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I We already have very efficient algorithms for traditional
convex programming.

I But how about the non-convex programming problems, such
as the following combinatorial optimization problem?
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Traveling Salesman Problem
Suppose there are N cities and there exists one path (lij = lji) for
each two. Try to find a minimal path passing all the cities such
that each city is passed and only passed one time.

min
x∈X

H(x) =

N∑
i=1

lxixi+1 , xN+1 := x1.

X = {(x1, . . . , xN ), x1, . . . , xN is a permutation of 1, 2, . . . , N}
1

2

N

N−1

Figure: Traveling Salesman Problem



Traveling Salesman Problem

I The number of all the possible paths is O(N !). It is a typical
combinatorial explosion problem (NP-hard problem).

I This number increases exponentially with N , and there is not
any simple rules for the function H(x).

I The traditional algorithms are inapplicable here.
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Image restoration problem

Figure: Image denoising problem



Image restoration problem
Suppose there are J pixels for an image, and there are 256 colors
for each pixel.

I Any image can be represented as one element in

X = {(x1, . . . , xJ) : xi ∈ {0, 1, . . . , 255}}.

The smoothness of an image is defined as

H(x) = α
∑
〈s,t〉

(xs − xt)2, α > 0,

where 〈s, t〉 means the neighboring pixels in the lattice among
x = (x1, . . . , xJ).

I Then define the comparison function for images x and y
where y is the reference image

H(x|y) = α
∑
〈s,t〉

(xs − xt)2 +
1

2σ2

∑
s

(xs − ys)2.
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Image restoration problem

I An image recovering problem for polluted y may be proposed
as minimizing the following function:

min
x∈X

H(x|y).

I The number of all the possible states is 256J ! Traditional
algorithms are still inapplicable here!

I Simulated annealing algorithm is one of the framework to
handle this kind of non-convex global optimization problem
from stochastics viewpoint.

I While the effectivity is still under discussion.
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Simulated Annealing: Basic Framework

Otimization problem:

I For optimization problem

min
x∈X

H(x),

Define the global minimizers of H(x)

M = {x0 : H(x0) = min
x∈X

H(x)},

and introduce the parameter β > 0, define

Πβ(x) =
1

Zβ
e−βH(x), Zβ =

∑
x∈X

exp(−βH(x)),

then Πβ(x) is a probability distribution on X.



Simulated Annealing: Theorem

Theorem Πβ(x) has the property

lim
β→+∞

Πβ(x) =

{
1
|M | if x ∈M,

0 else.

and if β is sufficiently large, then Πβ(x) is monotonely increasing
as a function of β for any x ∈M , and Πβ(x) is monotonely
decreasing as a function of β for any x /∈M .

I Proof. Rewrite

Πβ(x) =
e−β(H(x)−m)∑

z:H(z)=m e
−β(H(z)−m) +

∑
z:H(z)>m e

−β(H(z)−m)

β→+∞−→

{
1
|M | , x ∈M,

0, x /∈M,

where m = minxH(x).



Simulated Annealing: Theorem
I If x ∈M , we have

Πβ(x) =
1

|M |+
∑

z:H(z)>m e
−β(H(z)−m)

,

then Πβ(x) monotonely increases with β increasing.

I If x /∈M , we have

∂Πβ(x)

∂β
=

1

Z̃2
β

(
e
−β(H(x)−m)

(m−H(x))Z̃β − e
−β(H(x)−m)

∑
z∈X

e
−β(H(z)−m)

(m−H(z))
)

=
1

Z̃2
β

(
e
−β(H(x)−m)[

(m−H(x))Z̃β −
∑
z∈X

e
−β(H(z)−m)

(m−H(z))
])
,

where
Z̃β ,

∑
z∈X

exp(−β(H(z)−m)).

Pay attention that

lim
β→+∞

[
(m−H(x))Z̃β −

∑
z∈X

e
−β(H(z)−m)

(m−H(z))
]

= |M|(m−H(x)) < 0,

The proof is completed.
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Remark
I The construction of Πβ(x) opens a new way to optimize
H(x) via stochastics.

I The theorem shows that if we can generate the random
sequence with distribution Πβ(x), then the random numbers
will finally jump among the minimizers when β = +∞. This
procedure is called annealing.

I It corresponds to the physical crystallization. In physics, β
corresponds to 1/T , where T is temperature. Global energy
minimization means a perfect crystal without defects.The
observed crystals with defects in nature can be understood as
the local minimum state.

I In order to obtain a perfect crystal, one may image the
following process: The crystals will take the form of liquids in
the high temperature, then one decreases the temperature
very slowly until the perfect crystal forms at the zero
temperature. This is the basic idea of simulated annealing.

I The random number generation with distribution Πβ(x) can
be created by Metropolis algorithm.
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Theoretical results: Formulation

I Assuming the Metropolis sampler for simulated annealing is

P β(x, y) =


G(x, y)π

β(y)
πβ(x)

, πβ(y) < πβ(x) and x 6= y,

G(x, y), πβ(y) ≥ πβ(x) and x 6= y,

1−
∑

z 6=x P
β(x, z) x = y.

where G(x, y) is the proposal matrix. It is symmetric as
before.

I In order to state the fundamental theorem of simulated
annealing, we make the following definitions.
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Theoretical results: Some Definitions

Definition (Neighborhood system)

The neighborhood system of x is defined as
N(x) = {y ∈ X|x 6= y,G(x, y) > 0}.

Definition (Communication length)

Given x and y, if there exists sequence x = u0, u1, . . ., uσ(x,y) = y
such that uj+1 ∈ N(uj) for any j = 0, 1, . . . , σ(x, y)− 1, then we
say that the states x and y communicate, where σ(x, y) is the
length of the shortest path along which x and y communicate.

Definition (Maximal local increase of energy)

The maximal local increase of energy is defined as

∆ = max{H(y)−H(x) : x ∈ X, y ∈ N(x)}.
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Theoretical results

Theorem (Fundamental theorem of simulated annealing)

Suppose that X is a finite set, H(x) is a nonconstant function,
G(x, y) is a symmetric irreducible proposal matrix,

τ = max{σ(x, y) : x, y ∈ X}.

If the annealing procedure is chosen such that β(n) ≤ 1
τ∆ lnn,

then for any initial distribution ν, we have

lim
n→+∞

‖νP β(1) · · ·P β(n) −Π∞‖ = 0.



Remark

I The theorem shows that the annealing rate must be slow
enough such that β(n) ≤ 1

τ∆ lnn. It is a very very slow rate
because n ≥ exp(τ∆β(n)), we need n ∼ exp(N0) if
β(n) = N0 � 1.

I This means high accuracy needs exponential computing time,
which is impossible for realistic computation.

I We should take more rapid annealing rates such as
β(n) ∼ p−n (p . 1) or others. Of course, it has no theoretical
foundations.
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Quasi-Monte Carlo Method

I The standard MC is of O( σ√
N

). In order to improve the

accuracy, one has two choices

I Take N very large — Huge computational effort;
I Variance reduction techniques.

I In the follows we will introduce the QMC to replace the
pseudo-random sequence with quasi-random sequence.

I It improves the convergence rate to O((lnN)kN−1), where k
depends on the space dimension.

I Finally we will find that QMC is essentially a deterministic
method which is very similar with MC.
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Discrepancy

The concept of discrepancy is an estimate of the uniformity of the
points.

I For N points {xn}Nn=1 belonging to the unit d-cube
Id = [0, 1]d, define

RN (J) =
1

N
#{xn ∈ J} −m(J)

for any set J ⊂ Id, where #{xn ∈ J} means the number of
the points in set J , and m(J) is the measure of J .

I Intuitively RN (J) is the difference between the exact volume
and the random sampling estimate of the volume.
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Rectangles

Definition (Rectangles)

Define the whole set of rectangles in Id as

E = {J(x, y) : (0, 0, . . . , 0) ≤ x ≤ y ≤ (1, 1, . . . , 1)},

where x ≤ y means xi ≤ yi,i = 1, . . . , d, J(x, y) means the set of
rectangles with the lower left node x and the upper right node y.
Define

E∗ = {J(0, y) : (0, 0, . . . , 0) ≤ y ≤ (1, 1, . . . , 1)}.



Discrepancy: Definition

Definition (Discrepancy)

The L∞-discrepancy of a sequence {xn}Nn=1 is defined as

DN = sup
J∈E
|RN (J)|;

and the L2-discrepancy

TN =
(∫

(x,y)∈I2d,x≤y
RN (J(x, y))2dxdy

) 1
2
.

The Lp-discrepancy can be defined similarly. Specially we define
the discrepancy

D∗N = sup
J∈E∗

|RN (J)|,

T ∗N =

(∫
Id
RN (J(0, x))2dx

) 1
2

.
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Total variation
The total variation of function
I In 1D case, the total variation of a function is defined as the

sum of the jumps:

V [f ] = sup
τ

∑
i

|f(xi+1)− f(xi)|,

where τ is taken to all the possible partitions of the domain.
If f is differentiable, then

V [f ] =

∫ 1

0
|df | =

∫ 1

0
|f ′(x)|dx.

I The total variation of function f in unit d-cube [0, 1]d is
defined as

V [f ] =

∫
Id

∣∣∣ ∂df

∂x1 · · · ∂xd

∣∣∣dx1 · · · dxd +
d∑
i=1

V [f
(i)
1 ],

where f
(i)
1 is the restriction of f on the boundary xi = 1. It is

a recursive definition of total variation.
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Koksma-Hlawka Theorem

Theorem (Koksma-Hlawka Theorem)

For any sequence {xn}Nn=1 ⊂ Id and the function f with bounded
variation in Id, the integration error E obeys the following
inequality

E [f ] ≤ V [f ]D∗N ,

where E [f ] , |I[f ]− IN [f ]| = |
∫
Id f(x)dx− 1

N

∑N
i=1 f(xi)|.



Koksma-Hlawka Theorem: Intuitive Proof

Intuitive Proof. For the function f(x) which takes value 0 on the
boundary of Id, define

R(x) = RN (J(0, x)).

Then

dR(x) = { 1

N

N∑
i=1

δ(x− xi)− 1}dx,

where dR = ∂dR
∂x1···∂xd , dx = dx1 · · · dxd.
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Koksma-Hlawka Theorem: Intuitive Proof

So we have

E [f ] =
∣∣∣∫
Id
f(x)dx− 1

N

N∑
i=1

f(xi)
∣∣∣

=
∣∣∣∫
Id
{1− 1

N

N∑
i=1

δ(x− xi)}f(x)dx
∣∣∣

=
∣∣∣∫
Id
R(x)df(x)

∣∣∣
≤ (sup

x
R(x))

∫
Id
|df(x)| = D∗NV [f ].



Koksma-Hlawka Theorem: Implication

I Koksma-Hlawka theorem shows that the discretization error
can be described by the total variation V [f ] and the
discrepancy for the sample points.

I QMC gives some special quasi random sequences which have
good discrepancy properties. It is a pure number theoretic
result.
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Quasi-random Sequences

Definition
A sequence {xn}Nn=1 ⊂ Id is called quasi-random if

DN ≤ C(lnN)kN−1,

in which c and k are constants that are independent of N , but
may depend on the dimension d.

I Van der Corput sequence (d = 1):
The generation of sequence {xi}Ni=1 is composed of two steps:
Step1. Write out n in base 2:

n =
(
amam−1 · · · a1a0

)
2
,

where (·)2 means in base 2, ai ∈ {0, 1} is the i-th bit of n;
Step2. Generate xn in base 2

xn =
(

0. a0a1 · · · am
)

2
.



Quasi-random Sequences

Definition
A sequence {xn}Nn=1 ⊂ Id is called quasi-random if

DN ≤ C(lnN)kN−1,

in which c and k are constants that are independent of N , but
may depend on the dimension d.

I Van der Corput sequence (d = 1):
The generation of sequence {xi}Ni=1 is composed of two steps:
Step1. Write out n in base 2:

n =
(
amam−1 · · · a1a0

)
2
,

where (·)2 means in base 2, ai ∈ {0, 1} is the i-th bit of n;
Step2. Generate xn in base 2

xn =
(

0. a0a1 · · · am
)

2
.



Quasi-random Sequences

I Halton sequence (d > 1):
Denote xn = (x1

n, x
2
n, . . . , x

d
n), where the k-th component xkn

is obtained by two steps.
Step1. Write out n in base pk. (where pk is the k-th prime
number, e.g. p1 = 2, p2 = 3)

n =
(
akmka

k
mk−1 · · · ak1ak0

)
pk

;

Step2. Generate xkn in base pk:

xkn =
(
0. ak0a

k
1 · · · akmk

)
pk
.

The number theorists has proved

DN (Halton) ≤ Cd(lnN)dN−1.



Limitations of QMC

QMC has the following limitations:

I QMC are designed for integration and are not directly
applicable to simulations. This is because of the correlations
between the points of a quasi-random sequence.

I Because the theoretical basis of QMC is from Koksma-Hlawka
theorem, and the generation style of quasi-random numbers is
very special, it is commonly applied to the integral in rectangle
with the form

∫
Idf(x)dx. For the powerful MCMC method,

how to design the corresponding QMC version is not clear.

I QMC is found to lose its effectiveness when the dimension of
the integral becomes large. This can be anticipated from the
bound (lnN)dN−1 on discrepancy. For large dimension d,
this bound is dominated by the (lnN)d term unless N > ed.

I QMC is found to lose its effectiveness if the integrand f is not
smooth. The factor V [f ] in the Koksma-Hlawka inequality is
an indicator of this dependence.
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Limitations of QMC

All in all:

I QMC is suitable for the integration in which the space
dimension is not so big, the integrand f is relatively smooth.

I Though it has better convergence rate than Monte Carlo
method, its applicability is limited.
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