case

∂Wr

∂x

∣∣∣
x=x1

= 0.
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RW with absorbing Barriers: Distribution and Scaling Limit
Case 2. Absorbing wall at m = m1:

I Similarly as before we easily deduce that

Wa(m,N ;m1) = W (m,N)−W (2m1 −m,N).

by reflection principle.

I In the large N limit we have

Wa(m,N ;m1) ≈
( 2

πN

) 1
2 [

exp(−m
2

2N
)−exp(−(2m1 −m)2

2N
)
]
,

I The continuum limit is
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4Dt
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RW with absorbing Barriers: First Hitting Probability
I Define the first hitting probability

a(m1, N) = Prob{XN = m1, and Xn < m1,∀n < N}

that taking N steps the particle will arrive at m1 without ever
hitting m = m1 at any earlier step.

I Then we have

a(m1, N) =
1

2
Wa(m1 − 1, N − 1;m1) =

m1

N
W (m1, N)

by the relation

W (m−1, N−1) =
N +m

N
W (m,N), W (m+1, N−1) =

N −m

N
W (m,N).

I In the large N limit

a(m1, N) ≈ m1

N

( 2

πN

) 1
2

exp(−m
2
1

2N
).
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RW with absorbing Barriers: First Hitting Probability

I The continuous probability density a(m1, t) becomes

a(m1, t)∆t ≈ a(m1, N)
∆t

2τ
(t = Nτ)

I In the continuum limit one obtains

a(x1, t) =
x1

t

1√
4πDt

exp(− x2
1

4Dt
) = −D∂W

∂x

∣∣∣
x=x1

.
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First Return Time and Related Probabilities

I Now let us investigate the so-called lead probability (staying
on the positive side) in the free symmetric random walk. First
let us make some definitions.

I We define the first return time

σ2n = min{1 ≤ k ≤ 2n : Xk = 0}

and σ2n := +∞ if Xk 6= 0 for 1 ≤ k ≤ 2n.

I For 0 ≤ k ≤ n we define

u2k = P(X2k = 0), f2k = P(σ2n = 2k).

I It is clear that u2k = Ck2k · 2−2k, and we have

f2k = 2
1

2
· 1

2k − 1
W (1, 2k − 1)

by the reflection principle.
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Lead Probability

I Now define P2k,2n be the probability that during the interval
[0, 2n] the particle spends 2k units of time on the positive side
(We say that the particle is on the positive side in the interval
[m− 1,m] if one, at least, of the value Xm−1 and Xm is
positive).

Lemma
Let u0 = 1 and 0 ≤ k ≤ n. Then

P2k,2n = u2k · u2n−2k.
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Proof of Lemma: 3 Steps

The proof of the lemma is divided into three main steps.

I Step 1. Show that it holds for k = 0 and k = n.

I Step 2. Prove the relation

u2k =

k∑
r=1

f2r · u2(k−r).

I Step 3. Show that

P2k,2n = u2k · u2n−2k.

holds for general k.

We will do this step by step.



Proof of Lemma: Step 1

Step 1. Proof for the case k = 0. The idea is to establish a
one-one correspondence between the set {X2n = 0} and the paths
always on positive side.

I Suppose we have a path with X2n = 0 and

min
0≤k≤2n

Xk = −m,

where m > 0. Denote l = max{k|Xk = −m}.
I We can map this path into a path only in the positive side.

Take a reflection of the path {Xk}0≤k≤l with respect to the
axis t = l and denote the new path by {X̃k}0≤k≤l such that
X̃k = Xl−k.

I Concatenate X̃0 to the point (2n, 0) and translate the left
endpoint of the new path into the origin.

I With such manipulation, we get a path on the positive side
and the right endpoint is (2n, 2m).
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t

(l,-m)

2n

t
2n

(2n,2m)

Figure: Schematics of construction from a path with X2n = 0 to a new
path on the positive side with 3 steps: 1. Reflection, 2. Concatenation,
3. Shift.



Proof of Lemma: Step 1

Conversely,

I For each path on the positive side with the right endpoint is
(2n, 2m), we take l = min{k|Xk = m}.

I We can cut the part beyond t = l, make a reflection with
respect to t = l, concatenate it to the left endpoint of the rest
part and translate the whole path into the origin, we then get
a new path with X2n = 0.

I These manipulations are illustrate in the Figure.

The case for k = n is trivially true by reflection symmetry and the
case k = 0.



Proof of Lemma: Step 2
Recall u2k = P(X2k = 0), f2k = P(σ2n = 2k). Now let us prove
the following relation

u2k =

k∑
r=1

f2r · u2(k−r).

I Since {X2k = 0} ⊂ {σ2n ≤ 2k}, we have

{X2k = 0} = {X2k = 0}∩{σ2n ≤ 2k} =

k∑
r=1

{X2k = 0}∩{σ2n = 2r}

I Consequently

u2k = P(X2k = 0) =
k∑
r=1

P(X2k = 0, σ2n = 2r)

=

k∑
r=1

P(X2k = 0|σ2n = 2r)P(σ2n = 2r).
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Proof of Lemma: Step 2

I But

P(X2k = 0|σ2n = 2r) = P(X2k = 0|X1 6= 0, . . . , X2r−1 6= 0, X2r = 0)

= P(X2r + (ξ2r+1 + · · ·+ ξ2k) = 0|X1 6= 0, . . . , X2r−1 6= 0, X2r = 0)

= P(X2r + (ξ2r+1 + · · ·+ ξ2k) = 0|X2r = 0)

= P(ξ2r+1 + · · ·+ ξ2k = 0) = P(X2(k−r) = 0) = u2(k−r).

I According to the definition

u2k = P(X2k = 0), f2k = P(σ2n = 2k),

we get the desired result

u2k =

k∑
r=1

f2r · u2(k−r).
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Proof of Lemma: Step 3

Now let us prove the Lemma when 1 ≤ k ≤ n− 1.

I If the particle is on the positive side for exactly 2k instants, it
must pass through zero. Let 2r be the time of first passage
through zero. There are two possibilities: either Xk ≥ 0 for all
k ≤ 2r, or Xk ≤ 0 for all k ≤ 2r.

I The number of paths of the first kind is

(22r · 1
2
f2r) · (22(n−r) ·P2(k−r),2(n−r)) =

1

2
22nf2rP2(k−r),2(n−r).

I The number of paths of the second kind is

1

2
22nf2rP2k,2(n−r).
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Proof of Lemma: Step 3

I Consequently, for 1 ≤ k ≤ n− 1,

P2k,2n =
1

2

k∑
r=1

f2rP2(k−r),2(n−r) +
1

2

k∑
r=1

f2rP2k,2(n−r).

I Suppose that P2k,2m = u2k · u2m−2k holds for
m = k, k + 1, . . . , n− 1. we have (Question: How is the
induction applied here?)

P2k,2n =
1

2
u2n−2k

k∑
r=1

f2ru2k−2r +
1

2
u2k

k∑
r=1

f2ru2n−2k−2r

=
1

2
u2n−2ku2k +

1

2
u2ku2n−2k = u2ku2n−2k.

This completes the proof.
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Probability of the fraction of time spending on positive side

I Now let γ(2n) be the number of time units that the particle
spends on the positive axis in the interval [0, 2n]. Then when
x < 1,

P
{1

2
<
γ(2n)

2n
≤ x

}
=

∑
k,1/2<2k/2n≤x

P2k,2n.

I Since

u2k ∼
1√
πk

(
Note lnW (0, 2k) ∼ ln

1√
πk

)
by Stirling’s formula as k →∞, we have

P2k,2n ∼
1

π
√
k(n− k)

as k, n− k →∞.
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Probability of the fraction of time spending on positive side
I Therefore∑
{k,1/2<2k/2n≤x}

P2k,2n−
∑

k,1/2<2k/2n≤x

1

πn
·
[k
n

(
1−k

n

)]− 1
2 → 0, n→∞,

Whence ∑
{k,1/2<2k/2n≤x}

P2k,2n →
1

π

∫ x

1
2

dt√
t(1− t)

, n→∞.

I From the symmetry, ∑
{k,2k/2n≤1/2}

P2k,2n →
1

2

and
1

π

∫ x

1
2

dt√
t(1− t)

=
2

π
arcsin

√
x− 1

2
.
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Arcsine law
Thus we obtain the following well-known theorem:
I Arcsine Law: The probability that the fraction of the time

spent by the particle on the positive side is at most x tends to
2
π arcsin

√
x: (Rescaling limit yields the Arcsine law for the

occupation time of Brownian motion)∑
{k,k/n≤x}

P2k,2n →
2

π
arcsin

√
x.

I Counter-intuitive result: One player will win in most time even
in a fair game!

Figure: Density of the Arcsine law.
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Einstein’s work on the theory of Brownian motion

In 1905, A. Einstein published a seminal paper on the theory of
Brownian motion (he also publishes two other seminal papers on
Special Relativity and photoemission in this year). Two major
points in Einstein’s solution to Brownian motion are

1. The motion is caused by the exceedingly frequent impacts on
the pollen grain of the incessantly moving molecules of liquid
in which it is suspended;

2. The motion of these molecules is so complicated that its
effect on the pollen grain can only be described
probabilistically in terms of exceedingly frequent statistically
independent impacts.
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Einstein’s work on the theory of Brownian motion
His mathematical interpretation is as follows (1D version).
I In a small time interval τ , the X-coordinates of an individual

particle will increase by an amount ∆. There will be a certain
“frequency law” for ∆

dn = nφ(∆)d∆

where ∫ +∞

−∞
φ(∆)d∆ = 1, φ(−∆) = φ(∆),

and φ is only different from 0 for very small values of ∆.

I Let f(x, t) be the number of particles per unit volume, then

f(x, t+ τ)dx =

∫ +∞

−∞
f(x−∆, t)dxφ(∆)d∆.

Since τ is small

f(x, t+ τ) = f(x, t) +
∂f

∂t
τ,
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Einstein’s work on the theory of Brownian motion

I furthermore

f(x−∆, t) = f(x, t)−∆
∂f

∂x
+

∆2

2

∂2f

∂x2
+ · · · .

I Thus

f(x, t) +
∂f

∂t
τ = f

∫ +∞

−∞
φ(∆)d∆ +

∂f

∂x

∫ +∞

−∞
∆φ(∆)d∆ +

∂2f

∂x2

∫ +∞

−∞

∆2

2
φ(∆)d∆ + · · · .

I Set
1

τ

∫ +∞

−∞

∆2

2
φ(∆)d∆ = D

throwing h.o.t., we have

∂f

∂t
= D

∂2f

∂x2
.
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Einstein’s work on the theory of Brownian motion

His description contains very many of the major concepts which
have been developed more and more generally and rigorously since
then, such as

I Chapman-Kolmogorov equation;

I Fokker-Planck equation;

I Kramers-Moyal expansion.

But the overall philosophy and treatment is highly original!
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