
00103335: Deep Learning and Reinforcement Learning
Homework 2 Due: November 4, 2022

Note: Unless otherwise noted, equation and figure numbers refer to those in the DL book.

1. State and prove a convergence theorem for stochastic gradient descent under conditions (8.12) and (8.13).
Hint: See Robbins and Monro (1951, Ann. Math. Statist., 22, 400–407).

2. In this exercise, we establish a convergence result for gradient descent with Polyak averaging.
(a) Let v1; : : : ; vT be an arbitrary sequence of vectors. For the algorithm with initialization w.1/ D 0
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(b) Let f be a convex, �-Lipschitz function, w� D arg minkwk�B f .w/, and xw D
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3. Represent the convolution example in Figure 9.1 (3�4 input, 2�2 kernel, “valid” convolution) as matrix
multiplication with a doubly block circulant matrix.

4. Consider the pooling example in Figure 9.9. Design a set of filters such that the max pooling unit can
learn to be invariant to (a) rotation, and (b) scaling.

5. The Hopfield network is a type of recurrent network consisting of n units with states si and update rule
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where �.x/ D 2I.x � 0/ � 1, wij D wj i , and wi i D 0. The network is updated in an asynchronous
manner, so that one unit is randomly selected and updated at each time step. Prove that the network will
eventually reach a stable state at a local minimum of the energy function
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6. Design a recurrent neural network to approximate the dynamics of the Lorenz 96 model

dxi

dt
D .xiC1 � xi�2/xi�1 � xi C F; i D 1; : : : ; n;

where F is a forcing constant and the indices are cyclic so that x�1 D xn�1, x0 D xn, and xnC1 D x1.


