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Proof |

» We will verify that for any x = (x;) and y

= V),
H OXG X1, Xi A, Vit > YN)
I_Iyl|X17 7Xif1ayi+1a

. (16)

o 7YN)
Assume (16) holds and that two probability measures
N and i have the same local characteristics
It implies that

nx) _ w(x)
) wy) Ll
It follows that
N(x)pu(y) = n(x)N(y)

Summing over y € Q leads to the result I = p
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» Assume (16) holds and that two probability measures
M and i have the same local characteristics.

» It implies that
= —. (17)

» |t follows that



Proof |
» We will verify that for any x = (x;) and y = (y;),

(X HnXI|X17"'7Xif‘|7yi+1a"'vyN) (16)

) O(yilX1, - Xic1, Yigts -+ L YN)

v

Assume (16) holds and that two probability measures
M and i have the same local characteristics.

» It implies that ) )
Nlx) _ ulx)
)~ ) 7
» |t follows that
Nx)u(y) = p(x)N(y), (18)

\{

Summing over y € Q leads to the result 1N = .



Proof Il

» To prove (16), note

N(x) = N(xn|x1, -+ Xn—1)0(Xq, -+, Xn—1),
rI(X‘Ia"' 7XN—17.yN) = I_I(yN‘Xh'” 7XN—1)I_|(X13"' 7XN—1)'
Therefore

M(x) = N(x1, -, Xn—1, )
O [xq, -, XN—1)
O [Xq, -, XN—1) L. N=1, /1)
Similarly
H(X1-"'f -,YN)
_0C x, e XN—2, V)
M( X1,y XN—2, YN)

L YN)-
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» To prove (16), note
N(x) = N(xn|x1, -+ Xn—1)0(Xq, -+, Xn—1),
(X1, Xn—1, YN) = OWNIX1, - Xn— )X, - Xv—1).
» Therefore

M) = N0, Xn—1, )

MO |Xe, -+, Xn—1)
= I_IX17"';XN—17 .
OCw|xe, -, Xn—1) ( )




Proof Il
» To prove (16), note

N(x) = N(xn|x1, -+ Xn—1)0(Xq, -+, Xn—1),
(X1, Xn—1, YN) = OWNIX1, - Xn— )X, - Xv—1).

» Therefore

M) = N0, Xn—1, )

O] Xxq, -+ 5 Xn—1)
= I_IX17"';XN—17 0
(X, Xn—1) ( )

» Similarly

H(X1,"‘, 7}/N)

I_I( |X1>"' 7XN—27yN)
= M(xq, -, Xn_2, , .
I_I( |X1>"'7XN—27}’N) ( 1 N2 yN)




Proof Ill
» Vi1 <i <N,

I_I(X1"" s Xi—15 %05 Vi1, ayN)
CN0Oglxg, - X1, Vi,

) )
I_I(yl|X17"'7X/—1:yi+17 : 7J/N)
Fori=1,i.e.,

n(X17"‘,Xi—1,}//’J/i+17 : ;YN)-
N lys -,
n( :YZa"'-YN):[—lg LR

7y ) T vyN 0
Yooy U ¥ETI)
Hence (16) follows by multiplication of the above N
equations.
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Proof Ill

» Vi1 <i <N,

M(X1, -+ 5 Xi—1, X5, Yitts 5 YN)
rl( ’X‘]?"' 7XI'—17y/'+17”' 7,VN)

= I_I(X17"'7Xi—1a

(X1, Xiz1, Yiet, -, YN)

» Fori=1,i.e.,

n( |y27"' 7.yN)
n( |y27"' 7}’N)

I_I( 7}/2,“',}’N):

(

Y2,

y Vit

,YN)-

o 7yN)'



Proof Ill

> Vi1 <i <N,

M(X1, -+ 5 Xi—1, X5, Yitts 5 YN)

rl( ’X‘]?"'7Xf—17y/+17”'7yN)
= (X1, 5 X1, Vi Yiets 5 YN)-
OC1Xa, 5 X1, Yigts 5 YN) ( : o )

» Fori=1,i.e.,

n( |y27"' 7.yN) (
I_I( |y27"' 7}’N)

I_I( 7}/2,“',}’N): ,Y2,"'aYN)-

» Hence (16) follows by multiplication of the above N
equations. O
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» Aneighborhood systemon Sis a collection of
subsets G = (Gs), s € S, such that

GsC S, ifs¢ s, )
Ssegi<—tedgs. ({0)]
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» Neighborhood systems can be defined by e —
introducing distances on lattices. Vo Farcom s
» Some widely used distances: S W
» the Euclidean distance; References

» the /P-distance, 1 < p < oo

Dp(X,y) = (Zd‘xi_mp)'%, if1<p<oo;
P max1§,-5d|x,-—y,-|, If,O:OO
(21)
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1 2 argmin D(s, ). (22)
t: t#£s
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Examples

Figure: Neighborhoods of n-th order w.r.t to Dy, D>, and D, on
a 2D regular lattice.

» The most often used are the 1st- and 2nd-order
neighborhoods (w.r.t D).
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a 2D regular lattice.
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Examples

Figure: Neighborhoods of n-th order w.r.t to Dy, D>, and D, on
a 2D regular lattice.

» The most often used are the 1st- and 2nd-order
neighborhoods (w.r.t D).

» They are called 4-neighborhood or
8-neighborhood systems in 2D.
References
i [Pérez and Heitz, 1994].
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Figure: 1st- and 2nd-order neighborhood systems on a 2D
regular lattice (Euclidean distance); associated cliques.
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Markov Random
A random field (2, T, ) with distribution 11 > 0 is called a  Fieles

Markov random field (MRF) with respectto G if i

Neighborhood Systems and
Cliques

Ms(Xs|X(s)) = M(xs|xr,r €Gs), Vse€ S, xeQ.  (24)

Equivalence Theorem

References
That is,

PI‘(XS = Xs‘Xr = Xr, r # S)

= Pr(Xs — Xs’Xr = Xr, r e gs) (25)

Trivial case:

Any probabilistic T > 0 defines a MRF w.r.t
Gs=S—{s},forse S
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> Def'n't'on ] ) ] ) ) . Markov Random
A random field (22, T, M) with distributionTl > 0 is calleda ~ Feds
Markov random field (MRF) with respectto G if e D
T
I_IS(XS‘X(S)) — I_I(XS‘XH re gS)7 VS c S’ X € Q (24) Equivalence Theorem
References
» That is,

PI‘(XS = X5|Xr = Xr, r # S)
— Pr(Xs — Xs‘Xr — Xr, IS gs) (25)

» Trivial case:

» Any probabilistic 1 > 0 defines a MRF w.r.t
Gs=S—{s}, forseS.
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» Let {Xp,0 < n < N} be a Markov process with state

space A,
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P(Xo = \) = v()) >0,

Po(\,8) = Pr(Xps1 = 6| Xn = A) > 0

VA, 0 €A
» Define
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» Let {Xp,0 < n < N} be a Markov process with state

space A,

and transitions

P(Xo = \) = v()) >0,

Po(\,8) = Pr(Xps1 = 6| Xn = A) > 0

VA, 0 €A
» Define

Go = {1};

Gh={n—-1,n+1},

1<n<N-1,

Gn = {N—1}.

> Then (Xp) is an MRF with respect to G = {Gj} L.
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» The local characteristics are
v(Xo)Po(Xo, X1)
Mo(Xg| X, = 28

Pn_1(Xn_1,Xn)Pn(XnaXn+1)
Mh(Xxn| X, = Z
n(XnlX(n) > xen Pno1(Xn—1, A)Pn(X; Xn41)

Mn(XvIx(nvy) = Pn—1(Xn—1, Xn)- (30)
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Example Il

» The local characteristics are

Xo)Po(Xg, X
no(X0|X(o))_ V( 0) 0( (0] 1)

= (28)
2oxen V(A Po(A, 1)
Pn—1(Xn—1, Xn) Pn(Xn, Xn41)
Ma(Xn|Xn) = ,
o) = B (ot ) Palh, Xe)
(29)
Mn(XvIx(nvy) = Pn—1(Xn—1, Xn)- (30)

» By Theorem 1.2, the local characteristics determine
a unique Markov random field M on ({0, --- , N}, G).
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» By definition, (Xj) is Markov if vm > 0

Ming Jiang
Pr(Xm1 = Xmy1|Xj = x;,0 < j < m)

Markov Random

Fields
= Pr(Xm+1 = Xm+1 |Xm = Xm). (31)

Random Fields
Neighborhood Systems and
Cliques
Therefore Markow Random Feds
Gibbsian Random Fields
Pr(XO - X07 X1 o X1 ) X2 . X2“ X3 . XS) Equivalence Theorem
’ ’ References
= Pr(xo, X1, X2, X3) = Pr(x3|xo, x1, X2)Pr(xo, X1, X2)

= Pr(x3|x2)Pr(xz2|x1)Pr(x1|Xo)Pr(xp).
Generally, we have,

Pr(X0:X07~" N =

Xm) — Pr(XO‘, e va)
m—1

= Pr(xo) H Pr(xi,1|x)

=0
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Proof |
» By definition, (Xj) is Markov if Ym > 0
Pr(Xm+1 = Xm+1|Xj = X,0 < j < m)
= Pr(Xm—H = Xm+1 ‘Xm - Xm)- (31)
» Therefore
Pr(Xo = X0, X1 = X1, Xo = X2, X3 = X3)
= Pr(xo, X1, X2, X3) = Pr(x3|Xo, X1, X2)Pr(xo, X1, X2)
= Pr(xs|x2)Pr(xz|x1)Pr(x1|Xo)Pr(xo).
» Generally, we have,
Pr(Xo = X0, -+ , Xm = Xm) = Pr(xo, -+ , Xm)

m—1
=P Pr(Xit1|Xi
r(xo) g r(Xit1]xi) 32)
m—1
= v(x0) [T Pilxi, xi1)-
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Proof —casea: 1 <n<N-1(1)
> By (32)

Pr(XnX(n) = PF(XalX0, -+ s X1, Xn 1, - s XN)
B Pr(xo,... s Xn—1s Xns Xpt1y - aXN)
 Pr(Xo, , Xne1, Xnt, - 5 XN)
. PI‘(XO’... s Xn—1s Xns Xnt1, - 7XN)
O en Pr(Xo, X1, A X1y, XN)

_ Pr—1(Xn—1, Xn) Pn(Xn, Xn+1) i
Y xen Pne1(Xn—1, A)Pn(X, Xn41)'

and

Pr(xn|Xr, r € Gr) = Pr(Xn|Xn—1, Xn+1)
_ Pr(x,_1,Xn, Xn11)
Pr(xn—1,Xn1)
~ Pr(xa_1,Xn, Xn41)
B EAG/\ Pr(xp_1, A\, Xn11)




Proof —casea: 1 <n<N-1(2)

» Because
Pr(Xn—17Xn7Xn+1) = Z Pr()‘Oa co a)\n—ZaXn—thaXn—H)
)‘07"' 7/\n—2€/\
= > Pr(Xns1|Xn)Pr(Xa| Xo—1)PF(Xo, -+, A2, Xn—1)
)‘Oa"' ’>\n—2€/\

= Pr(Xn1.1[Xn)Pr(Xn| Xn—1)Pr(xn—1),



Proof —casea: 1 <n<N-1(2)

» Because
Pr(Xn—17Xn7Xn+1) = Z Pr()‘Oa co a)\n—ZaXn—thaXn—H)
)‘07"' 7/\n—2€/\
= > Pr(Xns1|Xn)Pr(Xa| Xo—1)PF(Xo, -+, A2, Xn—1)
)‘Oa"' ’>\n—2€/\

= Pr(Xp1[Xn)Pr(Xn|Xn_1)Pr(xn_1),
» it follows that

Pr(xn|Xr, r € Gr) = Pr(xn|X(n))-



Proof —caseb: n=0
» By (32)

Pr(xo0/x(0) = Pr(xolxt, -, xn)

_ Pr(xo, X1, , Xn)
T OPr(xy, -, XN)
Pr(xo, X1, , XN)
Z)\E/\ Pr(\, x1, -, Xn)
_ I/(Xo)Po(X07X1) .
Yoaen VNPo(A, xq1)’
Pr(xo, X Pr(x, X
Pr(xo|Xr,r € Go) = Pr(xo|xi1) = p(r(o)h )1) DS ,\(Igf()z) A)
€
__ Pr(xi|x0)Pr(xo)
> e Pr(xa[A)Pr())

v(Xo0)Po(Xo, X1)
D oaen V(N Po(A, x1)

Q>



Proof —caseb: n=0

> By (32)
Pr(xg, X1, -+, Xn
PI’(X()|X(0)) = Pr(X0|X1 )t aXN) = FSI’(OX1 1. .. XN) )
e Pr(X07X17"' 7XN)
B Z)\E/\ Pr()‘7X1 9%°%° 7XN)
_ v(x0)Po(xo x1)
Z)\E/\ V(A)PQ(A,XO,
>

Pr(xo.x1) _ Pr(xi,xo)

Pr(xo|Xr, r € Go) = Pr(xo|x1) = Pr(xi) Y \enPr(xi,A)
_ Pr(xi|xo)Pr(x)
>oxen Pr(xi[A)Pr())
_ v(x0)Po(X0, X1)
- DaenvWPo(Xx)”




Proof —casec: n=N

» By the Markov property of X,

Pr(xn|x(n)) = Pr(xnlXo, -, Xn—1) = Pr(xn[Xn—1)

and
Pr(xn|Xxr, r € Gn) = Pr(xn|xn_1).
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Potentials

> are representations
for positive measures motivated by equilibrium
studies in

A potential is a collection of functions defined on
Q indexed by the subsets of S,

V={Va:AC S, Vs:Q— R}

such that

V@ = 0; (33)
Va(x) = Va(X'), if xs = x; for all s € A, (34)

i.e., Va(x) depends only on those coordinates xs of x
for which s € A.
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» Gibbsian random fields are representations
for positive measures motivated by equilibrium piatiov Random
studies in statistical physics. s
Cliques
> A is a collection of functions defined on e
Q indexed by the subsets of S, References

V={Vs:ACS V4:Q R}

such that

Vy = 0; (33)
Va(x) = Va(X'), if xs = x; for all s € A, (34)

i.e., Va(x) depends only on those coordinates xs of x
for which s € A.



Hamiltonian

» Visnormalized if

Va(x) =0, (35)

whenever x; = 0 for some t € A.

It is assumed that 0 € As, Vs, although any other
distinguished point would do equally well.

This condition is only imposed to insure unique
representations; it has no practical importance.

The energy or Hamiltonian associated with V is

H(x) = Hy(x) = > Va(x). (36)
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Hamiltonian

» Visnormalized if

Va(x) =0, (35)

whenever x; = 0 for some t € A.

» |t is assumed that 0 € Ag, Vs, although any other
distinguished point would do equally well.

This condition is only imposed to insure unique
representations; it has no practical importance.

The energy or Hamiltonian associated with V is

H(x) = Hy(x) = ) Va(x). (36)
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» |t is assumed that 0 € Ag, Vs, although any other
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Hamiltonian

» Visnormalized if

(35)

whenever x; = 0 for some t € A.

» |t is assumed that 0 € Ag, Vs, although any other
distinguished point would do equally well.

» This condition is only imposed to insure unique
representations; it has no practical importance.

» The or associated with V is

H(x) = Hyu(x) = > Va(x).

ACS
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Gibbsian Random Fields

» A

w.rt G=[S,G]isa
measure of the form

Nx)=z"e "™, z=3%"e "N (37
X

such that Z < 40 if |Q2] = oo and

where C is the set of all cliques of G.
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Gibbsian Random Fields

» AGibbsian random fieldw.r.tG=|[S,G]isa
measure of the form

Nx)=z"e "™, z=3%"e "N (37
X
such that Z < 40 if |Q2] = oo and
» Visa ,i.e.,
Va=0, VAZC; (38)

where C is the set of all cliques of G.
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Gibbsian Random Fields

» AGibbsian random fieldw.r.tG=|[S,G]isa

measure of the form

Nx)=z"e "X, z=3 e "X
X

such that Z < 40 if |Q2] = oo and
» VisaGibbsian potential,i.e.,

VAZO, VA%C,

» the Hamiltonian

HO) = 3 Ve(x):

cecC

where C is the set of all cliques of G.

(37)

(38)
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Exponential Family

» With few exceptions, the Z
is intractable both analytically and numerically.

Typically, there are parameters 6 = (61,--- ,0y) in V,

so that
Z=2(0)=> e "x9
XeN
The special case
J
H(x;0) = 0;H(x), (40)
j=1

is an example of an exponential family.
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Exponential Family

» With few exceptions, the partition function Z
is intractable both analytically and numerically.

» Typically, there are parameters 6 = (61,--- ,0,) in V,
so that

Z=2(0)=> e Hxh,
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Maximum Entropy Principle and Gibbsian
Random Fields

» Assume that the distribution M of the random
variables { Xs, s € S} satisfies the following
expectation conditions

E[Ve(X,0)] =) Ve(x,0)N(x) = pc(8), VC €C,
XEN
(41)
where 6 is a parameter.
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Maximum Entropy Principle and Gibbsian
Random Fields

» Assume that the distribution M of the random
variables { Xs, s € S} satisfies the following
expectation conditions

E[Ve(X,0)] =) Ve(x,0)N(x) = pc(8), VC €C,
XEN
(41)
where 6 is a parameter.

» The maximum entropy principle concludes that

MN(Xs =xs,8€ S) =MN(x) = ll_lo(x)eZCec A (0) Ve (x,0)

4
(42)
where [My(x) is some a priori distribution.
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Maximum Entropy Principle and Gibbsian
Random Fields

» Assume that the distribution M of the random
variables { Xs, s € S} satisfies the following
expectation conditions

E[Ve(X,0)] =) Ve(x,0)N(x) = pc(8), VC €C,
XEN
(41)
where 6 is a parameter.

» The maximum entropy principle concludes that

MN(Xs =xs,8€ S) =MN(x) = %HO(X)eZCec A (0) Ve (x,0)
(42)
where My (x) is some a priori distribution.

» Hence, Gibbsian random fields can be induced by
the maximum entropy principle.
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Mobius Inversion Formula

» Let  and W be set functions on the power set P(S),
|S| < oo. Then

o(A) = > (-1)APBw(B), VACS, (43)
BCA
if and only if
V(A)=) &(B), VACS. (44)

BCA
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» Let  and W be set functions on the power set P(S),
|S| < oo. Then

o(A) = > (-1)APBw(B), VACS, (43)
BCA
if and only if
V(A)=) &(B), VACS. (44)

BCA

» This is used in proving the following representation
theorem.
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Notation

» Forx e Q, AcC S, set

XS7
0,

seA
S¢A
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Representation Theorem

Theorem
For every random field TN > 0, let

Va(x) ==Y (—1)"Pllog N(x?), (46)
BCA

and Vy, = 0. Then

N(x) = Z e M (47)

where H(x) = 3" g g V&(x) and Z = N(0)~'. Moreover,
forany s € A,

Vax) = = > (=1)"*PllogN(x7|xE).  (48)
BCA

The representation of V4 is unique among normalized
potentials.
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Lemma

Lemma

For every finite set A
ST =3 (-1)lBl = {17
BCA BCA 0,

If A= 0, the result is obvious.
If A0,

BCA

A _
chW =(1-14=o.

ifA=0;

ifA#0D

|A
Yo (1)l = ZHBC A:|B| = k}|(—1)"
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Lemma

Lemma
For every finite set A

> (—1)A8 = 3 (-1)el = {1’

BCA BCA 0’

» If A= (), the result is obvious.
» If A0,

|A]

BCA
Al

—E:QM =

ifA=0;

ifA#0D

Y (N)E=3 {BCA:|Bl=k}|(-1)
k=0

1-1)A=o.
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Proof — step 1
» the representation of 1N in (47) is valid.
Define

N(xA)
(o)

V(A) = —log

®(A) = Va(x)

where x is fixedand 0 = (0, - - - ,0).

Assuming (46), by the lemma and using the Mébius
inversion formula for W,

—log [EESH = —log

Thus, M(x) = N(0)e=H™),

N(xS)

BcS

(0) } =VU(S) =) Vp(x).
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Proof — step 1
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» the representation of I in (47) is valid. Hino tene

Markov Random
q Fields
» Define

Random Fields
Neighborhood Systems and
A Cliques
M (X ) Markov Random Fields
lll ( A) = — Iog Gibbsian Random Fields
I ( O ) Equivalence Theorem

(D(A) _ VA(X) References

where x is fixed and 0 = (0, - - - ,0).

Assuming (46), by the lemma and using the Mébius
inversion formula for W,

—log m%” = —log

Thus, N(x) = N(0)e~ "X,

N(x5)
(o)

=VU(S) =) Vp(x).
BcCS




Proof — step 1

» the representation of I in (47) is valid.

» Define

o= [

®(A) = Va(x)
where x is fixed and 0 = (0, - - - ,0).

» Assuming (46), by the lemma and using the M&bius
inversion formula for W,

“log [m] — _log [”n((’;s))] —w(S) =3 Va(x).
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Thus, M(x) = N(0)e=HX),
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Proof — step 2

» V is normalized

Forany s € A,

= Va(x)
= > (O)*Fogn(x®)+ Y (=1)"FllogN(x®)
BCA,s¢B BCA,seB
= > ()" Flogn(x?)
BCA—{s}
+ 3 (—1)AE s jog n(xBUls))
B'CA—{s}
= > (~1)"F (logN(x?) — log N(xE-(eh))
BCA—{s}

If xs = 0, then xB = xBU{s},
Hence V4(x) = 0.

Q>



Proof — step 2

» V is normalized

» Forany s € A,

— Va(x)
= Y (1A PFlogn(x®)+ Y (~1)“Blogn(x®)
BCA,s¢B BCA,seB
= > (-1 Flogn(x?)
BCA—{s}
dL Z |A B'— {S}||og ﬂ( BU{S})
B'CA—{s}

= Z (—1)IA-Bl (Iog N(x?) — log I'I(XBU{S})) .

BCA—{s}



Proof — step 2

» V is normalized

» Forany s € A,

— Va(x)
= > ()4 PBlhogn(x®)+ > (~1)"FllogN(x?)
BCA,s¢B BCA,seB
= Y (=1)*Flogn(x®)
BCA—{s}
dL Z |A B'— {S}||og ﬂ( BU{S})
B'CA—{s}
= )  (-1)A-8 (Iog N(x?) — log I'I(XBU{S})).
BCA—{s}

» If xg = 0, then xB = xBUY{s},



Proof — step 2

» V is normalized

» Forany s € A,

— Va(x)
= > ()4 PBlhogn(x®)+ > (~1)"FllogN(x?)
BCA,s¢B BCA,seB
= Y (=1)*Flogn(x®)
BCA—{s}
dL Z |A B'— {S}||og ﬂ( BU{S})
B'CA—{s}
= )  (-1)A-8 (Iog N(x?) — log I'I(XBU{S})).
BCA—{s}

» If xg = 0, then xB = xBUY{s},
» Hence Vj4(x) = 0.
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n(x?)
I-I(XBU{S}) _

(XB|X(BS))”(X(E~))
( BU{S} |XBU{S})I—I(XBU{S})

it follows that

M(x8) N(xg|x5))

n(XBu{s}) i M(x Bu{s}’ Bu{s}) (52)

«O0>» «F»>» «E>» «E>»
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Proof — step 3 (1)
» Proof of (48)

» If s¢ B,and BC A— {s},

» Because
N(x®) = NxJIxG)NG)
B B B
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Proof - Step 3 (2) Information Theory

and Image/Video
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» Proof of (48)
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Random Fields
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As in step 2

Cliques
Markov Random Fields

_VA(X) = Z (_1 )|A—B| (Iog I-I(XB) . IOg I-I(XBU{S})> References
BCA—{s}

. Bi B
> (1) (log N(xE|xE) — log N(xe B Ixg©h)
BCA—{s}

The result follows by reversing the procedure in step
2.
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The result follows by reversing the procedure in step
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Proof — step 4 (1)
» Uniqueness.
Assume U, is another normalized potential such that
N(x) =Z e M),

where Hy(x) = > g5 Us(x).
By the normalization condition,

no) =2z 'e @ = z-1,
Hence )
X
~Hu(x) = tog | 1] (53)
Foranyset AcC S, A# (), let

A
®(B) = —Ug(x*), W(A) = log {”n((’;))] .

V(A) = —Hu(x ZUB :Z d(B).

BcS BCA
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» Uniqueness.
» Assume U, is another normalized potential such that
Nx) =z 'e M),

where Hy(x) = > g5 Us(x).
By the normalization condition,

no)=z'e M@ = z-1.

Hence .
~Hy(x) = log ﬂﬁgﬂ (53)
Foranyset Ac S, A+ 0, let
A (x*)

®(B) = —Up(x™), W(A)=Ilog n(0)

Then
V(A) = —Hy(x") = =) Us(x") =D o(B).
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» Uniqueness.
» Assume U, is another normalized potential such that
N(x) =Z e M)
where Hy(x) = > g5 Us(x).
» By the normalization condition,
no) =2z 'e @ = z-1,

» Hence
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Proof — step 4 (1)

Uniqueness.
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Assume U, is another normalized potential such that

N(x) =Z e "),

where Hy(x) = > g5 Us(x).
By the normalization condition,

no) =z e @ = z-1,

Hence

—Hy(x) = log [:::Eg;] .
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Proof — step 4 (1)
» Uniqueness.
» Assume U, is another normalized potential such that
N(x) =Z e M)

where Hy(x) = > g5 Us(x).
» By the normalization condition,
no)=2z"'e 0 = z-1,
» Hence
~Hux) =g | 1] (59

)
» ForanysetAC S, A# (), let

A
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Proof — step 4 (2)
» Uniqueness.

By the M&bius inversion formula and the lemma

®(A) =) (~1)"Flu(B)

BCA
B 1)-8) M(x?)
= 2 (1" g o
=Y (-1 Blogn(x?),
BCA

Because

O(A) = —Ua(x?) = —Ua(x), ¥xeQ
by (34), the proof is completed.
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» Uniqueness.

» By the Mébius inversion formula and the lemma
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BCA
=2 (-
BCA

» Because

®(A) = —Ua(x?

) = _UA(X)v

n(o)
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Equivalence Theorem

Theorem

Let G be a neighborhood system on S. ThenTl is a

(46) is a

w.r.tG ifand only if is a
w.r.t G, in which case {Va} in

The original version is in
[Hammersley and Clifford, 1968] and others under
some restrictions; see [Kinderman and Snell, 1980]

and the references therein. The statement and proof

here are essentially due to [Grimmett, 1973].
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Let G be a neighborhood systemon S. ThenTl is a e o Felds
Gibbsian random fieldWw.r.tG ifandonlyifllis a e

Equivalence Theorem

Markov random field W.r.tG, in which case {V4} in
(46) is a Gibbsian potential.

References

» The original version is in
[Hammersley and Clifford, 1968] and others under
some restrictions; see [Kinderman and Snell, 1980]
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=
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» Forevery AcC,ifs¢ A,

Va(Au, X)) = Va(Au, Xu+s))-
» Therefore
T e B Ynce,seacasuist VaA(AuX(w))
J J

M(Xs|Xr, r € Gs) = JeJ
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» Forse Ac GsU{s},

Va(Au, X)) = Va(x), (55)
Va(Aus Xurs)) = Va(X X(s))- (56)
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» Hence

— Va(x
z)\je/\je ZAec,seAchu{s} a(X)

n(Xs’Xr, IS Gs) = IEJ

D reA, 2uneh € 2acc seacasugsy Va(AXs)
s J J
jed

(57)
= ns(Xs|X(s)). (58)
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—Va(x) = S (1) Bliog N(xE|xE))

BCA

= Y % FlogneEixE)+ > (-1)ABllog N(xE|xE)

BCA,s¢B,t¢B BCA,se€B,t¢B

+ D> (N FegNOShE) + > (1) Fleg NOEIXG)

BCA,s¢B,teB BCA,seB,teB

= Y O Blognedixg)+ ST (~D)ABiliogN(xE|x3)

BCcA—{s}—{t} seBiCA—-{t}

+ Y (A Elogn(xZixZ)+ Y (—1)ABllog N(xg®|x3)
teB,CA—{s} {s,t}CB3CA

= > ()" Flogn(xIxg)
BcA—{s}—{t}

+ ) (-1)ABsHieg I'I(XSBU{S}|X(E${S})

BCA—{s}—{t}
B B B

n Z (_1)\A B—{t}| Iogl‘I(XSU{'}IX(;{t})
BcA—{s}—{t}

+ Y (A Bliog n(xM ),
BCA—{s}—{t}
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a)= 3 (-1)"Plog
M g hn( fu“ﬂx(%;{”)

BCA—{s}—{t}

» By the MRF property,
Nx$IxG) = NS |x7, r € Gs),
MO ) = NET 0 1 € G)

» For every subset Bof S, if t ¢ B and r # t, we have
xB = xP,
» Because t ¢ Gs U {s},

B B
NeIEy) = no PG ).
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