
Steffen Staab
University of Karlsruhe
sst@aifb.uni-karlsruhe.de

T r e n d s & C o n t r o v e r s i e s

72 1094-7167/03/$17.00 © 2003 IEEE IEEE INTELLIGENT SYSTEMS

Don’t Go with the Flow: Web Services
Composition Standards Exposed

Wil van der Aalst, Eindhoven University of
Technology

The recently released BPEL4WS is said to combine the
best standards for Web services composition, such as
IBM’s WSFL and Microsoft’s XLANG. (For an explana-
tion of these and other acronyms, see the “Glossary” side-

bar.) BPEL4WS allows for a mixture of block- and graph-
structured process models, thus making the language
expressive at the price of being complex. Although
BPEL4WS is not such a bad proposal, it is remarkable
how much attention this standard has received, while
more fundamental issues and problems such as semantics,
expressiveness, and adequacy have not received the atten-
tion they deserve.

Of course, having a standard is a good idea, but there are
too many of them—and most die before they mature. Con-

Web Services:
Been There, Done That?

What are Web services? The Stencil Group defines them as
“loosely coupled, reusable software components that semanti-
cally encapsulate discrete functionality and are distributed and
programmatically accessible over standard Internet protocols”
(see www.stencilgroup.com/ideas_scope_200106wsdefined.
html). Does this sound familiar? Long ago, people learned how
to send software components and RPCs over HTTP (for an expla-
nation of RPC and other terms, see the “Glossary” sidebar). Mes-
sage exchange is increasingly based on XML, but so what?

Do you recognize hype when you see it? Let us measure fame
as a Google count of Web pages that include a specified term.
For example, measure the Semantic Web—now the topic of an
established department in IEEE Intelligent Systems—against
Web services. (The Semantic Web department in this issue
also covers Web services.) The first Semantic Web language
document (a working draft on the Resource Description Frame-
work) was issued as part of the World Wide Web Consortium
metadata activity in October 1997 (www.w3.org/2001/sw). Using
Google’s exact search, the term “Semantic Web” yields approxi-
mately 136,000 Web pages.

Now consider “Web services.” The first UDDI document I
could find dates from 1999, and the first W3C XML Protocol
Activity preceding the Web Services Activity started in Septem-
ber 2000 (see www.w3.org/2002/ws).1 The corresponding
count delivers a whopping 3,210,000 pages. Compare these
numbers with “artificial intelligence,” whose count ranks at
1,410,000, “Corba” (Common Object Request Broker Architec-
ture) at 1,650,000, and “TCP” at 7,640,000.

Even given the inevitable fallacies of these numbers, the
overall result is clear: Web services have received a lot of hype,
the reasons for which are not easily determined. Some of their

benefits might even seem to waste away, once we touch on
the nitty-gritty details, because Web services per se do not
offer a solution to underlying problems such as

• How can I effectively and efficiently distribute computa-
tion efforts?

• How can I make a software component really reusable?
• How can I control and monitor these processes?
• How can I effortlessly integrate the components?

The following contributions delve into some of these issues.
Wil van der Aalst describes the pitfalls of workflow issues, many
of which we’ve encountered before. V. Richard Benjamins points
to the various research in the 1990s into structuring procedural
knowledge into problem-solving methods. Amit Sheth and John
A. Miller discuss how a low initial entry barrier and simple tech-
nology are balanced against the long-term goal of easy integra-
tion. Christoph Bussler, Alexander Maedche, and Dieter Fensel
strongly support this idea—in particular, by including semantics
in their Web Service Modeling Framework. Finally, Dennis Gan-
non argues that Web services should not follow the well-worn
and unsuccessful paths of other distributed-object technology.
Rather, they should build on new kinds of applications, such as
grid enterprises, which are only possible using technologies such
as Web services. Have we been there before? Let’s see.

—Steffen Staab

Reference
1. A. Preece and S. Decker, “Intelligent Web Services,” IEEE Intelligent

Systems, vol. 17, no. 1, Jan./Feb. 2002, pp. 15–17.

Published by the IEEE Computer Society

sider the growing list of acronyms: PDL,
XPDL, BPSS, EDOC, BPML, WSDL,
WSCI, ebXML, BPEL4WS—and these are
just some of the acronyms referring to vari-
ous standards in the domain. Another prob-
lem is that these languages typically don’t
have any clearly defined semantics. The
only way to overcome these problems is to
critically evaluate the so-called standards
for Web services composition. In other
words, don’t just go with the flow.

Web services composition
Two trends are coming together in e-busi-

ness that are creating both opportunities and
pressures to automate business processes
across organizational boundaries. One is
the technology push created by enabling
technologies taking XML-based standards
and the Internet as a starting point. The
other trend is improving the efficiency of
processes from a business perspective.

After the dotcom crash, there was a
pressing need to use Internet technology’s
potential by automating business processes
across enterprise boundaries. Web services
aim to exploit XML technology and the
Internet by integrating applications than can
be published, located, and invoked over the
Web. A typical example of a Web services
application is the Galileo system, which
connects more that 42,000 travel agency
locations to 37 car rental companies, 47,000
hotels, and 350 tour operators.

To truly integrate business processes
across enterprise boundaries, merely sup-
porting simple interaction using standard
messages and protocols is insufficient.
Business interactions require long-running
interactions that are driven by an explicit
process model. This raises the need for Web
services composition languages such as
BPEL4WS,1 WSFL,2 XLANG,3 WSCI, and
BPML. These languages are also known as
Web services flow languages, Web services
execution languages, Web services orches-
tration languages, and Web-enabled work-
flow languages. Before discussing such lan-
guages, I focus on the typical technology on
which they are building.

Figure 1 shows the relation between Web
services composition languages and other
standards such as SOAP, WSDL, and UDDI.
SOAP is a protocol for exchanging informa-
tion in a decentralized, distributed environ-
ment using typed message exchange and
remote invocation. It is an XML-based pro-
tocol that consists of

• An envelope that defines a framework
for describing what is in a message and
how to process it

• A set of encoding rules for expressing
instances of application-defined data
types

• A convention for representing RPCs and
responses (SOAP can potentially be built
on top of any transport layer, such as an
HTTP-based infrastructure)

WSDL is an XML format for describing
network services based on a standard mes-

saging layer such as SOAP. A WSDL docu-
ment defines services as collections of net-
work endpoints, or ports. WSDL separates
the abstract definition of endpoints and
messages from their concrete network
deployment or data format bindings. This
lets us reuse abstract definitions, including
messages, which are abstract descriptions
of the data being exchanged, and port
types, which are abstract collections of
operations. The concrete protocol and data
format specifications for a particular port
type constitute a reusable binding. Associ-

JANUARY/FEBRUARY 2003 computer.org/intelligent 73

B2B Business to Business
BPEL4WS Business Process Execution Language for Web Services
BPMI Business Process Management Initiative
BPML Business Process Modeling Language
BPSS Business Process Schema Specification
Corba Common Object Request Broker Architecture
ebXML Electronic Business Using Extensible Markup Language
EDI Electronic Data Interchange
IBROW3 Intelligent Brokering Service for Knowledge-Component Reuse

on the World Wide Web
IDL Interface definition language
OMG Object Management Group
PSM Problem-solving method
RPC Remote procedure call
SOAP Simple Object Access Protocol
UDDI Universal Description Discovery and Integration
WfMC Workflow Management Coalition
WSCI Web Service Choreography Interface
WSDL Web Services Description Language
WSFL Web Services Flow Language
WSMF Web Services Modeling Framework
XLANG Web services for business process design
XPDL XML Process Definition Language

Glossary

Transport layer:
HTTP, SMTP, FTP

XML messaging layer:
Simple Object Access Protocol

Service description layer:
Web Services Description Language

Web services composition:
Business Process Execution
Language for Web Services,

XLANG,
Web Services Flow Languages

Publication and discovery:
Universal Description Discovery

and Integration

Figure 1. Overview of Web services technology.

ating a network address with a reusable
binding defines a port, and a collection of
ports defines a service.

UDDI defines a set of services supporting
the description and discovery of businesses,
organizations, and other Web services pro-
viders; the Web services they make available;
and the technical interfaces we can use to
access those services. Simply put, we can use
UDDI to build “yellow pages” for Web ser-
vices. Consensus currently seems to exist on
the use of SOAP, WSDL, and UDDI, so I
assume these standards will remain in place.

Web services composition languages
build directly on top of WSDL. A language
such as BPEL4WS both provides and uses
one or more WSDL services. A WSDL
service is composed of ports that provide
operations. Each operation receives a mes-
sage (one way), receives and sends a mes-
sage (request response), sends and receives
a message (solicit response), or sends a mes-
sage (notification). WSDL services and the
corresponding operations are glued together
to provide composed services. To glue such
services together, a process model must
specify the order in which the operations
execute. A Web services composition lan-
guage provides the means to specify such a
process model.

An important difference between WSDL
and a language such as BPEL4WS is re-
vealed when we consider the states. WSDL
is essentially stateless because the lan-
guage is unaware of states between opera-
tions. The only state notion supported is
the state between sending and receiving a
message in a request-response or solicit-
response operation. Any technology sup-
porting a Web services composition lan-
guage will have to record states for processes
that are more complex than a simple re-
quest response. Only by recording the state
can we determine what should be done,
thus enabling long-lived business transac-
tions. This has triggered the development
of languages such as BPEL4WS, WSFL,
XLANG, WSCI, and BPML.

Overview of so-called
standards

The BPEL4WS specification1 builds on
WSFL2 and XLANG.3 XLANG is a block-
structured language with basic control flow
structures such as sequence, switch (for condi-
tional routing), while (for looping), all (for par-
allel routing), and pick (for race conditions
based on timing or external triggers).

Unlike XLANG, WSFL is not limited to
block structures and allows for directed
graphs. The graphs can be nested but must
be acyclic. Iteration is only supported
through exit conditions—that is, an activity
or subprocess iterates until its exit condition
is met. The control flow part of WSFL is
almost identical to the workflow language
that IBM’s MQ Series Workflow uses. This
might be surprising, given that this work-
flow language is very different from most
languages. For example, the “Death-Path
Elimination” allows for the so-called “Syn-
chronizing merge pattern.” This way, rout-
ing is not restricted to explicit AND-joins
and XOR-joins, as in most workflow prod-
ucts. This is a nice feature, but it is quite
exotic and most systems don’t support it.

Although the correspondence between
the WSFL standard and IBM’s workflow
product might surprise people not involved
in the standardization process, we can easily
explain it by the fact that the same set of
people (most notably, Frank Leymann) have
defined both languages. We can make simi-
lar comments for XLANG and Microsoft’s
BizTalk Orchestrator. XLANG is based on
Microsoft’s current middleware solution and
therefore hardly qualifies as a “standard.”

Unfortunately, BPEL4WS, WSFL, and
XLANG are not the only recently proposed
standards. Sun, BEA, SAP, and Intalio have
introduced another candidate for Web ser-
vices composition: WSCI. Intalio also initi-
ated the Business Process Management
Initiative (BPMI.org), which developed
BPML. OASIS and UN/CEFACT support
ebXML. Part of ebXML is BPSS, which is
yet another standard similar in scope to
BPEL4WS, WSFL, XLANG, WSCI, and
BPML. The abundance of overlapping stan-
dards for Web services composition is over-
whelming. Some people refer to these com-
peting standards without clear added value
as WSAH—Web Services Acronym Hell.

Outside the Web services domain, other
initiatives are attempting to standardize
the specification of executable business
processes. Most notable is the initiative of
the Workflow Management Coalition. Since
1993, the WfMC has been active in standard-
izing both a workflow process definition lan-
guage and the interfaces between various
workflow components. In August 2002,
the WfMC released XPDL4 to support the
exchange of workflow specifications between
different workflow products. According to
Jon Pyke, WfMC Chair and CTO of Staff-

ware, XPDL is consistent with BPEL4WS
but goes far beyond the standards for Web
services composition. Clearly, many people
working on standards for Web services com-
position did not benefit from the experiences
in the workflow domain. Therefore, “been
there, done that” comments are justified.

However, workflow vendors clearly have
not adopted WfMC standards. Some systems
can export to XPDL, but none can import
XPDL from another system and still produce
meaningful results. This is partly because
after work on workflow standards for more
than a decade, still no consensus exists on the
workflow constructs that must be supported
and their semantics. It is remarkable how
many different interpretations of a join con-
struct exist in contemporary workflow lan-
guages: “Wait for all (AND-join),” “Wait for
first and reset (XOR-join),” “Wait for first
and block until all have arrived,” “Wait for all
to come,” and so forth.

Comparing BPEL4WS, XLANG,
WSFL, XPDL, and WFM
products

With respect to Web services composition
languages, software vendors such as IBM,
Microsoft, Sun, BEA, SAP, and Intalio have
been the main drivers of development. This
has resulted in an abundance of standards
having overlapping functionality. When you
look at the standards in more detail, you can
see clearly that they are often based on exist-
ing products, just as WSFL is almost a copy
of the MQ Series Workflow language. Stan-
dards that involve multiple software vendors
are often a compromise between competing
viewpoints. Consequently, such standards
tend to be imprecise or unnecessarily com-
plex. WfMC’s XPDL is an example of a
standard that is imprecise, thereby letting
vendors have their own interpretation of it
(and making it useless). BPEL4WS joins
viewpoints from both WSFL and XLANG,
thus making the language complex.

Given these observations, looking for
objective measures for comparing Web ser-
vices composition languages is useful. For
the control-flow aspect of such languages, we
can use some of the results from workflow
research.5 One way to compare standards
such as BPEL4WS, XLANG, and WSFL is
to use the set of workflow patterns available
from www.tm.tue.nl/it/research/patterns.6

Each of these patterns corresponds to a rout-
ing construct often required during workflow
design.7,8 The whole set of patterns has been

74 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

used to evaluate and compare about 20 work-
flow management systems.

Table 1 compares three Web services com-
position languages, XPDL, and four concrete
workflow management systems.6 The first
five patterns correspond to the basic routing
constructs you can find in any language. The
other patterns refer to more advanced con-
structs that most standards and products don’t
support. Every “+” refers to direct support—
meaning the language has a construct that
directly supports the pattern. A “–” refers to
no direct support. This does not mean that
realizing the pattern through some work-
around is impossible. (For example, any of
the constructs can be realized using a stan-
dard programming language, but this does
not imply that there is direct support for all
workflow patterns.) Sometimes there is a
feature that only partially supports a pattern,
such as a construct that imposes certain
restrictions on the structure of the process.

Support for such features is rated “+/–”.
Without going into details, we can make sev-
eral observations.

First, BPEL4WS is indeed a combination
of XLANG and WSFL when it comes to sup-
porting the patterns. Second, WSFL and MQ
Series Workflow are indeed identical when it
comes to process specification. Third, XPDL
seems less expressive than BPEL4WS. (In
a way, we can view XPDL as the greatest
common denominator of existing workflow
languages rather than the least common
multiple.) Finally, Web services composi-
tion languages and workflow management
systems have relevant differences when it
comes to supporting routing constructs. Of
the four workflow management systems
listed, only FLOWer (a workflow and case-
handling system) is block structured like
XLANG. The other three systems (Staffware,
MQ Series, and eProcess) are graph-based
like WSFL and XPDL.

The Web site of BPMI.org, one of the
organizations proposing a Web services
composition standard, states that

BPMI.org defines open specifications such as
the Business Process Modeling Language
(BPML) and the Business Process Query Lan-
guage (BPQL) that will enable the standards-
based management of e-Business processes
with forthcoming Business Process Manage-
ment Systems (BPMS), in much the same way
SQL enabled the standards-based management
of business data with off-the-shelf Database
Management Systems (DBMS).

The goal of obtaining standards similar to
SQL for Web services is ambitious.

As history shows, such standards do not
originate from vendors pushing their own
products. Recall that the Entity-Relationship
model by Peter Chen and the Relational
Model by Eduard Codd enabled languages
such as SQL. Although there are well-estab-

JANUARY/FEBRUARY 2003 computer.org/intelligent 75

Table 1. Comparison of BPEL4WS, XLANG, WSFL, XPDL, and four workflow products.

MQ Series Panagon
Pattern BPEL4WS XLANG WSFL XPDL Staffware Workflow eProcess FLOWer

1 Sequence + + + + + + + +

2 Parallel split + + + + + + + +

3 Synchronization + + + + + + + +

4 Exclusive choice + + + + + + + +

5 Simple merge + + + + + + + +

6 Multichoice + – + + – + + –

7 Synchronizing merge + – + – – + + –

8 Multimerge – – – – – – – +/–

9 Discriminator – – – – – – – +/–

10 Arbitrary cycles – – – + + – +/– –

11 Implicit termination + – + + + + + –

12 Multiple instances without + + + – – – + +
synchronization

13 Multiple instances with + + + + + + + +
a priori design time knowledge

14 Multiple instances with – – – – – – – +
a priori runtime knowledge

15 Multiple instances without – – – – – – – +
a priori runtime knowledge

16 Deferred choice + + – – – – – +/–

17 Interleaved parallel routing +/– – – – – – – +/–

18 Milestone – – – – – – – +/–

19 Cancel activity + + + – + – – +/–

20 Cancel case + + + – – – + +/–

lished process-modeling techniques combin-
ing expressiveness, simplicity, and formal
semantics (such as Petri nets and process
algebras), the software industry has chosen
to ignore these techniques. So, the world is
confronted with too many standards, mainly
driven by concrete products or commercial
interests. The only way to stop this is to
ignore standardization proposals that are
not using well-established process-modeling
techniques. This will force vendors to address
the real problems rather than create new ones.

Acknowledgments
I thank Arthur ter Hofstede, Bartek Kiepu-

szewski, Marlon Dumas, and Petia Wohed for
contributing to the results mentioned in this essay.

References

1. F. Curbera et al., Business Process Execution
Language for Web Services (Version
1.0), IBM, July 2002, www-106.ibm.com/
developerworks/webservices/library/ws-bpel.

2. F. Leymann, Web Services Flow Language
(WSFL 1.0), IBM, May 2001, www-3.ibm.
com/software/solutions/webservices/pdf/
WSFL.pdf

3. S. Thatte, XLANG: Web Services for Business
Process Design, Microsoft, Redmond, Wash.,
2001, www.gotdotnet.com/team/xml_wsspecs/
xlang-c/default.htm.

4. Workflow Process Definition Interface—XML
Process Definition Language (XPDL),
WFMC-TC-1025, Version 1.0 Beta, Work-
flow Management Coalition, 2002, www.
wfmc.org/s tandards/docs/TC-1025_
10_xpdl_102502.pdf.

5. W.M.P. van der Aalst and K.M. van Hee,
Workflow Management: Models, Methods,
and Systems, MIT Press, Cambridge, Mass.,
2002.

6. W.M.P. van der Aalst et al., Workflow Pat-
terns, QUT tech. report FIT-TR-2002-02,
Queensland Univ. of Technology, Brisbane,
Australia, 2002; www.tm.tue.nl/it/research/
patterns (also to appear in Distributed and
Parallel Databses).

7. W.M.P van der Aalst et al., Pattern-Based
Analysis of BPML (and WSCI), QUT tech.
report FIT-TR-2002-05, Queensland Univ. of
Technology, Brisbane, Australia, 2002.

8. P. Wohed et al., Pattern-Based Analysis of
BPEL4WS, QUT tech. report FIT-TR-2002-
04, Queensland Univ. of Technology, Bris-
bane, Australia, 2002.

Web Services Solve Problems,
and Problem-Solving Methods
Provide Services

V. Richard Benjamins, Intelligent Software
Components, S.A.

In the fall of 1996, on a flight home from
the Knowledge Acquisition Workshop, some
colleagues and I were outlining a new re-
search project (an FP4 Esprit project) that
aimed to link knowledge technology to the
Web. The Web was gaining importance, and
knowledge technology was looking to join
the bandwagon. We were talking about the
IBROW3 project, an Intelligent Brokering
Service for Knowledge-Component Reuse
on the World Wide Web (see www.swi.psy.
uva.nl/projects/IBROW3/home.html).

The project envisioned reusable heteroge-
neous components located at repositories on
the Web, which a broker (or software agent)
would configure into a distributed program
to solve a particular problem. The broker
therefore had to know about the problem
and the individual components’ capabilities.
The brokering process’s result would be a
distributed system that could, for example,
classify edible and poisonous mushrooms
using a public mushroom database and a
classifier, both available on the Web.

The components that the IBROW project
considered were problem-solving methods
and ontologies. A PSM is a generic descrip-
tion of a reasoning process, independent of
the domain to which it is applied. A PSM
might solve classification tasks, for exam-
ple, by classifying mushrooms, diseases, or
financial transactions. Before we can apply
a PSM to a particular domain, we have to
check its assumptions, which describe the
domain model’s required characteristics.

For example, the establish-and-refine
PSM, which B. Chandrasekaran introduced
in the late 1980s, requires hierarchically orga-
nizing the domain knowledge. The PSM’s
assumptions capture the interaction between
the PSM and domain knowledge explicitly
such that reusing each of them in different sit-
uations becomes less troublesome. One main
motivation behind research on PSMs and
ontologies in the 1990s was to increasingly
reuse and share code rather than develop code
from scratch for each new problem.

Web services
We also see this motivation in Web

services—pieces of software available on

the Web that people can access through a
standard protocol and execute remotely.
Furthermore, when used together, Web ser-
vices can deliver a complex functionality.

The three major ingredients for Web ser-
vices are a description of the service, which
uses the WSDL; the XML protocol SOAP,
through which users access the services; and
a UDDI directory, where you can find what
Web services are offered and where. (For an
explanation of these and other acronyms, see
the “Glossary” sidebar.) With those ingredi-
ents in place, anybody can use a Web service,
regardless of the programming language in
which the service was originally defined.

Web services thus tackle the problem
of heterogeneous sources and make them
interoperable. Technologies such as Corba,
RPC, and EDI had the same objectives, but
those solutions needed their proper (that is,
specific or dedicated) infrastructure, with
the corresponding costs and implementation
efforts. We can thus explain the success of
Web services by viewing them as a technol-
ogy based on maximal decoupling (and thus
maximal reusability) available over an exist-
ing economic infrastructure (the Internet).
Their power is not so much in their technol-
ogy (the idea of RPC is nothing new) but
rather that they offer a Web-native XML-
based solution. So, we can rapidly design,
implement, and deploy Web services.

These characteristics make Web services
an interesting candidate for integrating het-
erogeneous enterprise applications. Organi-
zations spend a lot of money making their
internal systems interoperate with their
partners’ and providers’ enterprise applica-
tions—and sometimes even with their inter-
nal applications. Web services offer an inter-
esting alternative because they wrap existing
(legacy) systems and let them communicate
through SOAP over existing infrastructures
(extranet or intranet). This is probably why
research analysts at companies such as the
Gartner Group and McKinsey are monitor-
ing developments in this area.

The Semantic Web
Having said all these nice words, I must

admit that current Web services technology
solves only part of the problem. Distributed
systems developers now have a common
platform for rapidly developing or integrat-
ing complex software by configuring exist-
ing services. Through UDDI, they can look
up the basic services they need expressed
in WSDL, which they then can access by

76 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

programming SOAP. However, a person
must do all this work, and without much
support. As more Web services become
available, information overload will make
finding the service you need difficult.

To overcome these problems, we must
first recognize that current Web services
technology is basically a syntactical solu-
tion and that the semantic part is still lack-
ing. A Web service is described in WSDL,
outlining what input the service expects
and what output it returns. To exploit their
potential (beyond enterprise application
integration), Web services must be able to
orchestrate themselves into more complex
services. Thus, we need ways to combine
individual Web services into a distributed,
higher-level service.

The Web Service Flow Language, which
can express the sequencing of individual
services, is taking the first steps. WSFL lets
the user decide which Web services to
combine and in what order. However, we
still need a framework that semantically
describes services, such that software
agents can locate, identify, and combine
the services.

This is where the Semantic Web comes
in. It semantically describes (annotates)
content available on the Web such that soft-
ware agents can understand and process the
information. In this manner, Web services
should form part of the Semantic Web (www.

semanticweb.org). They would need a
semantic characterization of the services
they offer as well as a middleware for service
discovery and orchestration, to hide complex
technology from users. A user can thus con-
sume a high-level functionality without
noticing that a complex process is going on
under the hood. This is a main objective of
the Semantic Enabled Web Services project
(SWWS, swws.semanticweb.org)—to
develop such intelligent middleware along
with a language to semantically express
Web services capabilities.

If we look back at the original IBROW
project (www.ibrow.org), we see that it
resembles the SWWS project in particular
and the Semantic Web in general. Table 2
illustrates this, showing some phrases and
terms from the IBROW project and the cor-
responding terms used in current Semantic
Web research projects.

We are now entering FP6, the Sixth
European Research Framework Program.
In addition, the IBROW projects (one in
FP4 in 1998 and the current one in FP5
from 2000–2003) are about to finish. Since
these projects began, many things have
changed. The Web has drastically changed
how we communicate, do business, and
obtain information (where Google is the
ruling champion). A revolution of new
technologies has overtaken the IBROW
project, such as Semantic Web technology

and Web services. However, IBROW has
played a crucial role in identifying relevant
issues and major challenges and in bring-
ing together the key people and groups that
nowadays lead the European effort in
Semantic Web services research.

The notion underlying Web services is
nothing new. In this sense, it is “been there,
done that.” However, the infrastructure we
currently count on is much more advanced
than several years ago. In IBROW, we spent
much effort making the underlying infra-
structure work and creating the (heteroge-
neous) content. This hampered us from
focusing completely on the real issues, such
as semantic interoperability. In the current
technological situation, coupled with a strong
business pull (PSMs were more of a tech-
nology push from the knowledge-engineer-
ing community), we soon will have Web-
accessible methods that solve real business
problems through knowledge-intensive or
intelligent Web services.

Acknowledgments
I would like to acknowledge the IST projects

IBROW (IST-1999-19005), Esperonto (IST-
2001-34373), and SWWS (IST-2001-37134).

JANUARY/FEBRUARY 2003 computer.org/intelligent 77

Table 2. Resemblance between IBROW, on the one hand, and the Semantic Enabled Web Services project and
the Semantic Web in general, on the other hand.

IBROW3 (Esprit FP4); IBROW (IST, FP5) The SWWS project, Semantic Web Comments

The Web is changing the nature of software Web services are orchestrated into In IBROW, problem-solving methods
development to a distributive plug-and-play process. complex services. (PSMs) and ontologies were the
The components concerned are problem-solving components being configured, versus
methods (generic algorithms) and ontologies. Web services today.

PSMs and ontologies Web services PSMs and ontologies, when connected
to the Web, deliver services. PSMs deliver
reasoning services, while ontologies enable
intelligent query answering.

IBROW integrates research on heterogeneous Semantics and enterprise application Web services can wrap heterogeneous sources
databases, interoperability, and Web technology integration to make them interoperable.
with knowledge-system technology and ontologies. Semantic agreement is currently hard coded

in the wrapper.

The project aims at providing intelligent From information overload to task The current paradigm of information retrieval
reasoning services on the Web as opposed delegation causes much information overload.
to the more common information services. We need to delegate tasks to agents such that

people focus on the interesting information.

The broker needs to reason about Annotation of services, WSMF, UPML is used to characterize ontologies and
characteristics of PSMs, for example about DAML-S PSMs in terms of their competence (capabilities)
their competence: Unified Problem-Solving and requirements.
Method Description Language (UPML)

Web Services: Technical
Evolution yet Practical
Revolution?

Amit Sheth and John A. Miller,
University of Georgia

Web services are here to stay. Both busi-
ness and technical considerations will pro-
vide them with the staying power and tail-
wind to survive the hype. Despite their lack
of a major technical breakthrough, Web
services will initially succeed owing to the
right confluence of evolutionary tech-
nological choices, low barriers and entry
costs, and their strong standards-based
approach. In the long run, however, they
must be empowered by semantics and cou-
pled with Semantic Web technologies to
fulfill broader, longer-term promises.

Evolution in the right
direction: Reasons for likely
success

Progress in software componentry has
been ongoing. The Web is becoming more
than just a collection of documents; appli-
cations and services are coming to the fore-
front. History shows that incremental tech-
nological progress can produce dramatic
effects, such as the advancement from FTP
to Archie to Veronica to the Web. Web ser-
vices might have a similar fate.

Several technical and technology-driven
business advantages present themselves,
boding well for a quicker and more success-
ful adoption of Web services.

Low initial complexity
The first consideration is the low initial

complexity (although the complexity of
fully mature technology might be substan-
tially higher), with low entry barriers and
costs. Although the Web now consists of
many components and technologies—sev-
eral of which were added as the Web gained
wider acceptance and matured—it indeed
started with a remarkably small, simple
core technology. That simple core—free
availability and low- or no-cost initial adop-
tion—played an important role in its growth
and acceptance.

Unlike the Web, the Corba architecture
was complex from the start (considering its
various services and facilities) and required
seasoned developers to use it. Also, most
businesses had to rely on object request
brokers that were not free, which made

starting pilot projects—something large
businesses always do before adopting any
new technologies—difficult.

However, like the Web, the basic compo-
nents of Web services are relatively simple,
and the learning curve is low. XML is
already known to the likely adopters and
accepted as the data exchange standard by
enterprises. Standards such as SOAP and
WSDL are simple to use and learn. (For an
explanation of these and other acronyms,
see the “Glossary” sidebar.) Although
UDDI as a whole (with all the details of
white, yellow, and green pages) is not sim-
ple, the basic parts needed to get started are
relatively easy to learn and use. Also, Web
services can be developed with essentially
no initial technology cost. Furthermore,
just as the Web is used not only for publish-
ing or sharing data but also as an applica-
tion infrastructure, the complexity of Web
services can be incrementally increased as
more functionality is added.

The hype
The second consideration is the hype sur-

rounding Web services, and the industry’s
ability to sustain interest over time. Consider
XML. Although it has been significantly
hyped—for example, it only addresses the
syntactic interoperability issues, not seman-
tic ones—it has succeeded. This is because
it solves a limited yet important and well-
understood business problem, and there is a
groundswell of commercialization efforts
around the use of XML technology. Some
enterprise software such as Enterprise
Resource Planning quickly adopted XML,
broadening its adoption by businesses. In
comparison, corresponding commercial
activities did not support the hype of expert
systems and other artificial intelligence
technologies.

In the case of Web services, various soft-
ware segments, including application servers
and Enterprise Content Management,1 have
found them worthy enough to adopt. This
gives the hype of Web services an ability to
sustain with follow-through development
and adoption.

Standards
The third consideration is the use of more

widely accepted standards. XML already
enjoys wide adoption in enterprises. Stan-
dardization efforts are well aligned and are
structured to act much faster than what hap-
pened with Corba. Some in industry also

see Web services as a natural follow-up to
Electronic Data Interchange and ebXML,
which already have significant commercial
success.2

Loosely coupled architectures
The fourth consideration is that Web ser-

vices are a good choice for loosely coupled
architectures.3 This means not allowing
object references or requiring statefulness.
Although the Corba architecture was more
suitable for intra-enterprise environments,
the technical features and choices of Web
services make them more reusable and thus
more appropriate for interenterprise and
global environments.

Languages
Finally, Web services do not use languages

that look like programming languages (that
is, there’s no interface definition language).
This is what the industry is trying to accom-
plish with Web services.

Incremental advances in
software componentary

The introduction of the object-oriented
programming paradigm in the 1980s
promised to make reusable software compo-
nents a reality. Although there were certainly
some gains in software reuse and program-
ming productivity, the change was not sub-
stantial. The 1990s saw further attempts to
increase software reuse, focused on the idea
of software components and extended to dis-
tributed components. A notable effort in this
area was Corba. It let components on differ-
ent machines, using different operating sys-
tems and even different languages, commu-
nicate. From one viewpoint, Web services
represent an evolution of Corba. We contend
that Web services are more convenient than
Corba and that eventually incremental
improvement will lead to widespread use.

One difficulty in using distributed tech-
nology such as Corba is dealing with lan-
guages. Corba tried to eliminate this problem
by moving the language into the back-
ground by defining an IDL. Although this is
a good idea, an IDL looks much like C++,
and developers must also understand lan-
guage bindings to use Corba. If there was a
way to replace language-like IDLs with
higher-level specification, surely communi-
cation could be simplified using meaning-
ful messages. Fortunately, Web services,
defined as “self contained, self-describing
modular applications that can be published,

78 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

located, and invoked across the Web,”4

automatically get the Web-wide scope
rather than primarily the enterprise-wide
scope (at least initially) for Corba. In the
near term, we see the use of a few well-tar-
geted Web services within and across enter-
prises for well-targeted B2B applications
and as integration points between enterprise
software. Examples include integrating a
document management system and portal
management system within an enterprise, or
interenterprise interfaces between different
parts of a supply chain or ERP solution,
which already uses XML for data exchange.

Intermediate to long term:
Processes, QoS, security, and
semantics

For the intermediate term, we predict
distinct advances in

• Web processes
• Technical support for quality of service
• Technical support for security

Although we expect researchers to address
QoS and security in the intermediate term, we
expect support for Web processes to take
longer, because initial research is just starting
on these topics.5 Because Web services are
components, if individual services are limited
in their capability, we can compose existing
Web services to create new functionality in
the form of Web processes. Web service com-
position is the ability to take existing services
(or building blocks) and combine them to
form new services.6 In carrying out this com-
position task, we should be concerned about
the efficiency and the QoS that the composed
process will exhibit when it executes. This
task of composing services to create efficient
Web processes is analogous to designing a
workflow.

Web service composition is an active area
of research, with academic and industrial
research groups proposing many languages.
IBM’s WSFL7 and Microsoft’s XLANG8

were two of the earliest languages to define
standards for Web services composition.
Both extended WSDL, W3C’s standard lan-
guage used to describe the syntactic aspects
of a Web service. BPEL4WS9 is a recently
proposed specification that represents the
merging of WSFL and XLANG. It combines
WSFL’s graph-oriented process representa-
tion and XLANG’s structural construct-
based processes into a unified standard for
Web services composition. Another effort in

this area is ebXML, which lets enterprises
conduct business over the Internet using an
open XML-based infrastructure.

In contrast to these commercial XML-
based standards, researchers are developing a
unique Web service markup language called
DAML-S.10 According to the group of re-
searchers working on DAML-S, it supplies
Web service providers with a core set of
markup language constructs for describing
the properties and capabilities of their Web
services in unambiguous, computer-inter-
pretable form. DAML-S markup of Web ser-
vices will facilitate the automation of Web
service tasks including automated Web ser-
vice discovery, execution, interoperation,
composition and execution monitoring.10

If Web services are to provide not only
an enterprise-wide but also a global archi-
tecture for application interoperability and
integration, we will need to enhance Web
services and processes with semantics.
Many applications will require a Web
process created from composing several
Web services. In the intermediate term, we
can create enterprise-scale Web processes
(or service compositions) by adopting
workflow management technology. How-
ever, to achieve Web services’ full Web-
wide and global potential, semantics holds
the trump card. Using semantics involves
describing resources with formal, machine-
readable description. Resources in this case
are Web services, and given that they wrap
applications, they must be described both
functionally and operationally.

As already recognized by DAML-S,10

Web Service Modeling Framework ini-
tiatives,11 the Work Group on Web Services
at a recent Semantic Web workshop,12 and
others, semantics can play a critical role in
developing Semantic Web services. This can
lead to better discovery of Web services for
reuse in a global, Web-scale environment
that is not limited to one enterprise or a static
collection of enterprises and where current
syntax-based techniques do not work. Strong
support for Web services discovery is also a
prerequisite to developing Web processes13,14

and addressing various issues of composi-
tion, interoperability, and execution.15,16

There is demonstrable progress in develop-
ing semantics-based solutions when dealing
with data, such as to achieve better interoper-
ability and integration of information re-
sources. However, the challenges of dealing
with applications that are enabled by Web
services are even more difficult. They will

involve substantial further research and engi-
neering that consider both functional and
operational perspectives. The Large Scale
Distributed Information Systems Lab’s
Meteor project is one of the projects looking
at developing semantics-based solutions to
QoS, discovery, and composition issues in
the context of Web processes (see http://
lsdis.cs.uga.edu/proj/meteor/SWP.htm).

References
1. R. Perry and R. Lancaster, Enterprise Con-

tent Management: Expected Revolution or
Vendor Positioning, The Yankee Group,
Boston, 2002.

2. A. Kotok, “ The E-Business Continuum: Web
Services, ebXML and EDI,” WebServices.
Org, June 2002, www.webservices.org/index.
php/article/articleview/479/1/24.

3. D. Austin et al., “Web Services Architecture
Requirements,” World Wide Web Consor-
tium, 2002, www.w3c.org/TR/wsa-reqs.

4. D. Tidwell, “Web Services—The Web’s Next
Revolution,” IBM tutorial, 29 Nov. 2000,
www-105. ibm.com/developerworks/
education.nsf/webservices-onlinecourse-bytitle/
BA84142372686CFB862569A400601C18?
OpenDocument.

5. J. Cardoso and A. Sheth, Semantic e-Work-
flow Composition, tech. report, Large Scale
Distributed Information Systems Lab, Dept.
of Computer Science, Univ. of Georgia,
Athens, Ga., 2002.

6. G. Piccinelli, Service Provision and Composi-
tion in Virtual Business Communities, tech.
report HPL-1999-84, Hewlett-Packard, Palo
Alto, Calif., 1999; www.hpl.hp.com/techreports/
1999/HPL-1999-84.html.

7. F. Leymann, “Web Service Flow Language
(WSFL) 1.0,” IBM,Armonk, N.Y., 2001, www-
4.ibm.com/software/solutions/webservices/pdf/
WSFL.pdf.

8. S. Thatte, “XLANG: Web Services for Busi-
ness Process Design,” 2001, www.gotdotnet.
com/team/xml_wsspecs/xlang-c/default.htm.

9. F. Curbera et al., “Business Process Execu-
tion Language for Web Services,” 2002, www-
106.ibm.com/developerworks/webservices/
library/ws-bpel.

10. A. Ankolekar et al., “DAML-S: Web Service
Description for the Semantic Web,” Proc. Int’l
Semantic Web Conf., Springer-Verlag, Berlin/
Heidelberg, 2002, pp. 348–363.

11. D. Fensel and C. Bussler, “The Web Service
Modeling Framework WSMF,” 2002, http://
informatik.uibk.ac.at/users/c70385/wese.

JANUARY/FEBRUARY 2003 computer.org/intelligent 79

12. A. Sheth and R. Meersman, “Amicalola
Report: Database and Information Systems
Research Challenges and Opportunities in
Semantic Web and Enterprises,” ACM SIG-
MOD Record, vol. 31, no. 4, Dec. 2002.

13. S. Narayanan and S. Mcllraith, “Simulation,
Verification and Automated Composition of
Web Services,” Proc. 11th Int’l World Wide
Web Conf., W3C, 2002, pp. 77–88.

14. J. Cardoso et al., Modeling Quality of Service
for Workflows and Web Service Processes,
tech. report, Large Scale Distributed Infor-
mation Systems Lab, Dept. of Computer Sci-
ence, Univ. of Georgia, Athens, Ga., 2002.

15. J. Cardoso et al., “Semantic Web Services and
Processes: Semantic Composition and Qual-
ity of Service,” tutorial at Federated Confer-
ences (CooPIS, DOA, ODBASE), 2002; http://
lsdis.cs.uga.edu/lib/presentations/SWSP-
tutorial-resource.htm.

16. S. Chadrasekaran et al., Composition Perfor-
mance Analysis and Simulation of Web Ser-
vices, tech. report, Large Scale Distributed
Information Systems Lab, Dept. of Computer
Science, Univ. of Georgia, Athens, Ga., 2002.

Web Services: Quo Vadis?

Christoph Bussler, Oracle Corporation
Alexander Maedche, FZI Research
Center for Information Technologies
at the University of Karlsruhe
Dieter Fensel, Leopold Franzens
Universität Innsbruck

Web services have been touted for some
time now as the technology-based silver
bullet solution for many significant integra-
tion problems in information technology.
These integration problems are of so differ-
ent a nature due to the specific required
functionality that we can’t avoid asking
right now, “Web services: Quo vadis?”

Here, we illustrate the immense discrep-
ancy between the magnitude of the integra-
tion problems and the simplistic functional-
ity that Web services provide. We propose
the WSMF as the future direction of Web
services so that they can cope even with the
most real complex integration problems.
(For an explanation of this and other
acronyms, see the “Glossary” sidebar.)

Web services at the crossroads
Let’s spotlight the state of the art of

Web services and the situation of the
“movement” (or “hype,” as some might be

more than happy to state). For the follow-
ing reasons, we see Web services as being
at the crossroads:

• They have been touted as the silver bul-
let for a (too) wide array of integration
problems, currently being addressed by
complex integration solutions such as
B2B integration technology1 as well as
simple technology such as Java for
remote server invocation.

• Many competing, conflicting, and
overlapping standards exist that address
Web service functionality (see www.
oasis-open.org/cover/sgml-xml.html).

• Many research projects are repackaging
existing work as Web services work.

• Many start-up companies, including Cape
Clear (www.capeclear.com), Actional
(www.actional.com), and Intalio (www.
intalio.com), provide technology imple-
menting Web services technology.

• Major infrastructure companies (such
as BEA, IBM, Microsoft, and Oracle)
already provide implementations of Web
service technology.

• Broad journalistic coverage of Web ser-
vices exists in the trade press, such as
eAI Journal (www.eaijournal.com) and
ebizQ (www.ebizq.net).

• Web services have no underlying real
conceptual integration model and are
only defined as an implementation tech-
nology, such as SOAP (see www.w3.
org/TR/soap12-part1/ and www.w3.org/
TR/soap12-part2).

• No one has analyzed available and proven
solutions such as EDI translation technol-
ogy2 or reported on lessons learned from
deployments that could advance Web ser-
vices technology functionality (more
than 300,000 Electronic Data Interchange
deployments exist worldwide—see www.
disa.org/x12org/about/faqs.cfm).

This situation cannot continue indefinitely.
We must consolidate the Web services space,
focusing Web services technology on a
well-defined and well-manageable set of
integration problems. This includes the
consolidation of the multitude of Web ser-
vice standard proposals. Current Web ser-
vices expectations are too high and too var-
ied for one technology to solve all the
given integration problems.

The silver bullet problems
Here we discuss some of the silver bullet

problems, clearly showing the vast spectrum
that Web services are said to solve.

First, SOAP was originally the acronym
for the Simple Object Access Protocol.
Nomen est omen (the term reveals its intent):
the underlying paradigm follows the client-
server model. The SOAP specification in
conjunction with WSDL (see www.w3.org/
TR/wsdl) clearly enables the definition of the
external interface of a server in a particular
way but not of its clients, violating the gen-
eral peer-to-peer approach that most integra-
tion solutions require. The only pattern this
supports is the one-way invocation with and
without results between the defined roles of
client and server.

In this sense, SOAP, in conjunction with
WSDL, clearly implements yet another
RPC model. This is also explicitly called
out in the SOAP specification. Because it
is based on the ubiquitous HTTP protocol
in conjunction with XML as the message
syntax, computer system boundaries are
easy to overcome and the notion of the
“better RPC” or even “better distributed-
object-management technology” was born,
leading to the wide awareness of Web ser-
vices in the developer community.

Second, because SOAP messages can be
transported over HTTP to implement the
runtime invocation, bridging computer sys-
tem boundaries is clearly easy owing to the
commodity of the HTTP protocol. If only
packaged applications like Enterprise
Resource Management systems, such as
Oracle or SAP (www.sap.com), were to
expose WSDL interfaces, then integrating
them with Web services would be easy,
fast, cheap, manageable, and so on (better
along all possible dimensions).

In such a scenario, Web services would
be the “better Enterprise Application Inte-
gration solution,” overcoming the current
costly integration technology deployments.
This is because the whole integration world
would be a nice homogeneous sea of SOAP
messages implementing WSDL operation
invocations.

Finally, because we can easily exchange
SOAP messages over the Internet, the pro-
posal of using Web services as the only and
superior way to implement B2B interactions
between companies (interenterprise B2B
communication) is not far off. The vision in
this case is to very rapidly replace EDI,
SWIFT (Society for Worldwide Interbank
Financial Telecommuication, www.swift.
com), and other existing B2B standards

80 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

(some of which have existed for over 30
years).

These three example integration problems
alone span an impressive array of serious
requirements for an integration solution that
Web services would have to address:

• Efficiency: To scale on an industrial
basis, Web services execution must be
very efficient.

• Expressiveness: B2B interactions in sup-
ply chain scenarios are complex, requir-
ing an expressive set of supported inte-
gration concepts.

• Security: Interactions within as well as
across enterprises must be secured to
prevent security attacks of all types, and
nonrepudiation must be provided for
reliable record keeping.

• Reliability: Remote and distributed com-
munication must be reliable, and mes-
sages must be sent exactly once to ensure
dependable interactions.

• Manageability: Interenterprise commu-
nication changes frequently, requiring
easily manageable technology.

These requirements pose a high demand
on a technology that addresses their
implementation.

On the other side, we have the current
state of Web services technology. The
following standards currently define Web
services: SOAP, WSDL, and UDDI (see
www.uddi.org). This standards triple, even if
fully implemented, is far from addressing
even a subset of the requirements we’ve
listed, because it is based on the primitive
notion of synchronous remote invocation
following a simple client-server model.
Complex integration problems, such as B2B
integration problems based on a peer-to-peer
paradigm, are not at all in the scope of the
standards triple owing to missing integration
concepts, missing reliability protocol defini-
tions, or missing security concepts.

Because Web services have caught on
very impressively across the developer and
business community, it is worthwhile explor-
ing potential future developments to capital-
ize on the state Web services have reached.

Directions leading from the
crossroads

We can only ask where to go from here if
there are alternative paths going forward.
Possible directions for Web services include
it being

• The better RPC
• The better plumbing for application-

to-application or B2B integration
• The better intelligent agent platform
• All of the above

There seems to be the implicit agreement
in the community that Web services should
be “the” new and “the” better technology for
integration (especially for B2B integration).
For instance, together, the vast array of
industrial-standard proposals appears to pro-
vide an almost complete set of concepts
required for implementing complex B2B
integration. Examples of such integration
include supply chain management, health
care organization integration, or financial
transaction processing.

Zapthink (www.zapthink.com/reports/
poster.html#) has a poster that shows 135 of
the 450 (at its time of publication) industrial
standards and standards proposals classified
and related to each other. They define busi-
ness documents, security services, transport
protocols, packaging, trading partner man-
agement, and many other relevant standards.

However, it’s not just industry that is
working on a complete set of standards
addressing the complete integration space.
Academic research is also tackling the vast
array of problems in interenterprise integra-
tion, as we’ve seen at workshops such as
Technologies for E-Services (TES 2002) or
the Workshop on Web Services, E-
Business, and the Semantic Web (WES
2002), or in certain research papers.3–5

Even more important, the big “however”
is that the need for 135 (or 450) standards
indicates a broken conceptual model,
because the standards conflict, contradict,

overlap, compete, or disagree with each
other significantly. Another big “however”
is that these efforts haven’t really considered
semantic unification at all. Only a few con-
tributions (standards and research) highlight
the need to solve the semantic mismatch
problem that inherently exists in interenter-
prise integration and that no real integration
solution can do without.

So, we need a comprehensive conceptual-
integration model that combines all aspects
of a solution for the interenterprise as well
as intra-enterprise integration problem.
From that we can derive a comprehensive
modeling and execution framework that can
address even the most complex integration
problems completely.

Such a framework must provide a holis-
tic and general conceptual-integration
model that characterizes all integration
problems. From that we can derive a set of
expressive modeling constructs that model
Web services, their invocation, and other
requirements such as composition and
security, addressing even the most complex
integration scenarios. Furthermore, such a
framework must provide an expressive and
scalable mediation approach that can tackle
the semantic unification problem through
powerful mediation.

The future of Web services:
WSMF

Web services that can address complex
integration problems require conceptual
modeling based on a well-defined set of
integration concepts. This set of concepts
must be able to represent all relevant aspects
of integration, including document formats,
processes, security, trading partner manage-
ment, mediation, and discovery.

Because integration always occurs be-
tween two or more parties that are exposing
services, any integration solution is “in
between” the parties. This calls for an inte-
gration framework that clearly identifies
system boundaries and modes of interaction
between all elements. Furthermore, it must
define the execution model for the concep-
tual model so that the application of concepts
is uniform.

Last but not least, we need a methodol-
ogy that suggests best practices for the
modeling task when integrating services of
several parties. The methodology suggests
appropriately using integration concepts.

The WSMF is an important step toward
such a conceptual model in conjunction

JANUARY/FEBRUARY 2003 computer.org/intelligent 81

Web services that can address

complex integration problems

require conceptual modeling

based on a well-defined set of

integration concepts.

with an integration framework and method-
ology.6 It provides all the integration concepts
necessary for modeling even the most com-
plex integration scenarios. It also provides a
framework that defines the meaning of the
concepts and suggests a methodology.

The major aspect of WSMF is, besides the
mere definition of complex Web services, a
strong support for mediating data as well as
interaction behavior (message exchange pat-
terns). In general, different services expose
business data following different schemas
and expect different message exchange pat-
terns. For two or more services to interact,
the differences in data structure and meaning
as well as in message exchange behavior
must be mediated. WSMF recognizes a sig-
nificant set of mismatch patterns and provides
mediation support. Only after the mediation
problem is solved does integration become
possible.

For Web service integration and Web
services mediation to scale, the integra-
tion concepts must be represented as a
formal language so that particular Web
services definitions are self describing,
machine interpretable, and machine exe-
cutable. Ontologies are a suitable tech-
nology for this purpose, owing to their
ability to represent semantics in the form
of concepts.

The formal representation of services, their
data, and their behavior are a precondition for
automatic Web services registry, discovery,
and composition. Only a strictly formal
approach allows automatic and meaningful
Web services composition. UDDI is far from
providing such a formal mechanism today,
and WSMF can serve as an important input
to this necessary development.

With WSMF as a foundation, service-
oriented architectures and computing be-
come possible where all elements that
require integration are represented as ser-
vices. Once a service is formally defined,
it is registered and can be discovered and
composed to achieve its integration for
business goals such as supply-chain auto-
mation. WSMF provides the formal foun-
dation that allows service-oriented archi-
tectures to be executable in a complex
business world.

We therefore strongly suggest that Web
services will choose the path toward an
integrated, complete conceptual-integration
model supported by a framework defining
the execution semantics and a methodology
for successful definition of integration.

References
1. C. Bussler, “The Role of B2B Engines in B2B

Integration Architectures,” ACM SIGMOD
Record, vol. 31, no. 1, Mar. 2002.

2. M. Sherif, Protocols for Secure Electronic
Commerce, CRC Press, Boca Raton, Fla.,
2000.

3. F. Casati, M. Sayal, and M.-C. Shan, “Devel-
oping E-Services for Composing E-Services,”
Proc. 13th Int’l Conf. Advanced Information
Systems Eng. (CAISE 01), Lecture Notes in
Computer Science, no. 2068, Springer-Ver-
lag, Berlin, 2001, pp. 171–186.

4. C. Bussler, “The Application of Workflow
Technology in Semantic B2B Integration,”
Distributed and Parallel Databases, vol. 12,
nos. 2–3, Sept.–Nov. 2002, pp. 163–191.

5. A. Maedche and S. Staab, “Services on the
Move: Towards P2P-Enabled Semantic Web
Services,” to be published in Proc. 10th Int’l
Conf. Information Technology and Travel &
Tourism (ENTER 2003), Springer-Verlag,
Berlin, 2003.

6. D. Fensel and C. Bussler, “The Web Service
Modeling Framework WSMF,” Electronic
Commerce Research and Applications, vol.
1, no. 2, 2002.

From Web Services to
Grid Services
Dennis Gannon, Indiana University

There are two common criticisms of the
Web services model. The first is that Web
services define a mechanism for doing RPCs
on an implementation of some XML-speci-
fied interface, using a slow protocol called
SOAP. (For an explanation of these and other
acronyms, see the “Glossary” sidebar.) This
concept appears to be a second-rate reinven-
tion of OMG’s Corba or Java remote method
invocation.

The second criticism is that the World
Wide Web works, and Corba and the other
distributed-object technologies are all hope-
less failures. Web services are just trying to
drive the Web down the same path to doom
as these other RPC disasters.

As is the case with most folk wisdom
(and other less benign forms of oversimplifi-
cation), these statements contain some truth.
In fact, attempting to use the Web services
framework as a replacement for Corba or
trying to use it to redo what Web technolo-
gies already do well is folly. What the Web
services architecture brings to the table is a

highly extensible, message-oriented middle-
ware for building distributed, composable
services. To illustrate this point, I look at
how it is being used to build a component
architecture for applications and services that
makes ubiquitous grid computing a reality.

Grid computing
The concept of grid computing grew out

of attempts to build large-scale distributed
applications that group remote super-
computers, databases, and online instru-
ments into tools used by groups of collabo-
rators. Examples include the Particle Physics
Data Grid and GriPhyn (www.griphyn.org),
which involves a widely distributed team of
physicists working to analyze the data
streaming out of large international particle
physics projects. Another example is the
Network for Earthquake Engineering Simu-
lation Grid (www.neesgrid.org), which is a
national virtual collaboratory for earth-
quake engineering. A third example being
organized is the Linked Environment for
Atmospheric Discovery, which will provide
the tools to do “better than real-time” de-
tailed prediction of severe storms, such as
tornadoes, based on the adaptive coupling of
instruments, databases, and massive super-
computer simulations. Disciplines such as
astrophysics, genomics and proteomics, and
chemical engineering are building many
other grid applications and testbeds.

To enable a distributed team of collabora-
tors to build these applications, grids need
an infrastructure of ubiquitous services that
manage the resources provided to them.
These services include

• Security services: Grid users need a way
to authenticate themselves, and services
are needed that reveal what the user is
authorized to do. Privacy is also a serious
concern for many grid collaborations.

• Scheduling services and resource brokers:
If a grid application needs to use a dis-
tributed set of resources (such as advanced
instruments, supercomputers, and data-
bases) in a linked computation, the user
must schedule these resources for con-
current use.

• Information and data services: Many
large scientific applications require
numerous data archives that are distrib-
uted around the world. These must be
cataloged, indexed, and provided to
the user to make information access
transparent and ubiquitous.

82 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

• Workflow services: Grid applications
usually require a complex set of interac-
tions between many services and re-
sources. For example, data must be
extracted from instruments and then
farmed out to data mining services or
used as input to numerous simulations
whose output is correlated to other sen-
sor data. Orchestrating these tasks is the
workflow engine’s job.

• Monitoring, messaging, and logging ser-
vices: Grids are complex and dynamic.
At any given time, some component will
be down or temporarily unavailable.
Hence their applications must rely on
autonomic services that keep track of
alternate resources, redundant computa-
tions, and better network routes.

Many more standard grid services exist.
The research community defining these
standards is called the Global Grid Forum
(see www.gridforum.org). Consisting of
about 30 working groups and research
groups and about 600 individuals, GGF
meets three times a year. It occupies a place
in the grid-computing world similar to that
of the IETF for the Internet and W3C for
Web standards. GGF depends on both the
IETF and W3C because it builds on
standards both groups are developing.

In GCF’s early days, the standards were
considered in isolation and often imple-
mented in very different ways by different
organizations. However, the emergence of
Web service standards has changed that. Ian
Foster, Carl Kesselman, Jeffrey M. Nick, and
Steven Tuecke proposed the Open Grid Ser-
vice Architecture as an extension of Web ser-
vices to build a true component framework
for the Grid.1 By looking at OGSA, we can
see where many of us believe Web services
standards will evolve.

Web services
A conventional Web service consists of

• A set of types, which are usually described
with XML schema documents

• Messages, which are XML elements
consisting of a set of typed and named
parts

• Operations, which can have an input
message, a response output message,
and possibly a fault message

An operation with an input and output
message is called a solicit response operation,

and an operation with only an input message
is a one way message. Web services also con-
tain port types, which group together a set of
operations; bindings, which are associations
between port types and transport and encod-
ing protocols; and ports, which associate a
name, binding, and network location.

WSDL provides an extensible schema
for encoding all these elements to define a
specific Web service (see www.w3.org/TR/
wsdl). A complete WSDL document of a
service is usually enough to generate the
code needed to access that service—that is,
it is a service reference. The standard pro-
tocol most services use is SOAP over
HTTP; however, that is not a requirement.
Because operations can be one-way and

messages can be almost arbitrary docu-
ments, it is possible to implement a service
over just about any transport protocol such
as email, Corba Internet InterOperability
Protocol, or a peer-to-peer protocol such as
Sun’s JXTA.

Another advantage of Web services is that
the specification says little about the way
services are actually implemented. Open-
source and commercial toolkits exist for
building Web services from standard Java,
Enterprise JavaBeans, C/C++, Python, and
C# using .NET.

The GGF Open Grid Service Infrastruc-
ture working group, led by Steve Tuecke
and David Snelling, has taken advantage of
WSDL’s extensibility to define a grid ser-
vice component model. OGSI defines a
standard set of port types that grid services
support and that applications can expect.
One port type that every grid service must
support is called the grid service, which
provides a basic, essential introspection
mechanism for services. Each grid service

supports a set of Service Data Elements,
XML documents that describe the service
metadata and its state. The grid service port
provides every grid service with two types
of operations. One operation lets clients
search the service’s SDEs to answer ques-
tions such as

• What other port types do you support?
• What other SDEs do you support?
• What status and state information can

you provide?

The other operation involves service
lifetime management.

In his PhD dissertation, Roy Fielding
described the Representational State
Transfer model, based on the principles
that have helped the Web achieve success.2

REST emphasizes a few verbs applied to
many nouns. The verbs in the Web are the
HTTP operations, such as GET. The nouns
consist of the network of URLs that consti-
tute the Web. The REST model assigns
most of an operation’s semantics to the
data, rather than to the operation’s name.
The grid service specification uses the
message and document delivery model of
Web services framework to achieve a simi-
lar goal. The grid service port provides a
simple mechanism to convey information
through service data elements rather than
through complex interfaces of methods
and parameters.

Every grid service is represented by a
Grid Service Handle, which is a universal
resource identifier that can be resolved into
a specific Grid Service Reference, which
might be the WSDL for the service instance.
Using a separate URI handle lets services be
easily replicated or maintained and still have
a globally unique identity.

The other standard grid service port
types include

• HandleMap: This service provides the
mapping between the Grid Services Han-
dle and a current Grid Service Reference.

• Registry: This service binds service instance
metadata to a registry.

• Factory: This can create instances of
other services and generate stateful, tran-
sient instances of grid applications from
a stateless, persistent service.

• Notification: Several standard ports are
provided to allow asynchronous, publish-
and-subscribe notification between ser-
vices and clients.

JANUARY/FEBRUARY 2003 computer.org/intelligent 83

The Web Services Definition

Language provides an extensible

schema for encoding all these

elements to define a specific

Web service.

In addition to OGSI, there is a GGF
Open Grid Service Architecture working
group, which is exploring grid uses cases
and defining the specific standard ser-

vices that are needed for a new generation
of grid applications. Other working groups
are looking at specific topics such as secu-
rity. Another important advantage of Web

service messaging’s document model is
that security can be end-to-end rather
than link level. In other words, we can
encrypt and sign a message that might

84 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Wil van der Aalst is a full professor of infor-
mation systems and head of the Information and
Technology section of the Department of Tech-
nology Management at the Technische Univer-
siteit Eindhoven. He is also a part-time full pro-
fessor at the Computing Science faculty at the
Department of Mathematics and Computer Sci-
ence at the same university. His research inter-
ests include information systems, simulation,

Petri nets, process models, workflow management systems, mining, ver-
ification techniques, enterprise resource planning systems, computer-
supported cooperative work, and interorganizational business processes.
He holds an MSc in computing science and a PhD in mathematics, both
from the Technische Universiteit Eindhoven. He is a fellow and manage-
ment team member of the research institute BETA. Contact him at Eind-
hoven Univ. of Technology, P.O. Box 513, NL-5600 MB Eindhoven,
Netherlands; w.m.p.v.d.aalst@tm.tue.nl.

V. Richard Benjamins is the director of R&D
at Intelligent Software Components (iSOCO) in
Madrid, Spain. His research interests include
areas such as knowledge technologies, artificial
intelligence, knowledge management, the Seman-
tic Web, and ontologies. He received his MS and
PhD in cognitive science from the University of
Amsterdam. He serves on many international
program committees and has been co-chair of

many international workshops (including at IJCAI and ECAI) and con-
ferences (EKAW). He is member of the IEEE Intelligent Systems editor-
ial board. Contact him at richard@isoco.com.

Amit Sheth is a professor of computer science
and the director of the Large Scale Distributed
Information Systems (LSDIS) Lab, at the Uni-
versity of Georgia. He also founded Taalee, an
enterprise software and Semantic Web technol-
ogy startup based on the research at the LSDIS
lab. He received his BE from B.I.T.S., Pilani,
India, and his MS and PhD from Ohio State Uni-
versity. He is on the editorial board of six jour-

nals, has served on over 70 program and organization committees, and
has chaired or cochaired six international conferences or workshops in
the areas of the Semantic Web, digital libraries, multidatabase systems,
and parallel and distributed information systems. Contact him at the
Dept. of Computer Science, 415 Graduate Studies Research Center,
Univ. of Georgia, Athens, GA 30602-7404; amit@ca.uga.edu; lsdis.cs.
uga.edu/~amit.

John A. Miller is a professor of computer sci-
ence at the University of Georgia and is also the
Graduate Coordinator for the Computer Science
department. His research interests include data-
base systems, simulation and workflow, and
parallel and distributed systems. He received
his BS in applied mathematics from Northwest-
ern University and his MS and PhD in informa-
tion and computer science from the Georgia

Institute of Technology. He is an associate editor for ACM Transactions
on Modeling and Computer Simulation and IEEE Transactions on Sys-
tems. Contact him at the Dept. of Computer Science, 415 Graduate Stud-
ies Research Center, Univ. of Georgia, Athens, GA 30602-7404; jam@
ca.uga.edu.

Christoph Bussler is a principal member of the
technical staff at the Oracle Corporation’s Inte-
gration Platform Architecture Group, based in
Redwood Shores, Calif. He is responsible for
the overall architecture of Oracle’s next-genera-
tion integration platform technology addressing
B2B, A2A, and ASP integration. He received his
BA and MS in computer science from the Tech-
nical University of Munich, Germany, and a PhD

in workflow management from the University of Erlangen-Nuremberg,
Germany. He is a member of the IEEE Computer Society and ACM.
Contact him at chris.bussler@oracle.com; http://hometown.aol.com/
chbussler/index.html.

Alexander Maedche is the head of the Knowl-
edge Management research department at the
FZI Research Center for Information Technolo-
gies at the University of Karlsruhe. His research
interests include knowledge discovery in data
and text, ontology engineering, learning and
application of ontologies, and the Semantic
Web. He has taught courses at the University of
Karlsruhe in the areas of knowledge discovery

in databases, data and text mining, ontology engineering, and applied
computer science and has given several tutorials on ontologies. He
received a diploma in industrial engineering and his PhD in applied
informatics, both from the University of Karlsruhe. He is a member of
the IEEE and German Society of Computer Science. Contact him at FZI,
Univ. of Karlsruhe, 76131 Karlsruhe, Germany; maedche@fzi.de; www.
fzi.de/wim.

Dieter Fensel works at the University of Inns-
bruck, Austria. His research interests include
ontologies, the Semantic Web, Web services,
knowledge management, enterprise application
integration, and electronic commerce. He is an
editor of Knowledge and Information Systems:
An International Journal (KAIS), IEEE Intelli-
gent Systems, the Electronic Transactions on
Artificial Intelligence (ETAI), and Web Intelli-

gence and Agent Systems (WIAS). He has been involved in several
national and internal research projects—for example, the IST projects
COG, Esperonto, H-Techsight, IBROW, Multiple, Ontoknowledge,
Ontoweb, SWAP, SWWS, and Wonderweb. He has been the project
coordinator of Ontoknowledge, Ontoweb, and SWWS. Contact him at
dieter.fensel@uibk.ac.at.

Dennis Gannon is a professor in and chairs the
Computer Science Dept. at Indiana University.
His current work is on designing software com-
ponent architectures for distributed scientific
applications and studying the architecture of grid
systems. He received a BS from the Univerisity
of California, Davis, a PhD in computer science
from the University of Illinois, and a PhD in
mathematics from the University of California,

Davis. He is one of the cofounders of the Common Component Archi-
tecture project (now supported by the DOE Center for Component Tech-
nology for Terascale Simulation Software), the Java Grande Forum, and
the Global Grid Forum. He is also the Science Director for the new Indi-
ana Pervasive Technologies Labs and the Chief Computer Scientist for
the NCSA Alliance. Contact him at gannon@cs.indiana.edu.

pass through several intermediaries before
reaching its destination. In standard RPC
models, the security is often at the level
of the supporting stream protocols, and
the contents of method arguments are
exposed at any intermediate steps in the
processing.

Any component architecture must have a
concept of component composition. The Web
services community has produced a new
draft standard, called the BPEL4WS, which
is one candidate.3 A BPEL4WS process
defines a composite Web service described
the way you might build a flowchart for an
algorithm. It is composed of a set of activities
that include invoking its composite services,
waiting for input messages, copying data, and
throwing exceptions.

Like any programming language,
BPEL4WS has a rich control structure to
sequence operations. While it is not yet
known if BPEL4WS will also prove to
be the appropriate composition tool for
grid services, it does seem to be a strong
candidate.

A final area of concern might be the rela-
tion of Web services and grid services to
the Semantic Web. Others have observed
that Semantic Web markup languages can
play an important role in allowing agent
technology to automatically use Web ser-
vices.4 Within the Grid Forum, there is a
research group arising out of the Semantic
Grid of David De Roure and his colleagues
(see www.sematnicgrid.org) that is actively
considering this question.

References

1. I. Foster et al., “The Physiology of the Grid:
An Open Grid Services Architecture for Dis-
tributed Systems Integration,” Grid Comput-
ing: Making the Global Infrastructure a Real-
ity, F. Berman, A.J.G. Hey, and G. Fox, eds.,
John Wiley, New York, 2003.

2. R.T. Fielding, Architectural Styles and the
Design of Network-Based Software Architec-
tures, PhD dissertation, Dept. of Computer Sci-
ence, Univ. of California, Irvine, Calif., 2000.

3. F. Curbera et al., “Business Process Execution
Language for Web Services,Version 1.0,” IBM
developerWorks, 13 July 2002, www.
ibm.com/developerworks/library/ws-bpel.

4. S.A. McIlraith, T.C. Son, and H. Zeng, “Seman-
tic Web Services,” IEEE Intelligent Systems,
vol. 16, no. 2, Mar./Apr. 2001, pp. 46–53.

JANUARY/FEBRUARY 2003 computer.org/intelligent 85

EXECUTIVE STAFF
Executive Director: DAVID W.HENNAGE
Assoc. Executive Director:
ANNE MARIE KELLY
Publisher: ANGELA BURGESS
Assistant Publisher: DICK PRICE
Director, Finance & Administration: VIOLET S.
DOAN
Director, Information Technology & Services:
ROBERT CARE
Manager, Research & Planning: JOHN C.KEATON

COMPUTER SOCIETY OFFICES
Headquarters Office
1730 Massachusetts Ave. NW

Washington, DC 20036-1992

Phone: +1 202 371 0101 • Fax: +1 202 728 9614

E-mail: hq.ofc@computer.org

Publications Office
10662 Los Vaqueros Cir., PO Box 3014

Los Alamitos, CA 90720-1314

Phone:+1 714 8218380

E-mail: help@computer.org

Membership and Publication Orders:

Phone: +1 800 272 6657 Fax: +1 714 821 4641

E-mail: help@computer.org

Asia/Pacific Office
Watanabe Building

1-4-2 Minami-Aoyama,Minato-ku,

Tokyo107-0062, Japan

Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553

E-mail: tokyo.ofc@computer.org

PURPOSE The IEEE Computer Society is
the world’s largest association of computing
professionals, and is the leading provider of
technical information in the field.
MEMBERSHIP Members receive the
monthly magazine COMPUTER, discounts,
and opportunities to serve (all activities are
led by volunteer members). Membership is
open to all IEEE members, affiliate society
members, and others interested in the com-
puter field.

BOARD OF GOVERNORS
Term Expiring 2003: Fiorenza C. Albert-
Howard, Manfred Broy, Alan Clements, Richard A.
Kemmerer, Susan A. Mengel, James W. Moore,
Christina M. Schober
Term Expiring 2004: Jean M. Bacon, Ricardo
Baeza-Yates, Deborah M. Cooper, George V. Cybenko,
Haruhisha Ichikawa, Lowell G. Johnson, Thomas W.
Williams
Term Expiring 2005: Oscar N. Garcia, Mark A
Grant, Michel Israel, Stephen B. Seidman, Kathleen
M. Swigger, Makoto Takizawa, Michael R. Williams

Next Board Meeting: 22 Feb. 2003, San Diego, CA

IEEE OFFICERS
President: MICHAEL S. ADLER
President-Elect: ARTHUR W. WINSTON
Past President: RAYMOND D. FINDLAY
Executive Director: DANIEL J. SENESE
Secretary: LEVENT ONURAL
Treasurer: PEDRO A. RAY
VP, Educational Activities: JAMES M. TIEN
VP, Publications Activities:MICHAEL R. LIGHTNER
VP, Regional Activities: W. CLEON ANDERSON
VP, Standards Association: GERALD H. PETERSON
VP, Technical Activities: RALPH W. WYNDRUM JR.
IEEE Division VIII Director JAMES D. ISAAK
President, IEEE-USA: JAMES V. LEONARD

EXECUTIVE COMMITTEE
President:
STEPHEN L. DIAMOND*
Picosoft, Inc.
P.O.Box 5032
San Mateo, CA 94402
Phone: +1 650 570 6060
Fax: +1 650 345 1254
s.diamond@computer.org

President-Elect: CARL K. CHANG*
Past President: WILLIS. K. KING*
VP, Educational Activities: DEBORAH K. SCHERRER
(1ST VP)*
VP, Conferences and Tutorials: CHRISTINA
SCHOBER*
VP, Chapters Activities: MURALI VARANASI†
VP, Publications: RANGACHAR KASTURI †
VP, Standards Activities: JAMES W. MOORE†
VP, Technical Activities: YERVANT ZORIAN†
Secretary: OSCAR N. GARCIA*
Treasurer:WOLFGANG K. GILOI* (2ND VP)
2002–2003 IEEE Division VIII Director: JAMES D.
ISAAK†
2003–2004 IEEE Division V Director: GUYLAINE M.
POLLOCK†
Computer Editor in Chief:DORIS L. CARVER†
Executive Director: DAVID W. HENNAGE†

* voting member of the Board of Governors
† nonvoting member of the Board of Governors

COMPUTER SOCIETY WEB SITE
The IEEE Computer Society’s Web site, at
http://computer.org, offers information
and samples from the society’s publications
and conferences, as well as a broad range of
information about technical committees,
standards, student activities, and more.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

