
Formal Methods in Industry: Achievements, Problems,
Future

Jean-Raymond Abrial
Swiss Federal Institute of Technology Zurich

jabrial@inf.ethz.ch

ABSTRACT
Two real projects using the B formal method are quickly
presented. They show how some important parts of complex
systems can be developed in such a way that the outcome
is ”correct by construction”. A number of factors are then
analyzed relating the pros, the cons, and the difficulties in
applying this approach in Industry.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tions—Methodologies, Tools; D.2.4 [Software Engineer-
ing]: Software/Program Verification—Correctness proofs,
Formal methods, Validation; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning
about Programs—Invariants, Mechanical verification, Spec-
ification techniques

General Terms
Design, Management, Reliability, Verification

Keywords
Correctness, Formal method, B, Train system, Development
process

1. INTRODUCTION
The purpose of this presentation1 is to report on experi-

ences of using formal methods in Industry. Although I will
mainly present cases which I know of (all of them using B
[1]), I will infer from these case studies some results which
are applicable to the usage of other formal methods. I first
present the cases succinctly and then I analyze the lessons
one can learn from them. Before doing this however, I briefly
summarize what I mean by the term ”formal method”.

1This work has been partly supported by IST FP6 Rigor-
ous Open Development Environment for Complex Systems
(RODIN, IST-511599) Project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005 ...$5.00.

2. FORMAL METHOD
The term ”formal method” used in this paper has a very

precise, and maybe narrow, meaning. It is necessary to recall
such a meaning here as this term is used nowadays with
many different understandings. In order to keep this paper
short, I only give the most important concepts at work in
this usage of the B formal method.

2.1 Formal Development
The B formal method used in the examples of this presen-

tation is an approach which the engineers use to transform a
Software Requirement Document into some Executable Code.
So far, this does not seem to be different from what the or-
dinary programmer does. What makes this approach sig-
nificantly different however is that the engineers applying it
are not programming any more. As a matter of fact, they
are not using a classical programming language. They are
rather working at a more abstract level where execution is
no longer possible.

As a consequence, testing and debugging, cannot be made
by executing some pieces of code. But as, clearly, we cannot
assume that engineers will not make errors any more, they
have to have other means to verify what they are doing.
We shall see below in sections 2.2 and 2.4 what replaces
executable testing.

This approach can be divided up into three distinct and
successive phases:

(1) In phase 1, details of the problem are gradually ex-
tracted from the Software Requirement Document. This
results in the eventual construction of an Abstract Model
by stepwise refinement. The extraction and gradual con-
struction of the Abstract Model requires a heavy human
intervention.

(2) In phase 2, the Software Requirement Document is
not used any more. In fact, the origin is now the Abstract
Model. It is transformed, again gradually, into a Concrete
Model. This phase also requires some human intervention,
but, as we shall see in section 4.5, it is done in a less extensive
way than in the previous phase.

(3) In phase 3, the Concrete Model is automatically trans-
lated into Executable Code. No human intervention is re-
quired any more in this phase.

The overall result of this approach is that the Executable
Code will be correct by construction with regard to the Soft-
ware Requirement Document. In the three following sec-
tions, these phases are briefly presented.

761

shuqin
Highlight

shuqin
Highlight

shuqin
Highlight

shuqin
Highlight

2.2 The Abstract Model
In this section, I succinctly describe the structure of the

Abstract Model and I also make precise the way it can be
verified by the engineers while being constructed.

The Abstract Model is first made of some data which are
introduced by means of a number of invariants, which con-
siderably enrich the simple notion of data declarations used
in programming languages. Such invariants are predicates
written by means of first order logic and set-theoretic con-
structs (set, relations, functions, etc.). As its name indi-
cates, an invariant is a property of the data which remains
untouched (although the data themselves are) during the
evolution of the system. Note that an invariant might be a
global system property, which clearly cannot be expressed
in a programming language. Also note that the variable,
hence the invariants, are not introduced at once. They are
rather gradually incorporated by stepwise superposition as
the construction of the Abstract Model proceeds.

The dynamics of the model is expressed by means of sim-
ple transitions which are, most of the time, non-deterministic.
The definitions of such transitions also uses classical set-
theoretic constructs. Again, as for the data, such transitions
are enriched as the construction of the Abstract Model pro-
ceeds by stepwise superposition.

2.3 Proofs
The engineers are able to gradually verify their construc-

tion of the Abstract Model by means of mathematical proofs.
Note that the statements to be proved are not defined by
the engineers themselves, they are automatically generated
by a tool called the Proof Obligation Generator. For doing
so, the tool successively analyzes the various refinements of
the Abstract Model. Note that it is very important to have
a tool here to determine what is being proved (several thou-
sands of such proof obligations are to be done). Otherwise,
the engineers could do some errors in generating these verifi-
cation statements: one would then just move the complexity
from one area to another.

The proofs to be done have two distinct concerns:
(1) The preservation of the invariants by the transitions of

the Abstract Model. This first concern is called an invariant
preservation proof,

(2) The fact that each more accurate version of the Ab-
stract Model does not invalidate the properties which were
already proved in the previous versions. This second concern
is called a proof of correct refinement. In the development
of the Abstract Model, this second concern results in proof
obligations which are less complex than the ones dealing
with invariant preservations. The reason for this is that the
steps we are doing at this stage are just superposition steps
as we have said above in the previous section: at each step,
we simply add new variables without destroying those that
were introduced in previous steps, and we simply enrich the
transitions.

The proofs are performed, most of the time automatically,
by a tool called the prover. A very small proportion (we shall
come to that below in section 3.3) of the proofs however are
performed in an interactive way: the engineer has then to
give some hints to the automatic prover.

2.4 The Concrete Model
The Concrete Model has exactly the same structure as

the Abstract Model: it is made of data and transitions. The

Concrete Model is also gradually constructed by stepwise
refinement.

However, although the final version of it contains data
that are still genuine set-theoretic objects, the Concrete Model
has data which are in a one-to-one correspondence with
computerizable objects: scalar, pointers, arrays, files, etc.
Likewise, the final version of the Concrete Model will have
transitions defining the dynamics of the system exactly as
the Abstract Model had. But, this time, these transitions
are completely deterministic and are reminiscent of what
is found in classical programming languages: sequencings,
conditional statements, loops, procedure calls, etc.

In the case of the Concrete Model, the proof statements
generated by the Proof Obligation Generators are similar
to those generated for the Abstract Model verification. But
contrarily to what happened in the case of the Abstract
Model construction, this time the more complex proofs are
the refinement ones. This is because we now essentially per-
form two specific tasks:

(1) We data-refine the abstract set theoretic constructs
used in the Abstract Model (set, relations, functions, etc.)
into computerizable set-theoretic objects.

(2) We transform the set-theoretic non-deterministic tran-
sitions into classical deterministic programming statements.

2.5 The Executable Code
Besides being verified by mathematical proofs, the last

version of the Concrete Model is also automatically verified
by a tool checking that it only contains data and transi-
tions which are mechanically translatable into executable
code. Once this verification is positive, the translation is
performed in two successive phases although it could very
well be done in one phase only:

(1) The Concrete Model is automatically translated into
its counterpart written by means of a classical programming
language. In the cases I shall describe, the language is ADA.

(2) The programming language outcome of the first trans-
lation of the Concrete Model is then translated into exe-
cutable code using a classical compiler.

Note that these automatic phases are weak points of this
approach as we are not certain that the translators (in par-
ticular the second one) are doing correct translations. We
shall see below in section 4.6 how this problem is (partially)
handled. Also note that another weak point of this approach
is the Software Requirement Document. We shall come back
to this very important point in sections 4.1 and 4.10.

3. THE CASE STUDIES
The two case studies presented in this section are sepa-

rated by an eight year period: the first one resulted in a
system working since October 1998, whereas the second one
will be operating in September 2006. Everyone can have the
opportunity to experience the corresponding systems since
the first one is the fully automatic driverless subway ser-
vicing line 14 in Paris intra-muros, whereas the second one
will be the fully automatic driverless shuttle servicing the
various terminals of Roissy Airport.

Note that, in both cases, the programs of these systems
were not all developed using the formal method. The prelim-
inary system studies determined which parts should be for-
mally developed and proved: this corresponded to the safety
critical parts representing one third of the overall program.

762

Line length 8.5 km

Number of Stops 8

Time interval between two trains 115 s

Speed 40 km/h

Number of trains 17

Passengers per day 350, 000

Table 1: Parameters of Line 14 of Paris Subway

3.1 1st Case Study: Line 14 of Paris Subway
Table 1 gives the main figures of this subway line [11]. The

formally developed part of this system has been described
in a very well documented article [5], which is highly rec-
ommended to the interested reader. The following rough
description is extracted from this article.

Since this heavy subway system is completely automatic,
the safety critical part concerns the running and stopping
of the trains and the opening and closing of the doors in
the train and in the platforms. The overall program is
distributed into three different kinds of sub-systems: the
wayside equipment (several such equipment installed along
the tracks), the on-board equipment (one equipment in each
train), and the line equipment (one equipment). These sub-
systems are heavily connected. In each sub-system, the
safety parts which are developed using the formal method
have the following characteristics: they are sequential and
cyclic (350 ms), and they constitute a single non-interruptible
task.

3.2 2nd Case Study: Shuttle at Roissy Airport
Table 2 gives the main figures of this shuttle line. It is

also extracted from [11]. This system has been described
in a very well documented article [4], which is also highly
recommended to the interested reader.

The Roissy Airport shuttle system is derived from the
light shuttle system of Chicago O’Hare Airport. The dif-
ference between the former and the later is that the former
has a significant computerized part located along the tracks
and called the Wayside Control Unit. There are several such
units disposed on the tracks. They are linked by means of
an Ethernet network.

The Wayside Control Units are driving the trains by send-
ing them the predefined speed programs they have to follow.
This is done in response to the actual situation detected by
means of some sensors situated on the track and connected
to the Wayside Control Units.

Line length 3.3 km

Number of Stops 5

Time interval between two trains 105 s

Speed 26 km/h

Number of trains 14

Passengers per hour 2, 000

Table 2: Parameters of Roissy Airport Shuttle

3.3 Comparing the Two Case Studies
In table 3, a number of information is recorded making it

possible to compare the two case studies. The most impor-
tant data are the first and the last. The first information
contains the number of lines of the two programs, whereas
the last one contains the time needed to perform the corre-
sponding interactive proofs.

The number of ADA lines represents the size of that part
of the software system which has been developed using the
formal method. These lines were not modified by the engi-
neers.

The time used for doing the interactive proofs is calculated
by taking an average of 15 interactive proofs per Man.Day,
and 21 days in a month. As can be seen, the gain from the
first to the second case study is quite significant. Roughly
speaking, twice as many lines of code were automatically
generated for half of the proving time. The manufacturer
also said that in the second case study a significant time
was saved in the building of the Concrete Model. In section
4.5, we explain where such differences are coming from. Note
that in both cases no unit tests were performed. We shall see
below in section 4.3 what kind of tests were still performed.

One important difference between the two case studies is
that the Software Requirement Document of the first one
was done specially for it, whereas the one of the second case
study was derived from an existing Requirement Document
(that of the Chicago O’Hare Airport shuttle). In that sec-
ond case, this document had to be modified and extended in
order to deal with the new requirements and functionality
of the Roissy Airport shuttle. This has caused a number
of problems which were only discovered during the develop-
ment of the Abstract Model.

3.4 Other Similar Case Studies
Similar train control systems are presently developed in

the same way for the New York City subway, the Barcelona
subway, the Prague subway, and line 1 of the Paris subway.

763

Items 1st Case Study 2nd Case Study

Number of ADA lines 86, 000 158, 000

Number of proofs 27, 800 43, 610

Percentage of interactive proofs 8.1 3.3

Interactive proofs time in Man.Month 7.1 4.6

Table 3: Comparison of the Cases Studies

4. LESSONS TO BE LEARNED
In this section, I analyze a number of important points

related to the usage of this approach in Industry.

4.1 Importance of the Requirement Document
As the point of departure in these case studies (as well

as in many others) is the Software Requirement Document,
it is then clear that the quality and completeness of such a
document is of utmost importance.

This document is written using a mixture of semi-formal
approaches. But, on the whole, it is mainly written in natu-
ral language. Generally speaking, this document may have
two kinds of related weaknesses:

(1) It might be of a poor quality, either too short, or on
the contrary, far too verbose. But, in both cases, the pre-
cise requirements are difficult to extract. It is important to
make clear here that the purpose of using a formal method
is not to correct the Software Requirement Document. In
other words, if there exists an error or an omission in this
document it might very well be the case that this error or
omission be also present in the Abstract Model. Notice how-
ever, that the proofs done with the Abstract Model could re-
veal some inconsistencies in the Software Requirement Doc-
ument.

(2) Its comprehension by the developer of the Abstract
Model could be erroneous so that the Abstract Model would
not reflect the intention of the authors of the Software Re-
quirement Document. This is partially addressed by having
a special validation team (independent from the develop-
ment team) whose work is precisely to inspect the Abstract
Model in order to be sure that it correctly reflects the Soft-
ware Requirement Document. Such a team was put in place
with great profit in the two case studies.

Nevertheless, these points are so important that we might
below (section 4.10) propose ways to improve the present
situation.

4.2 Difficulties with the Abstract Model
The most difficult part in using a formal method is clearly

encountered in the construction of the Abstract Model. In
general, engineers (especially Software engineers) are not
well educated in the discipline of modeling, and, as pointed
in the previous section, they are not well formed either in
the discipline of Software Requirement Document writing.

Usually, the gradual construction of the Abstract Model
is not mastered by Software engineer encountering this ap-
proach for the first time. People have the tendency either to
make no step at all, or else to make a very few steps. This
results in a heavy proof effort (we shall come back to the
proof effort in section 3.3), and in difficulties encountered in
the validation of the Abstract Model against the Software
Requirement Document. In fact, the concept of refinement
(independent of its technical aspect) is poorly understood by
Software engineers. One should notice that it is not the case
in other more mature engineering disciplines where model-
ing, hence refinement, is completely natural.

One of the reasons for this poor usage of refinement is
that it is not easy to decide how to organize the construc-
tion steps: what is the best order to be used to incorporate
the various constituents of the Software Requirement Doc-
ument in the Abstract Model. Is it better to start with
the functional requirements, then the safety requirements,
then the failure requirements? Or should we take another
order? At the moment, there is no definite answers to such
questions. Experience still plays an important role.

In spite of these difficulties, one of the great merit of the
formal Abstract Model, which will become the sole model
of the future design, is to force the engineers to have an
in-depth understanding of the Software Requirement Docu-
ment. In the two case studies we mentioned earlier, there
has been a lot of interactions of various forms (mails, meet-
ings, inspections) between the developers and the authors
of the Software Requirement Document. During such inter-
actions, a large number of clarifications and extensions were
added to this document.

An important aspect of this relationship is that the Soft-
ware Requirement Document becomes the starting point of
the traceability of the requirements. Such a traceability will
be found first into the modeling, then into the future design,
and finally into the executable code.

4.3 Comparing Testing and Proving
In both cases, the unit tests as well as the integration tests,

which are very heavy in safety critical systems, hence very
expensive, have been completely abandoned. The proofs
are considered a far better verification process than the test.
Notice that this removing of the unit tests was proposed by
RATP, the Parisian Subway Authority, to the manufacturer.

764

It does not mean, of course, that all tests are cancelled.
The testing effort could now be concentrated on a far more
important point than the software modules and their correct
integration, namely the Software Requirement Document it-
self, which was considered a weak point in the previous sec-
tion. The idea is to have the validation team, alluded above
in section 4.1, defining a number of global functional tests
(as well as catastrophic scenarios) able to detect errors or
omissions in the Software Requirement Document.

Since the proofs have partially replaced the tests, it is
certainly useful to compare the two and see what each of
them may provide to the developer.

4.3.1 Tests.
A well-prepared program test comprises four phases which

are the following:
(1) The definition of the precise property to be tested in

the program at hand.
(2) The elaboration of the expected result of the test: this

has to be done before executing the test. Note that this
elaboration is sometimes difficult to obtain as it has to come
from a source which, clearly, must be independent of the
program to be tested. Sometimes, however, the source of
the elaboration of the result of the test is just in the head
of the tester himself as he is looking at what the program
does!

(3) The test itself by running the program being tested.
(4) The comparison of the result of the test with the ex-

pected result elaborated before doing the test. The fact that
the result of the test is the same as the expected result does
not mean that the program is correct: it only means that
the program has passed the test. When the comparison is
negative, one could think that the program is not correct,
but it can also be that the expected result was wrong!

4.3.2 Proofs.
In the case of a proof done on a model, the situation is

completely different from the one we have just seen with
testing. In fact, phase (1) above of the testing (choosing
a property to be tested) does not exist, for the simple rea-
son that the abstract model of a future program is nothing
else but the list of properties which are necessary to qualify
that program. In other words, the properties are part of the
model, they are not chosen a posteriori as is the case for pro-
gram testing. This shows the very important distinction to
be made between programming and abstract modeling. In
programming, you make precise what a computer should do.
Modeling has nothing to do with instructing a computer, it
simply denotes the static and dynamic properties of the fu-
ture program, and it allows the engineers to reason about
them.

The result of the proof could be one of the following:
(1) The prover succeeds to do the proof (either automat-

ically or interactively).
(2) The prover succeeds in proving the negation of what

was supposed to be proved.
(3) The prover fails but the engineer has the strong im-

pression that what is to be proved is nevertheless true.
(4) The prover fails and the engineer feels that it would

also fail to prove the negation of what is to be proved.
Case (1) corresponds to what we are aiming at for all

proofs by the end of the proving phase of a complete model.
Case (2) is interesting because it points to what has to be

modified in the model. In case (3), the failure of the prover
is not to be taken, most of the time, to the prover itself: it is
an indication that the model is too complicated and has to
be reorganized. It turns out that this indication is extremely
useful. When the prover has some difficulties then it might
be because the structure of the model is poor: it came as
a complete surprise for us. This information became then
a systematic quality criteria. As a matter of fact, when the
prover could not automatically discharge 90% of the proofs,
then the engineer had to reorganize his model. Case (4)
means that the model is not rich enough, it has thus to be
extended.

These cases are all extremely interesting because their
outcome are fully integrated in the development process it-
self. To summarize, modeling and proving is not a goal per
se. It is rather an excellent basis for asking oneself questions
about the system we want to construct.

4.4 Methodological Document
In both case studies, the engineers were using a propri-

etary document called the ”B Development Guide”. This
document is comparable, although used in a completely dif-
ferent context, to the ”Design Pattern” book [9] of Gamma
et. al. It is a ”methodological repository” that the engineers
can use in order to do their mathematical modeling. People
found that such a document is very important. It allows the
engineers to work in a very systematic fashion. We shall see
below in the next section that this ”B Development Guide”
can be partly transformed into a specific tool.

Among other things, the ”B Development Guide” presents
a number of rules to be followed in order to model various
kind of automata which can be found in the Software Re-
quirement Document. It also indicates how to interface B
developments with software parts which are not developed
with the formal method. Finally, it proposes lots of tech-
niques to be used in the data refinement: it shows how to
formulate the formal model so that the automatic proofs are
easily handled by the prover.

4.5 Constructing the Concrete Model
The main difference between both presented case studies

is to be found in the construction of the Concrete Model.
In the second case studies, the concrete model was almost
entirely built with a refinement tool named ”EdithB”. This
tool performs semi-automatic data-refinements. It has been
succinctly described in various articles [7, 8].

The tool EdithB interprets the sub-models of the Abstract
Model. It detects where each abstract set-theoretic data
is defined and used. EdithB uses then a database of pre-
defined data-refinement schemes which it tries to apply sys-
tematically. When EdithB fails, the engineer can provide
his own refinement scheme and add it to the database of
EdithB.

In order to be sure that EdithB does not perform wrong
refinements (since EdithB might have bugs in it), the out-
come of it is nevertheless proved as if it had been produced
manually by an engineer. This prevents doing a very com-
plex proof of EdithB itself.

The net result of using EdithB is quite spectacular since
almost 2/3 of the B models could then be generated auto-
matically. Comparisons have been made with a completely
manually produced models. It turns out that the final code,
although slightly less efficient, is nevertheless satisfactory.

765

4.6 The Vital Coded Processor
As pointed out in section 2.5, the translation of the last

Concrete Model refinements to ADA and then the transla-
tion of ADA to object code are weak points in the devel-
opment processes. We briefly explain here how this can be
make safer.

First, there are two independently developed translators
from B to ADA. These translators are both executed on the
last refinement stages of the Concrete Model. The way these
codes are compared is explained in [4], and [8].

In the presented examples, the usage of the B formal
method is complemented by having the automatically gener-
ated software being executed on an extended processor, the
Vital Coded Processor, which is described in [6]. Roughly
speaking, each data is encoded in two parts: a normal part,
which contains the value of the data, and a redundant part.
During execution, the Vital Coded Processor checks for any
inconsistencies that could be detected between the two parts.
In case of inconsistencies, then the system is put in a safety
state (i.e. the train is stopped).

The usage of the Vital Coded Processor makes possible to
detect errors caused by some ”spontaneous” changing of the
value of the memory (due to the heavy electronic noises in
the subway tunnels).

The usage of the formal method and the Vital Coded Pro-
cessor are complementary in that the former guarantees that
the software is correct (respects its requirements), whereas
the later guarantees that the execution of the software is
correct.

4.7 Integration in the Development Process
One of the most difficult obstacles encountered in Indus-

try for using formal methods is the integration of such ap-
proaches within the software development process, which ev-
erybody nowadays adopt.

People are quite reluctant to use such methods mostly
because it necessitates to modify the development process in
a significant fashion. As it is well known, such development
processes are hard to develop and even harder to put in place
so that the working engineers are using them. This is one of
the the main reason why managers do not want to modify
them.

In fact, the initial and middle phases (that is, Abstract
Model construction and Concrete Model construction) are
far more important than similar phases (that is, technical
specification and design) in more classical software develop-
ments. They are then clearly more costly. On the other
hand, the last phases (programming, integration, and test-
ing) are far less important (less costly then). But managers
do not like to have such changes in the financial figures
because they do not believe that spending more time and
money at the beginning of a project will save a lot of time
and money at the end of it!

Besides these changes in the sizes of the phases, the main
changes in the development process is the incorporation of
a proof activity. Managers are afraid that engineers will not
be able to perform the interactive proofs.

Most of the manufacturers in the studied field (train sys-
tems) do not use formal methods. Although there are some
standard requirements corresponding to Safety Integrity Level
4 in this field, the usage of formal methods (with proofs, as
presented here) is not well spread. Asked why it is the case,
the manufacturers give the classical answer that there is no

point for them to use formal methods since potential clients
do not ask for them. In other words, they do not want to
especially invest in this area because it is not enough used.
They claim that the investing cost will not be paid off by
more clients.

4.8 Instructing Software Engineers
Experience has shown that engineers can easily learn the

mathematical concepts and notations used in the formal
method. What is more difficult to get however is the ability
to develop formal models that are understandable and easy
to prove. At the beginning, engineers have the tendency to
pseudo-program rather than to really build models.

It is my opinion that the two disciplines of modeling and
writing Software Requirement Document should be made far
more important in Computer Science curriculum. I do not
think that courses in UML cover these problems. Such new
courses should be given with practice in mind. The students
have to exercise themselves in these disciplines which are not
presently well understood. But for doing so, it is clear that
these disciplines must be taught together with correspond-
ing tools, which the students can use. Otherwise, it might
remain too abstract. In Zurich, at the Swiss Federal Insti-
tute of Technology, I have developed two such courses: one
at the Undergraduate level and the other one at the master
level.

4.9 Less Usage of Programming Languages
An important lesson to be learned from using formal meth-

ods is that the usage of a High Level Programming Language
as the basic tool of the developers is significantly decreased.
In the example we have seen in section 3, the engineers have
not used the ADA language for the development of the safety
critical parts (remember the ADA code was not touched
by the engineers as explained in section 3.3). Although,
for practical reasons due, in particular, to the remaining
part of the Software which was not developed using the for-
mal method, the last refinement of the Concrete Model was
translated into ADA.

In fact, the classical notions of source and object codes,
and of a compiler situated between the two and used to
translate one into the other, has almost disappeared. As
pointed out in section 2.5, we certainly have a final object
code, but we might say that we have not any more a single
source code but many layers of them (some of them very
abstract) corresponding to the various refinement steps we
construct (often more than twenty all together in the Ab-
stract and Concrete Models!).

It appears then that using a language (reminiscent to a
programming language) in order to define the various lay-
ers of our models is probably not any more the right ap-
proach. It seems that a far better one would be that of us-
ing a database within which the various layers of the models
could be stored and connected together by the refinement
and decomposition relationships. This database will contain
a number of basic modeling elements which are the con-
stituents we briefly presented in section 2: data, invariants,
transitions, refinement layers, proof obligations, proofs, etc.
The engineer can then navigate through this database which
is in constant evolution during the development phase of the
Abstract and Concrete Models. Then, the proof obligation
generator, the prover, and the refiner could partially take
the place of the engineer to do their more clerical and auto-

766

matic jobs directly on the database, and they will, of course,
store their results into it. Notice that many other tools could
be installed around this database.

The European Project Rodin involving various European
academic institutions (Newcastle, Southampton, Turku, Zu-
rich) as well as major industries is aiming at developing such
an open development database [10].

4.10 More Usage of Formal Methods
In section 4.1, we pointed to the weaknesses of the Soft-

ware Requirement Document. Most of the time, this docu-
ment is very concrete in that it contains a completely defined
architecture of the future software as well as some very de-
tailed descriptions of the various modules this architecture
is made of. There is nothing wrong with that, of course.
The only problem is that it has been defined (indeed usu-
ally by very competent people) in an informal way. As a
consequence, it might contain some early bugs which, as we
have said in section 4.1, cannot generally be detected by the
usage of formal methods made in further phases. And, as we
have seen in section 4.3, such bugs could very well be only
discovered at the very end of the process when performing
the global tests: this situation is potentially dangerous.

One possibility to improve the situation is to use a formal
method in order to construct the Software Requirement Doc-
ument itself. For doing so, one would use a similar approach
to that advocated earlier, namely that of building models.
We have to start, of course, from some initial informal doc-
ument, which could be called the System Requirement Doc-
ument. Such a document would contain the very important
requirements of our future system (comprising software and
equipment) without mentioning at all any architecture or
even any distinction yet between the future software parts
and the future physical equipment parts.

At this level, the purpose of the models, which is, as usual,
gradually constructed by successive refinement steps, is to
obtain an harmonious architecture taking account of the sys-
tem requirements which might sometimes be slightly in op-
position (i.e. safety and functionality). It is outside the
scope of this paper to explain how this can be done. Let
us just say that a basic idea is to construct closed models
as advocated by [3]. A book presenting this approach is in
preparation and will be published soon [2].

5. CONCLUSION
In this presentation, I briefly introduced two case studies

of existing industrial and widely used systems where the B
formal method has been used to develop some safety critical
parts. I also proposed a number of comments concerning
the advantage and difficulties of using such methods. I tried
to explain why the introduction of such methods is rejected
by some industrial managers.

6. REFERENCES
[1] J.-R. Abrial. The B-Book: Assigning Programs to

Meanings. CUP, 1996.

[2] J.-R. Abrial. Event-B. To be published, 2006.

[3] R. Back. Decentralization of process nets with
centralized control. Distributed Computing, 1989.

[4] F. Badeau. Using B as a high level programming
language in an industrial project: Roissy val. In
Proceedings of ZB’05, 2005.

[5] P. Behm. Meteor: A successful application of B in a
large project. In Proceedings of FM’99, 1999.

[6] L. Burdy. Vital coded microprocessor: Principles and
application for various transit systems. In Proceedings
of IFAC-GCCT 1989, 1989.

[7] L. Burdy. Automatic refinement. In Proceedings of
BUGM at FM’99, 1999.

[8] D. Dolle. Vital software: Formal method and coded
processor. In Proceedings of ERTS 2006, 2006.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Reading, Massachusetts,
1995.

[10] Rodin. European Project Rodin
http://rodin.cs.ncl.ac.uk

[11] Siemens. Siemens transportation systems, 2006.
http://www.siemens.fr/transportation.

767

