00103335: Deep Learning and Reinforcement Learning
Homework 2 Due: November 4, 2022

Note: Unless otherwise noted, equation and figure numbers refer to those in the DL book.

1.

State and prove a convergence theorem for stochastic gradient descent under conditions (8.12) and (8.13).
Hint: See Robbins and Monro (1951, Ann. Math. Statist., 22, 400-407).

. In this exercise, we establish a convergence result for gradient descent with Polyak averaging.

(a) Let vq,...,vr be an arbitrary sequence of vectors. For the algorithm with initialization w® =0

and update rule

Wi+ = O _

show that
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(b) Let f be a convex, p-Lipschitz function, w* = argmin,,;<p f(w), and w = ZIT=1 w®/T. Use
part (a) to show that the gradient descent algorithm for minimizing f with n = B/(p+/T) satisfies

f@)— f(w*) < f

Represent the convolution example in Figure 9.1 (3 x 4 input, 2 x 2 kernel, “valid” convolution) as matrix
multiplication with a doubly block circulant matrix.

Consider the pooling example in Figure 9.9. Design a set of filters such that the max pooling unit can
learn to be invariant to (a) rotation, and (b) scaling.

. The Hopfield network is a type of recurrent network consisting of n units with states s; and update rule

Si < 0(2 W;js; — 9,-),
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where o(x) = 2I/(x > 0) — 1, w;; = wj;, and w;; = 0. The network is updated in an asynchronous

manner, so that one unit is randomly selected and updated at each time step. Prove that the network will
eventually reach a stable state at a local minimum of the energy function

E(s)=—- Z Z w;jsis; + ZQ S .
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Design a recurrent neural network to approximate the dynamics of the Lorenz 96 model

dx,-
dt

= Xit1—Xi—2)xi1—x;+ F, i=1,...,n,

where F is a forcing constant and the indices are cyclic so that x_; = x,—1, X9 = X, and X, 41 = Xx1.



