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Abstract

Clustering of multivariate count data has widespread applications in areas such
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generally results in a nonconvex loss function, which does not fit into the exist-
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account. We introduce Dirichlet-multinomial network fusion (DMNet) for clustering
multivariate count data, which models the samples via Dirichlet-multinomial distri-
butions with individual parameters and employs a weighted group L1 fusion penalty
to pursue homogeneity over a prespecified network. To circumvent the nonconvexity
issue, we present two exponential family approximations to the Dirichlet-multinomial
distribution, which are amenable to efficient optimization and theoretical analysis.
We derive an ADMM algorithm and establish nonasymptotic error bounds for the
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1 Introduction

Cluster analysis is an unsupervised learning task central to various applications. It aims

to partition objects into groups such that objects within the same group tend to be more

similar than those from different groups. Existing clustering techniques fall into two major

classes. One class is by its nature algorithmic and heuristic. This includes linkage-based

hierarchical clustering (Ackerman and Ben-David, 2016), which takes a greedy strategy to

form the clusters, and K-means clustering (Steinley, 2006), which uses an iterative descent

algorithm to find an approximate solution to a combinatorial optimization problem. The

other class adopts a probabilistic formulation and performs the clustering on the basis of

a probability model, usually a parametric or nonparametric mixture model (Bouveyron

et al., 2019). See, for example, Everitt et al. (2011) for an overview.

While clustering of continuous and certain types of discrete data has been extensively

studied, clustering of multivariate count data has received little attention. Such data are

ubiquitous in applications ranging from genomics and ecology to text analysis and market-

ing research. For instance, in text analysis, each document can be summarized as frequency

counts of words and phrases; in microbiome studies, metagenomic sequencing yields micro-

bial taxa counts for each sample. In these applications, the multinomial proportions are

subject to substantial individual variability. As a result, the count data are overdispersed

in the sense that the observed count variances are much greater than those predicted by

the multinomial distribution with fixed proportions. To account for the overdispersion,

the Dirichlet-multinomial (DM) distribution (Mosimann, 1962) has gained wide popularity

and has served as a building block in many generative and regression models (Blei, Ng,

and Jordan, 2003; Chen and Li, 2013). Combining the DM distribution with the mixture

modeling framework leads to Dirichlet-multinomial mixture (DMM) models, which have

been developed for text and microbiome clustering problems (Nigam et al., 2000; Holmes,

Harris, and Quince, 2012; Anderlucci and Viroli, 2020). As with other mixture models,

maximum likelihood estimation for the DMM model via the EM algorithm suffers from

the issues of local minima and slow convergence. The computational difficulties deterio-
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rate in high dimensions where hundreds or thousands of words or taxa are to be analyzed

simultaneously.

Inspired by the success of the fused Lasso (Tibshirani et al., 2005), convex clustering has

been proposed as a remedy for the instability of classical clustering methods (Pelckmans

et al., 2005; Hocking et al., 2011; Lindsten, Ohlsson, and Ljung, 2011). By using a (group)

L1 fusion penalty, the method encourages the cluster centers to take on only a small number

of distinct values. It can be viewed as a convex relaxation of the L0 problems related

to linkage-based hierarchical clustering and K-means clustering. The convex formulation

allows for the development of both efficient optimization algorithms (Chi and Lange, 2015)

and strong theoretical guarantees (Zhu et al., 2014; Tan and Witten, 2015; Radchenko and

Mukherjee, 2017; Chi and Steinerberger, 2019). A similar model-based clustering approach

has also been proposed by combining the L1 fusion penalty with the Gaussian mixture

model (Guo et al., 2010). All the above work, however, focuses on Euclidean distance and

continuous data. It is not clear how the methodology and theory would extend to discrete,

and in particular multivariate count, data.

In addition to the observations, prior knowledge of a network over the samples is often

available in practice, which may provide useful information for the clustering problem. For

instance, in bibliometrics, citations between two papers would suggest similar topics and

hence memberships to the same cluster; in gut microbiome studies, similarities on dietary

patterns would indicate that two microbiomes tend to be clustered in the same enterotype

(Wu et al., 2011). In principle, such prior network information can be incorporated into the

convex clustering framework by appropriately choosing the affinity parameters or weights

in the adaptive L1 fusion penalty (Hocking et al., 2011). Hallac, Leskovec, and Boyd

(2015) developed scalable algorithms based on the alternating direction method of multi-

pliers (ADMM) for the network Lasso problem. Chi and Steinerberger (2019) established

theoretical guarantees for recovering a partition tree, but required that the edge weights be

perfectly specified by the tree. Nevertheless, the prior work did not consider the modeling

of multivariate count data or explain the impact of the network structure in general.
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To bridge the gap in the literature, we introduce Dirichlet-multinomial network fusion

(DMNet) for clustering multivariate count data. The method models the samples via

DM distributions with individual parameters and employs a weighted group L1 fusion

penalty to pursue homogeneity over a prespecified network. It can be regarded as a hard

version of the DMM model, with deterministic cluster assignments determined by a convex

fusion penalty. The DMNet method, however, has the important limitation that, since

the log-likelihood function for the DM model is nonconcave, the optimization problem is

still nonconvex. To circumvent the nonconvexity issue, we further present two exponential

family approximations, one previously proposed by Elkan (2006) and one novel, to the DM

distribution. This results in two convex formulations, DMNet+ and DMNet++, which are

amenable to efficient optimization and theoretical analysis. We derive an ADMM algorithm

for implementing the proposed methods. Moreover, we establish theoretical guarantees for

DMNet++ in terms of nonasymptotic error bounds, which shed light on the role of the

network structure in the clustering problem.

The rest of the article proceeds as follows. Section 2 introduces our model and method-

ology. Section 3 describes the algorithms for the proposed methods. Nonasymptotic theory

for DMNet++ is presented in Section 4. Simulation studies and two real data applications

are given in Sections 5 and 6, respectively. Section 7 concludes the article with some

discussion. Proofs of theoretical results are provided in the Appendix.

2 Model and Methodology

2.1 Dirichlet-Multinomial Model and DMNet

Suppose we observe the multivariate counts yi = (yi1, . . . , yip)
T for sample i and let y =

(yT
1 , . . . ,y

T
n )

T . The Dirichlet-multinomial (DM) model (Mosimann, 1962) assumes that yi

are multinomial with total counts Ni =
∑p

j=1 yij and cell probabilities πi and that πi are

Dirichlet with parameters αi = (αi1, . . . , αip)
T , where αij > 0; that is,

yi |πi ∼ Mult(Ni,πi),

πi ∼ Dir(αi), i = 1, . . . , n.
(1)
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Note that we have overparametrized the DM model with individual parameters αi, so that

distinct values of αi would correspond to different clusters. The joint density of yi and πi

is given by

f(yi,πi;αi) =
Ni!∏p
j=1 yij!

p∏
j=1

π
yij
ij ×

Γ(α+
i )∏p

j=1 Γ(αij)

p∏
j=1

π
αij−1
ij ,

where α+
i =

∑p
j=1 αij. By integrating out πi over the (p− 1)-simplex Sp−1, we obtain the

marginal density

f(yi;αi) =
Ni!∏p
j=1 yij!

Γ(α+
i )∏p

j=1 Γ(αij)

∫
Sp−1

p∏
j=1

π
yij+αij−1
ij dπi

=
Ni!∏p
j=1 yij!

Γ(α+
i )

Γ
(
Ni + α+

i

) p∏
j=1

Γ(yij + αij)

Γ(αij)
. (2)

The log-likelihood for the whole dataset is then, up to a constant,

ℓ(α) =
1

n

n∑
i=1

[
log Γ(α+

i )− log Γ(Ni + α+
i ) +

p∑
j=1

{log Γ(yij + αij)− log Γ(αij)}
]
, (3)

where α = (αT
1 , . . . ,α

T
n )

T .

Furthermore, we assume that the relationships among the samples are specified by a

network or weighted graph G = (V,E,W ), where each node in V = {1, . . . , n} represents a

sample, each edge in E ⊂ V ×V indicates a tendency for two adjacent nodes to be clustered

together, and W = (wij)(i,j)∈E consists of edge weights that measure the strengths of the

tendencies. In our text data example, such a graph is given by the citation network over the

papers, which provides prior information about the similarities between papers. In order

to pursue homogeneity over the network and perform the clustering, we adopt a weighted

group L1 fusion penalty and consider the optimization problem

α̂ = argmin
α∈Rnp

+

{
−ℓ(α) + λ

∑
(i,j)∈E

wij∥logαi − logαj∥2
}
,

or, after the reparametrization θ = logα,

θ̂ = argmin
θ∈Rnp

{
−ℓ̃(θ) + λ

∑
(i,j)∈E

wij∥θi − θj∥2
}
, (4)

where ℓ̃(θ) = ℓ(eθ) and λ > 0 is a tuning parameter that controls the trade-off between

a good fit to the overparametrized DM model and a good agreement on the parameters
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over the network. A proper choice of λ should strike a balance between two extremes:

when λ = 0, each sample forms a different cluster; when λ = ∞, all samples in the same

connected component are clustered together. We call problem (4) the Dirichlet-multinomial

network fusion (DMNet).

2.2 The DMNet+ Approximation

Although the DM distribution has been widely used to model text and microbiome data,

theoretical understanding of the model has long been lacking. The major obstacle is that

the distribution is not in an exponential family, so that many theoretical tools do not

apply. As a consequence, the loss function in problem (4) is nonconvex and does not fit

into the existing convex clustering framework. To simplify the intractable form of the DM

distribution, Elkan (2006) proposed an exponential family approximation which takes the

sparsity of text data into account. Note first that the case of yij = 0 does not contribute

to the density (2) and we can write

f(yi;αi) =
Ni!Γ(α

+
i )

Γ
(
Ni + α+

i

) ∏
j:yij≥1

Γ(yij + αij)

yij!Γ(αij)
.

In view of the fact that most words have zero or small counts, it is reasonable to assume

that αij ≪ 1 for most j. For yij ≥ 1, using the approximation

Γ(yij + αij)

Γ(αij)
=

yij−1∏
k=0

(k + αij) ∼ (yij − 1)!αij (5)

when αij is small, we can approximate the density (2) by

fE(yi;αi) =
Ni!Γ(α

+
i )

Γ
(
Ni + α+

i

) ∏
j:yij≥1

αij

yij
. (6)

The resulting approximation to the log-likelihood (3) is

ℓE(α) =
1

n

n∑
i=1

{
log Γ(α+

i )− log Γ(Ni + α+
i ) +

p∑
j=1

I(yij ≥ 1) logαij

}
, (7)

where I(·) is the indicator function. This corresponds to an exponential family with natural

parameter θ = logα. Reparametrizing and combining with the weighted group L1 fusion
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penalty leads to the optimization problem

θ̂E = argmin
θ∈Rnp

{
−ℓ̃E(θ) + λ

∑
(i,j)∈E

wij∥θi − θj∥2
}
. (8)

We call (6) the DM+ model and (8) the DMNet+ problem.

Note that (6) is not an exact density because it is not normalized. Nevertheless, the

next lemma characterizes how close it is to the density (2). By the approximation (5),

if yij are bounded, then for any 0 < ε < 1, there exists 0 < δ < 1 such that |Γ(yij +

αij)/Γ(αij)− (yij − 1)!αij| ≤ ε whenever αij ≤ δ. Define Ji1(δ) = {j : yij ≥ 1, αij ≤ δ} and

Ji2(δ) = {j : yij ≥ 1, αij > δ} with cardinalities |Ji1(δ)| ≍ s1(p) and |Ji2(δ)| ≍ s2(p).

Lemma 1. Assume that there exist constants L,M > 0 such that

Ni!Γ(α
+
i )

Γ(Ni + α+
i )
≤ L (9)

and on Ji2(δ),
Γ(yij + αij)

yij!Γ(αij)
≤M (10)

for all i = 1, . . . , n. Then

max
i
|f(yi;αi)− fE(yi;αi)| ≤ LM s2(p)(εs1(p) + 2δs1(p)).

Assumptions (9) and (10) are met provided that α+
i are not too small and αij are not

too large on Ji2(δ). The approximation bound tends to zero whenever s1(p) ≫ s2(p). As

observed by Elkan (2006), these assumptions are likely to hold for real text data.

2.3 The DMNet++ Approximation

Although the exponential family approximation (6) simplifies the form of the density (2), it

is still cumbersome to work with. In particular, it does not factorize over theNi multinomial

samplings, so that the large-Ni behavior of the sampling process is not easy to characterize.

Also, the gamma function complicates and slows down the optimization. To resolve these

issues, we now derive a new exponential family approximation that is more convenient from

both theoretical and computational perspectives.

7



Denote by z
(m)
i = (z

(m)
i1 , . . . , z

(m)
ip )T the one-hot encoding of the mth outcome for sample

i, so that yi =
∑Ni

m=1 z
(m)
i . The DM model (1) can be rewritten as

z
(m)
i |πi ∼ Mult(1,πi), m = 1, . . . , Ni,

πi ∼ Dir(αi), i = 1, . . . , n.

The random vectors z
(m)
i are dependent because of the latent variables πi. Nevertheless,

we treat them as independent and find the mean-field approximation

Ni∏
m=1

fM
i (z

(m)
i ;αi) =

Ni∏
m=1

p∏
j=1

(
αij

α+
i

)z
(m)
ij

=

p∏
j=1

(
αij

α+
i

)yij

,

where fM
i (·;αi) is the density of z

(m)
i from (2) with Ni = 1. This gives the approximating

density

fM(yi;αi) =
Ni!∏p
j=1 yij!

p∏
j=1

(
αij

α+
i

)yij

(11)

and the log-likelihood

ℓM(α) =
1

n

n∑
i=1

(
−Ni logα

+
i +

p∑
j=1

yij logαij

)
. (12)

By reparametrizing and incorporating the penalty, we arrive at the optimization problem

θ̂M = argmin
θ∈Θ

{
−ℓ̃M(θ) + λ

∑
(i,j)∈E

wij∥θi − θj∥2
}
. (13)

We call (11) the DM++ model and (13) the DMNet++ problem. Comparing the approx-

imations (7) and (12), we see that the latter is much simpler and does not involve the

gamma function. A caveat is that under the latter approximation, αi are identifiable only

up to a multiplicative constant, and correspondingly θi are identifiable only up to an addi-

tive constant. This issue can be resolved by restricting the parameter space Θ in a manner

to be made precise later.

To illustrate the similarity between the DM model and the DM+ and DM++ approxi-

mations, we generated from the DM model n = 600 texts in three groups with parameters

specified in Section 5.1. The log probabilities of these texts from the DM, DM+, and

DM++ models are shown in Figure 1. We see that, while both approximations work

sufficiently well, DM++ tends to be a better approximation to the DM model.
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Figure 1: DM versus DM+ and DM++ log probabilities.

3 Optimization

This section details the optimization algorithms, initialization strategy, and tuning param-

eter selection for the proposed DMNet, DMNet+, and DMNet++ methods.

3.1 ADMM Algorithm

We follow the general framework of Hallac, Leskovec, and Boyd (2015) to derive an ADMM

algorithm for solving problems (4), (8), and (13). To decouple the variables from adjacent

edges, we introduce auxiliary variables ηij and write problem (4) as

minimize − ℓ̃(θ) + λ
∑

(i,j)∈E

wij∥ηij − ηji∥2

subject to θi = ηij, i = 1, . . . , n, j ∈ N(i),

where N(i) = {j : (i, j) ∈ E}. The augmented Lagrangian in scaled form is

Lρ(θ,η,u) = −ℓ̃(θ) +
∑

(i,j)∈E

{
λwij∥ηij − ηji∥2 −

ρ

2
(∥uij∥22 + ∥uji∥22)

+
ρ

2
(∥θi − ηij + uij∥22 + ∥θj − ηji + uji∥22)

}
,
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where uij are the scaled dual variables and ρ > 0 is the penalty parameter. The ADMM

updates at iteration t then consist of the following steps:

θ
(t+1)
i = argmin

θi

{
−ℓ̃(θ) +

∑
j∈N(i)

ρ

2
∥θi − η

(t)
ij + u

(t)
ij ∥22

}
, (14)

(η
(t+1)
ij ,η

(t+1)
ji ) = argmin

ηij ,ηji

{
λwij∥ηij − ηji∥2

+
ρ

2
(∥θ(t+1)

i − ηij + u
(t)
ij ∥22 + ∥θ

(t+1)
j − ηji + u

(t)
ji ∥22)

}
, (15)

u
(t+1)
ij = u

(t)
ij + θ

(t+1)
i − η

(t+1)
ij .

The subproblem (15) has the closed-form solution (Hallac, Leskovec, and Boyd, 2015)

η
(t+1)
ij = rij(θ

(t+1)
i + u

(t)
ij ) + (1− rij)(θ

(t+1)
j + u

(t)
ji ),

η
(t+1)
ji = (1− rij)(θ

(t+1)
i + u

(t)
ij ) + rij(θ

(t+1)
j + u

(t)
ji ),

where

rij = max

(
1− λwij

ρ∥θ(t+1)
i + u

(t)
ij − (θ

(t+1)
j + u

(t)
ji )∥2

,
1

2

)
.

The subproblem (14) can be solved by expectation–maximization (EM), minorization–

maximization (MM), or Newton-type methods; see, for example, Zhou and Lange (2010).

However, for solving subproblems of ADMM, less accurate yet simpler methods are usually

sufficient. Note that the optimality condition for (14) is

−∇θi ℓ̃(θ) + ρ
∑

j∈N(i)

(θi − η
(t)
ij + u

(t)
ij ) = 0.

Rearranging terms yields the implicit gradient descent equation

θi =
1

ρ|N(i)|
∇θi ℓ̃(θ) +

1

|N(i)|
∑

j∈N(i)

(η
(t)
ij − u

(t)
ij ).

To solve for θi, we apply the fixed point iteration

θ
(t+1)
i =

1

ρ|N(i)|
∇θi ℓ̃(θ

(t)) +
1

|N(i)|
∑

j∈N(i)

(η
(t)
ij − u

(t)
ij ),

which guarantees convergence for sufficiently large ρ. A similar algorithm was derived and

analyzed by Yin et al. (2018). Here, for the DMNet problem (4), the gradient is given by

∂

∂θij
ℓ̃(θ) =

1

n

{
Ψ

( p∑
k=1

eθik
)
−Ψ

(
Ni +

p∑
k=1

eθik
)
+Ψ(yij + eθij)−Ψ(eθij)

}
eθij , (16)
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where Ψ(·) is the digamma function. The resulting ADMM algorithm is summarized in

Algorithm 1, where for DMNet+ and DMNet++ the gradient should be replaced by

∂

∂θij
ℓ̃E(θ) =

1

n

[{
Ψ

( p∑
k=1

eθik
)
−Ψ

(
Ni +

p∑
k=1

eθik
)}

eθij + I(yij ≥ 1)

]
,

and
∂

∂θij
ℓ̃M(θ) =

1

n

(
yij −

Nie
θij∑p

k=1 e
θik

)
,

respectively.

Algorithm 1 ADMM algorithm for DMNet

Initialize θi, ηij = θi, and uij = 0 for i = 1, . . . , n, j ∈ N(i)

while not converged do

Apply the update for a certain number of times:

θi ← 1
ρ|N(i)|∇θi ℓ̃(θ) +

1
|N(i)|

∑
j∈N(i)(ηij − uij) with the gradient given by (16)

rij ← max
(
1− λwij

ρ∥θi+uij−(θj+uji)∥2 ,
1
2

)
ηij ← rij(θi + uij) + (1− rij)(θj + uji)

ηji ← (1− rij)(θi + uij) + rij(θj + uji)

uij ← uij + θi − ηij

end while

The penalty parameter ρ inversely controls the step size in the optimization process and

should be set large enough to ensure the convergence of the ADMM algorithm. Roughly

speaking, ρ should be chosen proportional to the nonconvexity of the loss function; see the

condition of Theorem 1 in Li and Pong (2016).

3.2 Initialization of DM Parameters

For the nonconvex DMNet problem, it would be critical to choose good initial values for

the DM parameters αi or θi. Since each node is similar to its neighbors on the network

by assumption, we treat them as a DM population with common parameters αi and each

node as a group with individual parameters πi, and follow the idea of Weir and Hill (2002)

to derive a moment estimator for αi. To this end, let N∗(i) = N(i) ∪ {i} and define

the group averages π̂ij = yij/Ni and population averages π̄ij =
∑

k∈N∗(i) ykj/N
+
i , where

11



N+
i =

∑
k∈N∗(i) Nk. The between-group and within-group sums of squares are expressed as

Sij =
1

|N(i)|
∑

k∈N∗(i)

Ni(π̂kj − π̄ij)
2

and

Tij =
1

N+
i − |N(i)| − 1

∑
k∈N∗(i)

Nkπ̂kj(1− π̂kj),

respectively. By direct calculation, we obtain

ESij =
αij

α+
i

(
1− αij

α+
i

)
(1− γi + Ñiγi),

ETij =
αij

α+
i

(
1− αij

α+
i

)
(1− γi),

where γi = 1/(1 + α+
i ) are the overdispersion parameters and

Ñi =
1

|N(i)|

(
N+

i −
∑

k∈N∗(i) N
2
k

N+
i

)
.

Replacing the expectations by sample quantities, summing over all j, and solving for γi

yields the moment estimator

γ̂i =

∑p
j=1 Sij −

∑p
j=1 Tij∑p

j=1 Sij + (Ñi − 1)
∑p

j=1 Tij

.

The initial values α
(0)
i = (α

(0)
i1 , . . . , α

(0)
ip ) are then set to

α
(0)
ij =

1− γ̂i
γ̂i

π̄ij.

Alternatively, one can initialize the DMNet problem using the solutions to DMNet+ and

DMNet++ problems. Our numerical experience suggests that this may further improve

the estimation, but generally not the clustering, performance of DMNet.

3.3 Tuning Parameter Selection

The performance of our proposed methods hinges on the choice of the tuning parameter λ.

Tan and Witten (2015) suggested an approach to choosing λ in the denoising setting based

on the extended Bayesian information criterion (Chen and Chen, 2008) and an unbiased

estimator of the degrees of freedom. It is unclear, however, whether their estimator of

12



the degrees of freedom can be extended to our model and general graphs. Besides, its

computation involves inversion of large matrices and is computationally prohibitive when

both n and p are large. Here we propose to choose λ by K-fold cross-validation, which is

easy to implement. In the kth split, denote the training set and test set by Sk and Tk,

respectively. The cluster membership of each sample in Tk is determined by maximizing

the log-likelihood over the distinct values of α̂j obtained from Sk. For DMNet, we choose

the optimal λ that minimizes the cross-validation error

CV(λ) = − 1

K

K∑
k=1

∑
i∈Tk

max
j∈Sk

log f(yi, α̂j(λ)), (17)

where α̂j(λ) are obtained from Sk with λ fixed and refitted with the predicted cluster

memberships to reduce the bias incurred by the penalty. For DMNet+ and DMNet++, f

in (17) is replaced by fE and fM , respectively.

To demonstrate the performance of our cross-validation procedure, we generated n =

300 texts in three groups of equal size with parameters α(1) = (0.005, 0.01, . . . , 1)T , α(2) =

(1, 0.995, . . . , 0.005)T , and α(3) = (0.5, 0.495, . . . , 0.005, 1, 0.995, . . . , 0.505)T . The other

settings are as described in Section 5.1. The true cluster memberships and those obtained

by DMNet under two network topologies are depicted in Figure 2. The results for DMNet+

and DMNet++ are almost identical to that for DMNet and hence are omitted. From Figure

2, we see that our cross-validation procedure is able to identify the major clusters that are

consistent with the true groups, with one more minor cluster for the more difficult setting

of Network 2. In practice, it is sometimes convenient to specify the number of clusters.

Note that the tuning parameter λ controls the strength of regularization, and increasing λ

will result in fewer clusters. From this relationship one can easily choose the appropriate

λ that corresponds to a particular number of clusters.

4 Theory

We now develop theoretical guarantees for the proposed DMNet++ method. Our theory

is nonasymptotic in nature and allows the dimension p, sample size n, and total counts Ni

to grow simultaneously. In the setting of denoising over a complete graph, similar results

13



(a) Network 1, true (b) Network 1, DMNet

(c) Network 2, true (d) Network 2, DMNet

Figure 2: True clusters and clusters obtained by DMNet with cross-validation.

were obtained by Tan and Witten (2015). Our theoretical development is different from

theirs in at least two aspects. First, we analyze exponential family models, rather than

denoising problems, which are more technically involved. Second, our results allow for a

general network topology and arbitrary weights, thereby providing insights into the impact

of the network structure on the performance of our method.

Consider the DMNet++ problem (13). Our goal is to estimate the target parameter

θ∗ = argmin
θ∈Θ

{−Eℓ̃M(θ)}. (18)

Let D be the |E|p × np difference matrix that maps θ to wij(θi − θj)(i,j)∈E, that is, D =

D0 ⊗ Ip, where D0 is the |E| × n oriented incidence matrix of G that puts wij in position

i and −wij in position j in the row indexed by (i, j) ∈ E, and ⊗ denotes the Kronecker

14



product. Define R0(ζ) =
∑

(i,j)∈E ∥ζ(i,j)∥2 for ζ = (ζT
1 , . . . , ζ

T
|E|)

T ∈ R|E|p, so that the

weighted L1 fusion penalty

R(θ) = R0(Dθ) =
∑

(i,j)∈E

wij∥θi − θj∥2.

To resolve the nonidentifiability issue of the DMNet++ model, we assume that both

problems (13) and (18) are optimized over some suitably normalized parameter space.

Specifically, we impose the following condition.

Condition 1. The problems (13) and (18) are optimized over the parameter space Θ =

Θ1 × · · · ×Θn, where

Θi ⊂
{
θi ∈ Rp :

p∑
j=1

θij = 0

}
.

Such a normalization is for theoretical convenience and not essential in practice, since

the DMNet++ model serves only as an approximation to the DMNet model. Numerical

evidence from our experiments shows that solving problem (13) without the normalization

constraint generally performs well in terms of estimation and clustering accuracy. Moreover,

we write the approximating density (11) in the canonical form

fM(yi;θi) = h(yi) exp{⟨θi,yi⟩ − Ai(θi)},

where Ai(θi) = Ni logC(θi) and C(θi) =
∑p

j=1 e
θij . It is clear that the Fisher information

matrix ∇2Ai(θi) has a zero eigenvalue with corresponding eigenvector (1/
√
p, . . . , 1/

√
p)T .

The following condition ensures that the positive eigenvalues of N−1
i ∇2Ai(θi) are bounded

away from zero.

Condition 2. There exists a constant κ > 0 such that infθi∈Θi
λ+
min(∇2 logC(θi)) ≥ κ,

where λ+
min(·) denotes the smallest positive eigenvalue.

Finally, we assume that the total counts Ni are of the same order.

Condition 3. There exist constants c, c̄ > 0 such that cN ≤ Ni ≤ c̄N for all i = 1, . . . , n.

We are ready to state our main result, which provides nonasymptotic error bounds for

the DMNet++ estimator θ̂M .

15



Theorem 1. Assume that Conditions 1–3 hold. If

λ ≥ 2

n

√
c̄Np log(|E|p)

λG

,

where λG = λ+
min(D

TD), then the estimator θ̂M defined in (13) satisfies

1

n
∥θ̂M − θ∗∥22 ≤

3λ

2κcN
R(θ∗) +

c̄

4κ2c2

(
rp

Nn
+

1

Nn

√
rp log n

)
(19)

with probability at least 1 − 2(|E|p)−1 − exp{−min(c1 log n, c2
√
rp log n)}, where r is the

number of connected components of G and c1, c2 > 0 are some constants.

A few remarks are in order. First, we have chosen a scaling factor of 1/n for the error

bounds, rather than 1/(np) as in Tan and Witten (2015). Note that the scaling factor 1/n

is necessary because, in the clustering setting, θ∗ contains as many as O(n) identical copies

of a few distinct individual parameters. On the other hand, scaling by 1/p is not needed

in our case, since the growth of p can be compensated by the total count N and will not

affect the rate of convergence as long as p/N = O(1).

Moreover, our bounds depend on the structure of the network through the spectral

properties of G. Note that DTD = L ⊗ Ip, where L = DT
0D0 is the Laplacian matrix of

G̃ = (V,E, W̃ ) with W̃ = (w2
ij)(i,j)∈E, that is, the matrix with

∑
j∈N(i) w

2
ij on the diagonal,

−w2
ij in the (i, j)th off-diagonal entry for (i, j) ∈ E, and zeros elsewhere. It is well known

that L has a zero eigenvalue with multiplicity r (Godsil and Royle, 2001). The second

smallest eigenvalue of L is known as the algebraic connectivity and plays a key role in many

dynamical phenomena such as synchronization in complex networks (Barrat, Barthélemy,

and Vespignani, 2008).

Consequently, the bound (19) decomposes into two terms arising from estimating the

components of θ in the range and null spaces of L. The second term includes a factor

of r, since the parameters in different connected components are estimated separately.

The first term involves λG and R(θ∗). The spectral gap λG coincides with the smallest

algebraic connectivity of the connected components of G, which sets the limit for borrowing

information over the network. The quantity R(θ∗) measures the fidelity of the network to

the true parameter θ∗, which reflects the loss due to misspecified network structure. In
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the case of an unweighted complete graph as considered by Tan and Witten (2015), we

have λG = n and R(θ∗) can be as large as O(n2), which is clearly suboptimal. Our result

reveals a trade-off between two effects: a more connected network will have a smaller r and

a larger λG, but is likely to have a larger R(θ∗). Therefore, it is advisable to increase the

connectivity of the network while maintaining the accuracy of most edges.

5 Simulation Studies

In this section, we report on simulation studies to evaluate the numerical performance of

our proposed methods and compare them with some commonly used clustering methods.

5.1 Settings

We set the dimension p = 200 and generated the samples in three groups of equal size 150

or unequal size (100, 150, 200) with the parameter values

α(1) = (0.005, 0.01, . . . , 1)T , α(2) = (0.005, 0.01, . . . , 0.5, 1, 0.995, . . . , 0.505)T ,

α(3) = (0.5, 0.495, . . . , 0.005, 0.505, 0.51, . . . , 1)T .

The total counts Ni were drawn randomly from 80 to 120. These settings were chosen to

reflect the heterogeneity of word frequencies and the typical length of a scientific abstract.

We generated the networks in the following two ways:

� Network 1 (Block): Each pair of nodes within the same group were connected with

probability 0.08, and those between different groups were connected with probability

0.01.

� Network 2 (Small-world): Following the Watts–Strogatz model (Watts and Strogatz,

1998), we started from a regular ring lattice with degree 10 for each node and rewired

each edge with probability 0.1.

We adopted the adaptive weights wij = ∥θ̃i− θ̃j∥−γ
2 with initial estimates θ̃i = log π̂i =

log(yi/Ni) and γ = 1. We repeated each simulation 100 times. The penalty parameter in
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the ADMM algorithm was set to ρ = 1000 and the tuning parameter λ was selected by

fivefold cross-validation.

5.2 Performance Comparisons

We compare our methods with the following eight clustering procedures for Euclidean

and network data: the Dirichlet-multinomial mixture model (DMM, Holmes, Harris, and

Quince, 2012), a mixture model approach to spectral clustering (Spectral, Di Nuzzo and

Ingrassia, 2022), K-means and K-means++ (Arthur and Vassilvitskii, 2007) applied to the

proportions, the Louvain method (Blondel et al., 2008) based on modularity optimization

and its fast consensus variant (FCLouvain, Tandon et al., 2019), mixture models via the

EM algorithm (EM, Newman and Leicht, 2007), and a structural clustering algorithm for

networks (SCAN, Xu et al., 2007). Note that the first four methods use only the count

data, while the last four use only the network data. We also compare our method with

its oracle counterpart, which estimates the DM parameters with the cluster memberships

known in advance.

We assess the performance of different methods using five measures. The first two are

the L2 errors for estimating α and θ. The other three measures quantify the clustering

performance. Purity is the correct classification rate when each cluster is assigned to the

major class in that cluster. The other two measures are calculated by comparing pairwise

cluster memberships from the actual and predicted partitions. Treating this as a binary

classification problem, a positive assigns two data points to the same cluster, while a

negative assigns them to different clusters. The Rand index (RI) is the accuracy and the

F1 measure (F1) is the harmonic mean of precision and recall, defined respectively by

RI =
TP + TN

TP + TN+ FP + FN
, F1 =

2TP

2TP + FP + FN
,

where TP, TN, FP, and FN are the numbers of true positives, true negatives, false positives,

and false negatives, respectively. See, for example, Manning, Raghavan, and Schütze (2008,

sec. 16.3). All three clustering measures range from 0 to 1, and a value closer to 1 indicates

a better performance.
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The simulation results under Networks 1 and 2 are summarized in Tables 1 and 2,

respectively. We observe that DMNet, DMNet+, and DMNet++ have a very close perfor-

mance across all settings and performance measures, indicating that the last two methods

serve as good approximations to the first. In terms of clustering quality, our proposed

methods consistently outperform the competing procedures, mostly by a large margin.

Among the procedures using only the count or network data, FCLouvain and EM seem to

perform better than the others under Network 1, while DMM has some advantages under

Network 2, where the network information is weak. Moreover, the count-based methods

perform slightly better in the unequal size setting, while the network-based methods per-

form slightly worse. In all settings, our methods benefit from both the count and network

information and, as a result, outperform the competitors. Compared with the oracle, our

proposed methods perform quite satisfactorily in estimating both α and θ. The gap in

estimation performance tends to diminish as the clustering quality improves. Overall, the

simulation results demonstrate the superiority of our methods and underscore the effective-

ness of combining count and network data for clustering. In addition, the timing results

reported in Table 3 show that DMNet+ and DMNet++ achieve a reduction of about 10%

and 20%, respectively, in computation time compared to DMNet. We therefore recommend

using DMNet++ as a reliable and efficient approach in practice, especially for large-scale

problems.

6 Applications to Text Data

We illustrate our proposed methods by applying them to two real bibliographic datasets,

CiteSeer and Cora, from Sen et al. (2008). Both datasets include class labels that allow us

to assess the clustering quality of different methods.

6.1 CiteSeer

The CiteSeer dataset consists of 3312 computer science papers grouped into six categories:

Agents, Artificial Intelligence (AI), Database (DB), Human–Computer Interaction (HCI),
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Table 1: Means and standard errors (in parentheses) of performance measures for various

methods based on 100 replications under Network 1.

Cluster size Method ∥α̂−α∥2 ∥θ̂ − θ∥2 Purity RI F1

Equal DMNet 25.31 (0.74) 112.01 (5.28) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01)

DMNet+ 25.47 (0.83) 112.27 (5.17) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01)

DMNet++ 25.34 (0.81) 112.36 (5.13) 1.00 (0.00) 1.00 (0.00) 0.99 (0.01)

DMM 35.58 (5.58) 139.13 (40.24) 0.61 (0.21) 0.65 (0.22) 0.67 (0.12)

Spectral — — 0.41 (0.05) 0.51 (0.09) 0.40 (0.08)

K-means — — 0.50 (0.05) 0.62 (0.01) 0.33 (0.04)

K-means++ — — 0.48 (0.06) 0.57 (0.05) 0.43 (0.04)

Louvain — — 0.98 (0.07) 0.95 (0.06) 0.92 (0.09)

FCLouvain — — 1.00 (0.00) 0.98 (0.06) 0.96 (0.16)

EM — — 0.97 (0.07) 0.97 (0.05) 0.95 (0.07)

SCAN — — 0.49 (0.02) 0.52 (0.01) 0.45 (0.01)

Oracle 24.73 (0.84) 106.62 (3.05) — — —

Unequal DMNet 24.52 (1.34) 116.65 (2.77) 0.99 (0.03) 0.98 (0.02) 0.98 (0.02)

DMNet+ 25.22 (1.37) 112.52 (2.99) 0.99 (0.03) 0.98 (0.02) 0.98 (0.02)

DMNet++ 25.22 (1.37) 111.09 (3.18) 0.99 (0.03) 0.98 (0.02) 0.98 (0.02)

DMM 32.43 (5.19) 121.93 (36.37) 0.74 (0.14) 0.77 (0.18) 0.78 (0.11)

Spectral — — 0.51 (0.06) 0.52 (0.08) 0.43 (0.09)

K-means — — 0.55 (0.07) 0.62 (0.02) 0.36 (0.05)

K-means++ — — 0.56 (0.08) 0.59 (0.06) 0.47 (0.07)

Louvain — — 0.96 (0.08) 0.87 (0.07) 0.79 (0.11)

FCLouvain — — 1.00 (0.00) 0.89 (0.14) 0.73 (0.36)

EM — — 0.89 (0.01) 0.90 (0.01) 0.86 (0.01)

SCAN — — 0.46 (0.01) 0.46 (0.01) 0.43 (0.01)

Oracle 24.60 (0.93) 110.96 (2.96) — — —
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Table 2: Means and standard errors (in parentheses) of performance measures for various

methods based on 100 replications under Network 2.

Cluster size Method ∥α̂−α∥2 ∥θ̂ − θ∥2 Purity RI F1

Equal DMNet 36.59 (2.09) 144.66 (23.04) 0.67 (0.01) 0.74 (0.02) 0.69 (0.03)

DMNet+ 35.80 (2.03) 143.53 (23.76) 0.67 (0.01) 0.74 (0.02) 0.69 (0.03)

DMNet++ 35.88 (2.06) 142.99 (22.92) 0.67 (0.01) 0.74 (0.02) 0.69 (0.03)

DMM 35.58 (5.58) 139.13 (40.24) 0.61 (0.21) 0.65 (0.22) 0.67 (0.12)

Spectral — — 0.41 (0.05) 0.51 (0.09) 0.40 (0.08)

K-means — — 0.50 (0.05) 0.62 (0.01) 0.33 (0.04)

K-means++ — — 0.48 (0.06) 0.57 (0.05) 0.43 (0.04)

Louvain — — 0.74 (0.13) 0.72 (0.10) 0.61 (0.07)

FCLouvain — — 0.96 (0.02) 0.70 (0.01) 0.18 (0.06)

EM — — 0.53 (0.07) 0.62 (0.04) 0.43 (0.06)

SCAN — — 0.77 (0.03) 0.66 (0.01) 0.30 (0.03)

Oracle 24.73 (0.84) 106.62 (3.05) — — —

Unequal DMNet 33.49 (1.91) 112.58 (20.84) 0.82 (0.06) 0.81 (0.04) 0.74 (0.07)

DMNet+ 33.83 (1.89) 112.28 (21.40) 0.82 (0.06) 0.81 (0.04) 0.74 (0.07)

DMNet++ 33.81 (1.81) 111.96 (20.60) 0.82 (0.06) 0.81 (0.04) 0.74 (0.07)

DMM 32.43 (5.19) 121.93 (36.37) 0.74 (0.14) 0.77 (0.18) 0.78 (0.11)

Spectral — — 0.51 (0.06) 0.52 (0.08) 0.43 (0.09)

K-means — — 0.55 (0.07) 0.62 (0.02) 0.36 (0.05)

K-means++ — — 0.56 (0.08) 0.59 (0.06) 0.47 (0.07)

Louvain — — 0.74 (0.12) 0.69 (0.10) 0.58 (0.08)

FCLouvain — — 0.96 (0.02) 0.68 (0.01) 0.18 (0.05)

EM — — 0.54 (0.07) 0.60 (0.04) 0.43 (0.06)

SCAN — — 0.72 (0.02) 0.61 (0.01) 0.24 (0.02)

Oracle 24.60 (0.93) 110.96 (2.96) — — —
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Table 3: Means and standard errors (in parentheses) of run times (in seconds, excluding

cross-validation) for the proposed methods based on 100 replications.

Network Method Equal size Unequal size

1 DMNet 74.38 (1.04) 81.53 (2.06)

DMNet+ 68.43 (1.18) 68.10 (1.94)

DMNet++ 62.27 (1.21) 63.61 (1.96)

2 DMNet 100.76 (2.10) 103.12 (2.57)

DMNet+ 90.13 (2.64) 95.70 (2.94)

DMNet++ 82.35 (2.70) 87.36 (2.78)

Information Retrieval (IR), and Machine Learning (ML). Also included is a citation network

of 4732 edges. After removing self-loops, duplicated edges, and citing or cited papers not

present in the corpus, and isolated papers, we were left with 3264 papers and 4536 edges.

The vocabulary has a total of 3703 unique words, out of which we focus on the 445 words

with frequency not too low (appearing in fewer than 50 papers) or too high (appearing

in more than 200 papers). The Hopkins statistic (Hopkins and Skellam, 1954) for the

normalized count data is 0.87, suggesting a fairly strong clustering tendency. To apply our

methods, we chose the adaptive weights as in the simulations with γ = 3 and the optimal

λ by fivefold cross-validation.

The results for the proposed and competing methods evaluated by three clustering

performance measures are shown in Table 4. Additionally, we include in our comparisons

the natural approach that combines word embedding with the network lasso. Specifically,

we use Word2Vec (Mikolov et al., 2013) to convert individual words into vectors of 100

dimensions and represent a text by the average of all word vectors in that text. We then

apply the network lasso to the text vectors. We see that our methods compare favorably

with the others and are close to the best in terms of all three measures. The Louvain

and FCLouvain methods have high purity and RI values because they divided the dataset

into many small clusters, with the largest sizes being only 114 and 24, respectively. This

inevitably yields a very low F1 measure and inferior clustering quality. The Word2Vec

method has a reasonable performance in terms of all three measures, but still performs worse

than our methods. The advantages of our methods over word embedding are mainly due to
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Table 4: Performance measures for various methods on real data.

CiteSeer Cora

Method Purity RI F1 Purity RI F1

DMNet 0.71 0.79 0.32 0.75 0.81 0.36

DMNet+ 0.71 0.79 0.32 0.75 0.81 0.36

DMNet++ 0.71 0.79 0.32 0.75 0.81 0.36

DMM 0.00 0.30 0.21 0.00 0.30 0.30

Spectral 0.11 0.35 0.33 0.00 0.30 0.30

K-means 0.46 0.71 0.33 0.34 0.64 0.25

K-means++ 0.35 0.56 0.34 0.31 0.21 0.30

Louvain 0.84 0.82 0.02 0.90 0.82 0.02

FCLouvain 0.85 0.82 0.01 0.90 0.82 0.01

EM 0.27 0.57 0.27 0.36 0.63 0.28

SCAN 0.39 0.63 0.23 0.46 0.67 0.21

Word2Vec 0.61 0.66 0.21 — — —

the following reasons: (1) word embedding aims to capture word–word associations, which

are essential for context-based text prediction and generation tasks but are less important

for text clustering purposes; (2) word embedding achieves dimensionality reduction through

low-dimensional vector representations, which may incur more information loss and be more

sensitive to tuning parameter selection.

To gain insight into how the network structure affects the clustering performance, we

visualize the ground truth network and the network obtained by DMNet in Figure 3. Nodes

of the latter network are labeled by assigning each cluster to the major class in that cluster.

The results for DMNet+ and DMNet++ are almost identical to that for DMNet and hence

not shown. The group adjacency matrix of the network, which counts the numbers of

edges within and between groups, along with some summary statistics is given in Table

5, with the convention that within-group edges are counted twice. From Figure 3, it is

apparent that the Agents and IR groups are identified most accurately. Indeed, the largest

Agents and IR clusters respectively contain 675 and 898 papers, among which 412 and 477

are correctly labeled and account for 69.8% and 71.6% of the true Agents and IR groups.

This is reasonable in view of the fact these two groups have the highest or close to highest
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Table 5: Group adjacency matrix, percentages of within-group edges, and average degrees

for the CiteSeer network.

Group Agents AI DB HCI IR ML Percent. Degree

Agents 1378 93 50 86 47 79 79.5 2.94

AI 93 190 64 16 43 108 37.0 2.14

DB 50 64 1256 34 180 60 76.4 2.41

HCI 86 16 34 882 64 28 79.5 2.21

IR 47 43 180 64 2082 238 78.4 3.98

ML 79 108 60 28 238 904 63.8 2.42

average degrees and percentages of within-group edges as shown in Table 5. The third

largest cluster is labeled as HCI, which consists of 190 papers. Among these, 173 overlap

with the true HCI group, accounting for only 34.5% of the latter, which is not surprising

since the HCI group has the second lowest average degree. The DB and ML groups are

hardly separated from the IR group, largely owing to their close proximity to the latter

in addition to their relatively low average degrees and percentages of within-group edges.

The AI group has strong interactions with the Agents and ML groups and shows no clear

clustering tendency. As a consequence, no major clusters are found for the AI group.

6.2 Cora

The Cora dataset consists of 2708 machine learning papers grouped into seven categories:

Case Based (CB), Genetic Algorithms (GA), Neural Networks (NN), Probabilistic Methods

(PM), Reinforcement Learning (ReL), Rule Learning (RuL), and Theory. The citation

network includes 5429 edges, out of which 5278 were retained after the preprocessing. From

the vocabulary of 1433 unique words, we removed those appearing in fewer than 30 and

more than 250 papers, resulting in 409 words. The Hopkins statistic is 0.93, suggesting

a rather strong clustering tendency. The same settings of adaptive weights and tuning

parameters as for the CiteSeer dataset were adopted.

The results for different methods in terms of three clustering performance measures are

shown in Table 4. We see that our methods achieve the highest or close to highest RI and

24



Group

●

●

●

●

●

●

Agents

AI

DB

HCI

IR

ML

(a)

Group

●

●

●

●

●

●

Agents

AI

DB

HCI

IR

ML

(b)

Figure 3: Analysis of the CiteSeer dataset: (a) ground truth network; (b) network obtained

by DMNet.
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Table 6: Group adjacency matrix, percentages of within-group edges, and average degrees

for the Cora network.

Group CB GA NN PM ReL RuL Theory Percent. Degree

CB 834 30 54 19 28 46 75 76.8 3.64

GA 30 1654 53 2 62 2 23 90.6 4.37

NN 54 53 2350 137 67 16 161 82.8 3.47

PM 19 2 137 1320 20 6 88 82.9 3.74

ReL 28 62 67 20 818 2 32 79.5 4.74

RuL 46 2 16 6 2 506 80 76.9 3.66

Theory 75 23 161 88 32 80 1068 69.9 4.35

F1 values. The Louvain and FCLouvain methods yield a higher purity, but at the price

of very low RI and F1 values. The ground truth network and the network obtained by

DMNet are depicted in Figure 4, while the group adjacency matrix and summary statistics

of the network are shown in Table 6. As seen from Figure 4, the GA and ReL groups are

identified remarkably well, both of which have a high average degree and low interactions

with other groups. Indeed, the GA and ReL groups respectively include 429 and 220 papers,

among which 373 and 165 are correctly labeled and account for 89.2% and 76.0% of the

true GA and ReL groups. The two largest clusters are labeled as Theory and NN, which

contain 637 and 453 papers, respectively. However, they range too widely and cover also a

substantial part of the RuL, CB, and PM groups because of their strong interactions with

the latter groups. In summary, these results showcase the effectiveness of our methods and

corroborate our theoretical findings about the impact of the network structure.

7 Discussion

We have developed a clustering framework for effectively combining nodewise multivariate

count data and prior network information. Our theoretical and numerical results provide

insights into the performance gain of our approach and the critical role of the network

structure. Our framework may be extended in several ways. First, the DM model can be

replaced by a more flexible family of models such as the logistic normal multinomial and
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Figure 4: Analysis of the Cora dataset: (a) ground truth network; (b) network obtained

by DMNet.
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zero-inflated models to account for a general correlation structure and excess zeros (Zhang

and Lin, 2019; Tang and Chen, 2019). Second, in the situation where a single network

provides inaccurate or insufficient information, one can in principle incorporate multiple

networks to further boost the performance. In our text data example, it would be desirable

to exploit coauthorship and citation networks of authors. Finally, dimension reduction

and variable selection techniques may be employed to reduce the number of features and

upweight contributions from representative words.
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A Proofs

A.1 Proof of Lemma 1

The density (2) and its approximation (6) can be written

f(yi;αi) =
Ni!Γ(α

+
i )

Γ(Ni + α+
i )

∏
j∈Ji1(δ)

Γ(yij + αij)

yij!Γ(αij)

∏
j∈Ji2(δ)

Γ(yij + αij)

yij!Γ(αij)
≡ Ligi1gi2,

fE(yi;αi) =
Ni!Γ(α

+
i )

Γ(Ni + α+
i )

∏
j∈Ji1(δ)

αij

yij

∏
j∈Ji2(δ)

αij

yij
≡ Lig

E
i1g

E
i2.

Note that on Ji1(δ), ∣∣∣∣Γ(yij + αij)

yij!Γ(αij)
− αij

yij

∣∣∣∣ ≤ ε,
αij

yij
≤ δ.

By the assumptions, it follows that

|f(yi;αi)− fE(yi;αi)| ≤ Li(gi2|gi1 − gEi1|+ gEi1|gi2 − gEi2|)

≤ L(ε|Ji1(δ)|M |Ji2(δ)| + 2δ|Ji1(δ)|M |Ji2(δ)|)

= LM s2(p)(εs1(p) + 2δs1(p))

for all i = 1, . . . , n, which proves the bound.
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A.2 Proof of Theorem 1

Before proving Theorem 1, we set up some notation to decompose θ into two components,

of which only one is penalized. Similar decompositions were also used by Liu, Yuan, and

Ye (2013) and Tan and Witten (2015). Note that |E| ≥ n − r and rank(D0) = n − r.

Let D = UΣVT
(1) be the singular value decomposition of D, where U ∈ R|E|p×(n−r)p,

V(1) ∈ Rnp×(n−r)p, and Σ ∈ R(n−r)p×(n−r)p is a diagonal matrix of positive singular values.

Augment the matrix V(1) with V(2) ∈ Rnp×rp such that V = (V(1),V(2)) is orthogonal. Let

C = UΣ, θ(1) = VT
(1)θ, and θ(2) = VT

(2)θ, so that θ = V(1)θ(1) +V(2)θ(2) and

R(θ) = R0(Dθ) = R0(Cθ(1)),

for all θ ∈ Rnp. Let C+ = Σ−1UT be the Moore–Penrose pseudoinverse of C, so that

C+C = I. Denote by C(i,j) (resp. C
+
(i,j)) the submatrix of C (resp. C+) with the p rows

(resp. columns) indexed by (i, j) ∈ E.

The following lemma provides the tail bounds needed for the proof of Theorem 1.

Lemma 2. The score function ∇ℓ̃M(θ) at θ∗ satisfies

P

(
max
(i,j)∈E

∥(C+
(i,j))

TVT
(1)∇ℓ̃M(θ∗)∥2 ≥

1

n

√
c̄Np log(|E|p)

λG

)
≤ 2

|E|p
(20)

and

P

(
∥VT

(2)∇ℓ̃M(θ∗)∥22 ≥
c̄N

4n2
(rp+

√
rp log n)

)
≤ exp{−min(c1 log n, c2

√
rp log n)} (21)

for some constants c1, c2 > 0.

Proof. The score functions take the form

∇θi ℓ̃
M(θ∗) =

1

n

Ni∑
m=1

(z
(m)
i − π∗

i ), (22)

where π∗
i = eθ

∗
i /C(eθ

∗
). Note that

max
(i,j)∈E

∥(C+
(i,j))

TVT
(1)∇ℓ̃M(θ∗)∥2 ≤

√
p max
(i,j)∈E

∥(C+
(i,j))

TVT
(1)∇ℓ̃M(θ∗)∥∞

=
√
p∥(C+)TVT

(1)∇ℓ̃M(θ∗)∥∞. (23)
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In view of (22), n(∂/∂θij)ℓ̃
M(θ∗) is sub-Gaussian with mean zero and variance at most

c̄N/4. Combining with the fact that ∥(C+)TVT
(1)∥22 = ∥UΣ−1VT

(1)∥22 = 1/λG, we see that

each component of n(C+)TVT
(1)∇ℓ̃M(θ∗) is sub-Gaussian with mean zero and variance at

most c̄N/(4λG). Thus, by the sub-Gaussian tail bound and the union bound,

P (n∥(C+)TVT
(1)∇ℓ̃M(θ∗)∥∞ ≥ t) ≤ 2|E|p exp

(
−2λGt

2

c̄N

)
for all t > 0. Choosing t =

√
c̄N log(|E|p)/λG and using (23) yields the bound (20).

Turning to the bound (21), since V(2)V
T
(2) is a projection matrix of rank rp, we have

∥V(2)V
T
(2)∥2 = 1 and ∥V(2)V

T
(2)∥2F = tr(V(2)V

T
(2)) = rp. By the Hanson–Wright inequality

(Rudelson and Vershynin, 2013), there exist constants c1, c2 > 0 such that

P (n2∥VT
(2)∇ℓ̃(θ∗)∥22 ≥ t+ σ2rp) ≤ exp

{
−min

(
c1t

2

σ4rp
,
c2t

σ2

)}
for all t > 0, where σ2 = c̄N/4. Choosing t = σ2

√
rp log n yields the bound (21).

Proof of Theorem 1. Let ∆̂ = (∆̂T
1 , . . . , ∆̂

T
n )

T = θ̂M − θ∗. By a Taylor expansion and

Condition 2, the Bregman divergence associated with the loss function −ℓ̃M(θ) between

θ̂M and θ∗ satisfies

B(θ̂M ,θ∗) ≡ −ℓ̃M(θ̂) + ℓ̃M(θ∗) + ⟨∇ℓ̃M(θ∗), ∆̂⟩ = −∆̂T∇2ℓ̃M(θ̄)∆̂

=
1

n

n∑
i=1

∆̂T
i ∇2Ai(θ̄i)∆̂i ≥

κ

n

n∑
i=1

Ni∥∆̂i∥22 ≥
κcN

n
∥∆̂∥22, (24)

where θ̄ = (θ̄T
1 , . . . , θ̄

T
n )

T is some point between θ̂M and θ∗. On the other hand, by the

optimality of θ̂M ,

B(θ̂M ,θ∗) ≤ λR(θ∗)− λR(θ̂M) + |⟨∇ℓ̃M(θ∗), ∆̂⟩|. (25)

Also, by the optimality of θ̂M = V(1)θ̂
M
(1) +V(2)θ̂

M
(2) and the mean value theorem,

0 = VT
(2)∇ℓ̃M(θ̂M) = VT

(2)∇ℓ̃M(θ∗) +VT
(2)∇2ℓ̃M(θ̃)V(2)∆̂(2),

where θ̃ is some point between ((θ∗
(1))

T , (θ̂M
(2))

T )T and θ∗. Rearranging and using Condition

2 as in (24) gives

∥VT
(2)∇ℓ̃M(θ∗)∥22 = ∥VT

(2)∇2ℓ̃M(θ̃)V(2)∆̂(2)∥22 ≥
(κcN)2

n2
∥∆̂(2)∥22. (26)
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Now we write the inner product in (25) as

⟨∇ℓ̃M(θ∗), ∆̂⟩ = ⟨∇ℓ̃M(θ∗),V(1)∆̂(1) +V(2)∆̂(2)⟩

= ⟨VT
(1)∇ℓ̃M(θ∗), ∆̂(1)⟩+ ⟨VT

(2)∇ℓ̃M(θ∗), ∆̂(2)⟩

≡ T1 + T2.

By the triangle inequality and the Cauchy–Schwarz inequality,

|T1| = |⟨(C+)TVT
(1)∇ℓ̃M(θ∗),C∆̂(1)⟩| ≤

∑
(i,j)∈E

|⟨(C+
(i,j))

TVT
(1)∇ℓ̃M(θ∗),C(i,j)∆̂(1)⟩|

≤
∑

(i,j)∈E

∥(C+
(i,j))

TVT
(1)∇ℓ̃M(θ∗)∥2∥C(i,j)∆̂(1)∥2

≤ max
(i,j)∈E

∥(C+
(i,j))

TVT
(1)∇ℓ̃M(θ∗)∥2

∑
(i,j)∈E

∥C(i,j)∆̂(1)∥2

= max
(i,j)∈E

∥(C+
(i,j))

TVT
(1)∇ℓ̃M(θ∗)∥2R(∆̂).

Combined with the bound (20), this implies that, for λ ≥ 2n−1
√

c̄Np log(|E|p)/λG,

|T1| ≤
λ

2
R(∆̂) (27)

with probability at least 1− 2(|E|p)−1. Also, using (26) and (21),

|T2| ≤ ∥VT
(2)∇ℓ̃M(θ∗)∥2∥∆̂(2)∥2 ≤

n

κcN
∥VT

(2)∇ℓ̃M(θ∗)∥22 ≤
c̄

4κc

(
rp

n
+

1

n

√
rp log n

)
(28)

with probability at least 1− exp{−min(c1 log n, c2
√
rp log n)}. Combining (24), (25), (27),

and (28) and using the triangle inequality yields

κcN

n
∥∆̂∥22 ≤ λR(θ∗)− λR(θ̂M) +

λ

2
R(∆̂) +

c̄

4κc

(
rp

n
+

1

n

√
rp log n

)
≤ λR(θ∗)− λR(θ̂M) +

λ

2
(R(θ̂M) +R(θ∗)) +

c̄

4κc

(
rp

n
+

1

n

√
rp log n

)
≤ 3λ

2
R(θ∗) +

c̄

4κc

(
rp

n
+

1

n

√
rp log n

)
.

Dividing both sides by κcN completes the proof.

B Supplementary Material

The supplementary material contains R code for implementing the proposed methods.
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