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Images as Random Fields

I A monochrome digital image is presented as a
matrix with pixel values corresponding to the
intensity of light.

I Each pixel value is modeled as a random
variable.

I Image attributes are rarely deterministic;
I They are generally characterized by correlations and

likelihoods.
I Images are random fields.

I References
i [Geman and Geman, 1984].
ii [Geman and Graffigne, 1987].
iii [Geman, 1990].
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Spatial Dependence & Markov Random
Fields

I Each pixel value
I depends only on neighboring pixel values;
I is independent from far away pixel values.

I Markov random fields provide a flexible mechanism
for

I modeling spatial dependence,
I image attributes.

I General references for this section are
i [Geman, 1990].
ii [Wrinkler, 1995].
iii [Li, 2009].

I Most of the materials is copy-edited from
[Geman, 1990].
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State Space

I Given a finite site set S, let

xs, s ∈ S (1)

be variables indexed by elements of S and belonging
to a state space Λs.

I The state space Λs is problem dependent

I State spaces Λs may be different from each other.
I In the following , all the state spaces are

assumed to be the same to avoid notational
complexity.



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

State Space

I Given a finite site set S, let

xs, s ∈ S (1)

be variables indexed by elements of S and belonging
to a state space Λs.

I The state space Λs is problem dependent

I State spaces Λs may be different from each other.
I In the following , all the state spaces are

assumed to be the same to avoid notational
complexity.



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

State Space

I Given a finite site set S, let

xs, s ∈ S (1)

be variables indexed by elements of S and belonging
to a state space Λs.

I The state space Λs is problem dependent

I State spaces Λs may be different from each other.
I In the following , all the state spaces are

assumed to be the same to avoid notational
complexity.



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

State Space

I Given a finite site set S, let

xs, s ∈ S (1)

be variables indexed by elements of S and belonging
to a state space Λs.

I The state space Λs is problem dependent

I State spaces Λs may be different from each other.
I In the following , all the state spaces are

assumed to be the same to avoid notational
complexity.



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Configuration Space

I Let
Ω =

∏
s∈S

Λs =
∏
s∈S

Λ = ΛS. (2)

I A map from S to Ω:

x :S −→ Λs, (3)
s 7−→ x(s) = xs, (4)

is called a configuration on S with the
configuration space Ω.
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Measure Space

I What is called a measure?

I Read Rudin’s book, Chapter 1.

I References
i [Rudin, 1970].
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Measure on State Space

I Assume that there is a positive measure defined on
each state space Λ, respectively, i.e.,

I (Λ, E) is a measurable space with positive measure κ
on the σ-algebra E .

I The state space Λ is generally a subset of Rq.

I Two typical cases are
I if Λ is not of zero measure, E is the Borel algebra

and κ some Borel measure;

I if Λ is a finite or countable subset of Rq , E is the
subset algebra and κ the counting measure.
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Product σ-algebra on the Configuration
Space

I The product σ-algebra

T = ES, (5)

can be introduced to the configuration space Ω to
make it into a measurable space.

I Any element T of T is called an event.
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Random Fields

I A probability measure on T defines a random
field:

Definition
Let S be a finite site set and (Λ, E , κ) be a state space.
The triple (Ω, T ,Π) is called a random field with the site
set S and state space Λ if:

I (Ω, T ) = (Λ, E)S;
I Π is a probability measure

I a positive measure such that Π(Ω) = 1.
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Discrete and Continuous Random Fields

I If the state space Λ is finite or countable, it is
discrete.

I If Λ is not of zero measure for the Borel measure on
Rq, it is continuous.
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Coordinate Random Variables

I For any site s, the coordinate random
variable Xs with values in Λ is defined as:

Xs : (Ω, T ,Π) −→ (Λ, E) (6)
x 7−→ Xs(x) = xs (7)

I To simplify, X = {Xs, s ∈ S}.
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Countable Configuration Assumption

I The sites are sometimes denoted by

S = {s1, · · · , sN}, (8)

where N = |S|.
I Configurations x : S → Ω are written as

x = (xs), or x = (x1, · · · , xN) (9)

for convenience, with

xi ∈ Λsi , 1 ≤ i ≤ N. (10)

I Assume each state space Λsi is countable in the
following.
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Conditional Probabilities

I Let (Ω, T ,Π) be a random field with S.
I Assume that Π is a probability measure on Ω with

Π(x) > 0, ∀x ∈ Ω. (11)

I The conditional probabilities

Pr(Xs = xs, s ∈ A|Xr = xr , r ∈ S \ A). (12)

where A ⊂ S are well-defined.
I In the following we simply write it as

Π(xs, s ∈ A|xr , r /∈ A). (13)
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Local Characteristics

I The local characteristics refer to the family
of uni-variable, conditional distributions, for s ∈ S
and x ∈ Ω, and λ ∈ Λ,

Π(λ|x(s)) , Πs(xs|x(s)) (14)

= Pr(Xs = xs|Xr = xr , r 6= s), (15)

where λ = xs and x(s) = (xr )r 6=s.

I Theorem
The distribution Π of the random field (Ω, T ,Π) is
determined by its local characteristics.
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Proof I

I We will verify that for any x = (xi) and y = (yi),

Π(x)

Π(y)
=

N∏
i=1

Π(xi |x1, · · · , xi−1, yi+1, · · · , yN)

Π(yi |x1, · · · , xi−1, yi+1, · · · , yN)
. (16)

I Assume (16) holds and that two probability measures
Π and µ have the same local characteristics.

I It implies that
Π(x)

Π(y)
=
µ(x)

µ(y)
. (17)

I It follows that

Π(x)µ(y) = µ(x)Π(y), (18)

I Summing over y ∈ Ω leads to the result Π = µ.
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Proof II
I To prove (16), note

Π(x) = Π(xN |x1, · · · , xN−1)Π(x1, · · · , xN−1),
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Π(yN−1|x1, · · · , xN−2, yN)
Π(x1, · · · , xN−2, yN−1, yN).



Proof II
I To prove (16), note

Π(x) = Π(xN |x1, · · · , xN−1)Π(x1, · · · , xN−1),

Π(x1, · · · , xN−1, yN) = Π(yN |x1, · · · , xN−1)Π(x1, · · · , xN−1).

I Therefore

Π(x) = Π(x1, · · · , xN−1, xN)

=
Π(xN |x1, · · · , xN−1)

Π(yN |x1, · · · , xN−1)
Π(x1, · · · , xN−1, yN).

I Similarly

Π(x1, · · · , xN−1, yN)

=
Π(xN−1|x1, · · · , xN−2, yN)

Π(yN−1|x1, · · · , xN−2, yN)
Π(x1, · · · , xN−2, yN−1, yN).



Proof II
I To prove (16), note

Π(x) = Π(xN |x1, · · · , xN−1)Π(x1, · · · , xN−1),

Π(x1, · · · , xN−1, yN) = Π(yN |x1, · · · , xN−1)Π(x1, · · · , xN−1).

I Therefore

Π(x) = Π(x1, · · · , xN−1, xN)

=
Π(xN |x1, · · · , xN−1)

Π(yN |x1, · · · , xN−1)
Π(x1, · · · , xN−1, yN).

I Similarly

Π(x1, · · · , xN−1, yN)

=
Π(xN−1|x1, · · · , xN−2, yN)

Π(yN−1|x1, · · · , xN−2, yN)
Π(x1, · · · , xN−2, yN−1, yN).



Proof III

I ∀i ,1 < i < N,

Π(x1, · · · , xi−1, xi , yi+1, · · · , yN)

=
Π(xi |x1, · · · , xi−1, yi+1, · · · , yN)

Π(yi |x1, · · · , xi−1, yi+1, · · · , yN)
Π(x1, · · · , xi−1, yi , yi+1, · · · , yN).

I For i = 1, i.e.,

Π(x1, y2, · · · , yN) =
Π(x1|y2, · · · , yN)

Π(y1|y2, · · · , yN)
Π(y1, y2, · · · , yN).

I Hence (16) follows by multiplication of the above N
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Neighborhood Systems

I A neighborhood system on S is a collection of
subsets G = (Gs), s ∈ S, such that

Gs ⊂ S, if s /∈ Gs, (19)
s ∈ Gt ⇐⇒ t ∈ Gs. (20)

I The pair (S,G) is then a graph:
I vertexes: sites s ∈ S;
I edges: pairs < s, t > when s ∈ Gt .
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Lattices

I S is usually a subset of d-dimensional lattice Zd .

I Such kinds of site sets are widely used in image
processing.

I Bi-dimensional lattices are often used to represent
images, each site corresponding to a pixel.

I Tri-dimensional lattices are used to represent 3D
data.
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Distances on Lattices

I Neighborhood systems can be defined by
introducing distances on lattices.

I Some widely used distances:
I the Euclidean distance;
I the lp-distance, 1 ≤ p ≤ ∞:

Dp(x , y) =

{(∑
d |xi − yi |p

) 1
p , if 1 ≤ p <∞;

max1≤i≤d |xi − yi |, if p =∞.
(21)
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Neighborhoods by Distances

I 1-st order neighborhood systems: G1
s is the set of the

nearest neighbors of s,

G1
s , arg min

t : t 6=s
D(s, t). (22)

I n-th order neighborhood systems: defined by the
recurrence:

Gn+1
s , Gn

s ∪ arg min
t : t /∈Gn

s∪{s}
D(s, t). (23)
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Examples

Figure: Neighborhoods of n-th order w.r.t to D1, D2, and D∞ on
a 2D regular lattice.

I The most often used are the 1st- and 2nd-order
neighborhoods (w.r.t D2).

I They are called 4-neighborhood or
8-neighborhood systems in 2D.

References
i [Pérez and Heitz, 1994].
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Cliques

I Given a neighborhood system G = (Gs), a clique is
a set C ⊂ S if s, t ∈ C and s 6= t , imply s ∈ Gt .

I Every pair of points are neighbors.

I A single point is a clique.

I The set of all cliques of G will be denoted by C.
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Examples

Figure: 1st- and 2nd-order neighborhood systems on a 2D
regular lattice (Euclidean distance); associated cliques.
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Markov Random Fields

I Definition
A random field (Ω, T ,Π) with distribution Π > 0 is called a
Markov random field (MRF) with respect to G if

Πs(xs|x(s)) = Π(xs|xr , r ∈ Gs), ∀s ∈ S, x ∈ Ω. (24)

I That is,

Pr(Xs = xs|Xr = xr , r 6= s)

= Pr(Xs = xs|Xr = xr , r ∈ Gs). (25)

I Trivial case:
I Any probabilistic Π > 0 defines a MRF w.r.t
Gs = S − {s}, for s ∈ S.
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Example I

I Let {Xn,0 ≤ n ≤ N} be a Markov process with state
space Λ,

P(X0 = λ) = ν(λ) > 0, (26)

and transitions

Pn(λ, δ) = Pr(Xn+1 = δ|Xn = λ) > 0 (27)

∀λ, δ ∈ Λ.
I Define

G0 = {1};
Gn = {n − 1,n + 1}, 1 ≤ n ≤ N − 1;

GN = {N − 1}.

I Then (Xn) is an MRF with respect to G = {Gj}Nj=0.
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Example II

I The local characteristics are

Π0(x0|x(0)) =
ν(x0)P0(x0, x1)∑
λ∈Λ ν(λ)P0(λ, x1)

(28)

Πn(xn|x(n)) =
Pn−1(xn−1, xn)Pn(xn, xn+1)∑
λ∈Λ Pn−1(xn−1, λ)Pn(λ, xn+1)

, 1 ≤ n ≤ N − 1

(29)

ΠN(xN |x(N)) = PN−1(xN−1, xN). (30)

I By Theorem 1.2, the local characteristics determine
a unique Markov random field Π on ({0, · · · ,N},G).
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Proof I
I By definition, (Xn) is Markov if ∀m ≥ 0

Pr(Xm+1 = xm+1|Xj = xj ,0 ≤ j ≤ m)

= Pr(Xm+1 = xm+1|Xm = xm). (31)

I Therefore

Pr(X0 = x0,X1 = x1,X2 = x2,X3 = x3)

= Pr(x0, x1, x2, x3) = Pr(x3|x0, x1, x2)Pr(x0, x1, x2)

= Pr(x3|x2)Pr(x2|x1)Pr(x1|x0)Pr(x0).

I Generally, we have,

Pr(X0 = x0, · · · ,Xm = xm) = Pr(x0, · · · , xm)

= Pr(x0)
m−1∏
i=0

Pr(xi+1|xi)

= ν(x0)
m−1∏
i=0

Pi(xi , xi+1).

(32)



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Proof I
I By definition, (Xn) is Markov if ∀m ≥ 0

Pr(Xm+1 = xm+1|Xj = xj ,0 ≤ j ≤ m)

= Pr(Xm+1 = xm+1|Xm = xm). (31)

I Therefore

Pr(X0 = x0,X1 = x1,X2 = x2,X3 = x3)

= Pr(x0, x1, x2, x3) = Pr(x3|x0, x1, x2)Pr(x0, x1, x2)

= Pr(x3|x2)Pr(x2|x1)Pr(x1|x0)Pr(x0).

I Generally, we have,

Pr(X0 = x0, · · · ,Xm = xm) = Pr(x0, · · · , xm)

= Pr(x0)
m−1∏
i=0

Pr(xi+1|xi)

= ν(x0)
m−1∏
i=0

Pi(xi , xi+1).

(32)



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Proof I
I By definition, (Xn) is Markov if ∀m ≥ 0

Pr(Xm+1 = xm+1|Xj = xj ,0 ≤ j ≤ m)

= Pr(Xm+1 = xm+1|Xm = xm). (31)

I Therefore

Pr(X0 = x0,X1 = x1,X2 = x2,X3 = x3)

= Pr(x0, x1, x2, x3) = Pr(x3|x0, x1, x2)Pr(x0, x1, x2)

= Pr(x3|x2)Pr(x2|x1)Pr(x1|x0)Pr(x0).

I Generally, we have,

Pr(X0 = x0, · · · ,Xm = xm) = Pr(x0, · · · , xm)

= Pr(x0)
m−1∏
i=0

Pr(xi+1|xi)

= ν(x0)
m−1∏
i=0

Pi(xi , xi+1).

(32)



Proof — case a: 1 ≤ n ≤ N − 1 (1)
I By (32)

Pr(xn|x(n)) = Pr(xn|x0, · · · , xn−1, xn+1, · · · , xN)

=
Pr(x0, · · · , xn−1, xn, xn+1, · · · , xN)

Pr(x0, · · · , xn−1, xn+1, · · · , xN)

=
Pr(x0, · · · , xn−1, xn, xn+1, · · · , xN)∑
λ∈Λ Pr(x0, · · · , xn−1, λ, xn+1, · · · , xN)

=
Pn−1(xn−1, xn)Pn(xn, xn+1)∑
λ∈Λ Pn−1(xn−1, λ)Pn(λ, xn+1)

;

and

Pr(xn|xr , r ∈ Gr ) = Pr(xn|xn−1, xn+1)

=
Pr(xn−1, xn, xn+1)

Pr(xn−1, xn+1)

=
Pr(xn−1, xn, xn+1)∑
λ∈Λ Pr(xn−1, λ, xn+1)

.



Proof — case a: 1 ≤ n ≤ N − 1 (2)

I Because

Pr(xn−1, xn, xn+1) =
∑

λ0,··· ,λn−2∈Λ

Pr(λ0, · · · , λn−2, xn−1, xn, xn+1)

=
∑

λ0,··· ,λn−2∈Λ

Pr(xn+1|xn)Pr(xn|xn−1)Pr(λ0, · · · , λn−2, xn−1)

= Pr(xn+1|xn)Pr(xn|xn−1)Pr(xn−1),

I it follows that

Pr(xn|xr , r ∈ Gr ) = Pr(xn|x(n)).
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Proof — case b: n = 0
I By (32)

Pr(x0|x(0)) = Pr(x0|x1, · · · , xN) =
Pr(x0, x1, · · · , xN)

Pr(x1, · · · , xN)

=
Pr(x0, x1, · · · , xN)∑
λ∈Λ Pr(λ, x1, · · · , xN)

=
ν(x0)P0(x0, x1)∑
λ∈Λ ν(λ)P0(λ, x1)

;

I

Pr(x0|xr , r ∈ G0) = Pr(x0|x1) =
Pr(x0, x1)

Pr(x1)
=

Pr(x1, x0)∑
λ∈Λ Pr(x1, λ)

=
Pr(x1|x0)Pr(x0)∑
λ∈Λ Pr(x1|λ)Pr(λ)

=
ν(x0)P0(x0, x1)∑
λ∈Λ ν(λ)P0(λ, x1)

.



Proof — case b: n = 0
I By (32)

Pr(x0|x(0)) = Pr(x0|x1, · · · , xN) =
Pr(x0, x1, · · · , xN)

Pr(x1, · · · , xN)

=
Pr(x0, x1, · · · , xN)∑
λ∈Λ Pr(λ, x1, · · · , xN)

=
ν(x0)P0(x0, x1)∑
λ∈Λ ν(λ)P0(λ, x1)

;

I

Pr(x0|xr , r ∈ G0) = Pr(x0|x1) =
Pr(x0, x1)

Pr(x1)
=

Pr(x1, x0)∑
λ∈Λ Pr(x1, λ)

=
Pr(x1|x0)Pr(x0)∑
λ∈Λ Pr(x1|λ)Pr(λ)

=
ν(x0)P0(x0, x1)∑
λ∈Λ ν(λ)P0(λ, x1)

.



Proof — case c: n = N

I By the Markov property of X ,

Pr(xN |x(N)) = Pr(xN |x0, · · · , xN−1) = Pr(xN |xN−1)

and
Pr(xN |xr , r ∈ GN) = Pr(xN |xN−1).
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Potentials

I Gibbsian random fields are representations
for positive measures motivated by equilibrium
studies in statistical physics.

I A potential is a collection of functions defined on
Ω indexed by the subsets of S,

V = {VA : A ⊂ S,VA : Ω→ R}

such that

V∅ = 0; (33)
VA(x) = VA(x ′), if xs = x ′s for all s ∈ A, (34)

i.e., VA(x) depends only on those coordinates xs of x
for which s ∈ A.
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Hamiltonian

I V is normalized if

VA(x) = 0, (35)

whenever xt = 0 for some t ∈ A.
I It is assumed that 0 ∈ Λs, ∀s, although any other

distinguished point would do equally well.
I This condition is only imposed to insure unique

representations; it has no practical importance.

I The energy or Hamiltonian associated with V is

H(x) = HV (x) =
∑
A⊂S

VA(x). (36)
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Gibbsian Random Fields

I A Gibbsian random field w.r.t G = [S,G] is a
measure of the form

Π(x) = Z−1e−H(x), Z =
∑

x

e−H(x) (37)

such that Z < +∞ if |Ω| =∞ and
I V is a Gibbsian potential, i.e.,

VA = 0, ∀A /∈ C; (38)

I the Hamiltonian

H(x) =
∑
C∈C

VC(x); (39)

where C is the set of all cliques of G.



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Gibbsian Random Fields

I A Gibbsian random field w.r.t G = [S,G] is a
measure of the form

Π(x) = Z−1e−H(x), Z =
∑

x

e−H(x) (37)

such that Z < +∞ if |Ω| =∞ and
I V is a Gibbsian potential, i.e.,

VA = 0, ∀A /∈ C; (38)

I the Hamiltonian

H(x) =
∑
C∈C

VC(x); (39)

where C is the set of all cliques of G.



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Gibbsian Random Fields

I A Gibbsian random field w.r.t G = [S,G] is a
measure of the form

Π(x) = Z−1e−H(x), Z =
∑

x

e−H(x) (37)

such that Z < +∞ if |Ω| =∞ and
I V is a Gibbsian potential, i.e.,

VA = 0, ∀A /∈ C; (38)

I the Hamiltonian

H(x) =
∑
C∈C

VC(x); (39)

where C is the set of all cliques of G.



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Exponential Family

I With few exceptions, the partition function Z
is intractable both analytically and numerically.

I Typically, there are parameters θ = (θ1, · · · , θJ) in V ,
so that

Z = Z (θ) =
∑
x∈Ω

e−H(x ;θ).

I The special case

H(x ; θ) =
J∑

j=1

θjHj(x), (40)

is an example of an exponential family.
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Maximum Entropy Principle and Gibbsian
Random Fields
I Assume that the distribution Π of the random

variables {Xs, s ∈ S} satisfies the following
expectation conditions

E [VC(X , θ)] =
∑
x∈Ω

VC(x , θ)Π(x) = µC(θ), ∀C ∈ C,

(41)
where θ is a parameter.

I The maximum entropy principle concludes that

Π(Xs = xs, s ∈ S) = Π(x) =
1
Z

Π0(x)e
∑

C∈C λk (θ)VC(x ,θ)

(42)
where Π0(x) is some a priori distribution.

I Hence, Gibbsian random fields can be induced by
the maximum entropy principle.
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Möbius Inversion Formula

I Let Φ and Ψ be set functions on the power set P(S),
|S| <∞. Then

Φ(A) =
∑
B⊂A

(−1)|A−B|Ψ(B), ∀A ⊂ S, (43)

if and only if

Ψ(A) =
∑
B⊂A

Φ(B), ∀A ⊂ S. (44)

I This is used in proving the following representation
theorem.
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Notation

I For x ∈ Ω, A ⊂ S, set

xA = (xA
s ), xA

s =

{
xs, s ∈ A
0, s /∈ A

(45)
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Representation Theorem

Theorem
For every random field Π > 0, let

VA(x) = −
∑
B⊂A

(−1)|A−B| log Π(xB), (46)

and Vφ = 0. Then

Π(x) = Z−1e−H(x) (47)

where H(x) =
∑

B⊂S VB(x) and Z = Π(0)−1. Moreover,
for any s ∈ A,

VA(x) = −
∑
B⊂A

(−1)|A−B| log Π(xB
s |xB

(s)). (48)

The representation of VA is unique among normalized
potentials.
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Lemma

Lemma
For every finite set A

∑
B⊂A

(−1)|A−B| =
∑
B⊂A

(−1)|B| =

{
1, if A = ∅;
0, if A 6= ∅

(49)

I If A = ∅, the result is obvious.
I If A 6= ∅,

∑
B⊂A

(−1)|B| =

|A|∑
k=0

|{B ⊂ A : |B| = k}|(−1)k (50)

=

|A|∑
k=0

Ck
|A|(−1)k = (1− 1)|A| = 0. (51)
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Proof — step 1

I the representation of Π in (47) is valid.

I Define

Ψ(A) = − log
[

Π(xA)

Π(0)

]
Φ(A) = VA(x)

where x is fixed and 0 = (0, · · · ,0).
I Assuming (46), by the lemma and using the Möbius

inversion formula for Ψ,

− log
[

Π(x)

Π(0)

]
= − log

[
Π(xS)

Π(0)

]
= Ψ(S) =

∑
B⊂S

VB(x).

Thus, Π(x) = Π(0)e−H(x).
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Proof — step 1

I the representation of Π in (47) is valid.

I Define

Ψ(A) = − log
[
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Φ(A) = VA(x)

where x is fixed and 0 = (0, · · · ,0).
I Assuming (46), by the lemma and using the Möbius

inversion formula for Ψ,

− log
[

Π(x)

Π(0)

]
= − log

[
Π(xS)

Π(0)

]
= Ψ(S) =

∑
B⊂S

VB(x).

Thus, Π(x) = Π(0)e−H(x).



Proof — step 2
I V is normalized

I For any s ∈ A,

− VA(x)

=
∑

B⊂A,s/∈B

(−1)|A−B| log Π(xB) +
∑

B⊂A,s∈B

(−1)|A−B| log Π(xB)

=
∑

B⊂A−{s}

(−1)|A−B| log Π(xB)

+
∑

B′⊂A−{s}

(−1)|A−B′−{s}| log Π(xB′∪{s})

=
∑

B⊂A−{s}

(−1)|A−B|
(

log Π(xB)− log Π(xB∪{s})
)
.

I If xs = 0, then xB = xB∪{s}.
I Hence VA(x) = 0.
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Proof — step 3 (1)

I Proof of (48)

I If s /∈ B, and B ⊂ A− {s},

xB
(s) = xB∪{s}

(s) .

I Because

Π(xB) = Π(xB
s |xB

(s))Π(xB
(s))

Π(xB∪{s}) = Π(xB∪{s}
s |xB∪{s}

(s) )Π(xB∪{s}
(s) )

it follows that

Π(xB)

Π(xB∪{s})
=

Π(xB
s |xB

(s))

Π(xB∪{s}
s |xB∪{s}

(s) )
. (52)



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Proof — step 3 (1)

I Proof of (48)

I If s /∈ B, and B ⊂ A− {s},

xB
(s) = xB∪{s}

(s) .

I Because

Π(xB) = Π(xB
s |xB

(s))Π(xB
(s))

Π(xB∪{s}) = Π(xB∪{s}
s |xB∪{s}

(s) )Π(xB∪{s}
(s) )

it follows that

Π(xB)

Π(xB∪{s})
=

Π(xB
s |xB

(s))

Π(xB∪{s}
s |xB∪{s}

(s) )
. (52)



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Proof — step 3 (1)

I Proof of (48)

I If s /∈ B, and B ⊂ A− {s},

xB
(s) = xB∪{s}

(s) .

I Because

Π(xB) = Π(xB
s |xB

(s))Π(xB
(s))

Π(xB∪{s}) = Π(xB∪{s}
s |xB∪{s}

(s) )Π(xB∪{s}
(s) )

it follows that

Π(xB)

Π(xB∪{s})
=

Π(xB
s |xB

(s))

Π(xB∪{s}
s |xB∪{s}

(s) )
. (52)



Information Theory
and Image/Video

Coding

Ming Jiang

Markov Random
Fields
Random Fields

Neighborhood Systems and
Cliques

Markov Random Fields

Gibbsian Random Fields

Equivalence Theorem

References

Proof — step 3 (2)

I Proof of (48)

I As in step 2

−VA(x) =
∑

B⊂A−{s}

(−1)|A−B|
(

log Π(xB)− log Π(xB∪{s})
)

=
∑

B⊂A−{s}

(−1)|A−B|
(

log Π(xB
s |xB

(s))− log Π(xB∪{s}
s |xB∪{s}

(s) )
)
.

The result follows by reversing the procedure in step
2.
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Proof — step 4 (1)
I Uniqueness.
I Assume UA is another normalized potential such that

Π(x) = Z−1e−HU (x),

where HU(x) =
∑

B⊂S UB(x).
I By the normalization condition,

Π(0) = Z−1e−HU (0) = Z−1.

I Hence

−HU(x) = log
[

Π(x)

Π(0)

]
. (53)

I For any set A ⊂ S, A 6= ∅, let

Φ(B) = −UB(xA), Ψ(A) = log
[

Π(xA)

Π(0)

]
.

I Then

Ψ(A) = −HU(xA) = −
∑
B⊂S

UB(xA) =
∑
B⊂A

Φ(B).
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Proof — step 4 (2)

I Uniqueness.

I By the Möbius inversion formula and the lemma

Φ(A) =
∑
B⊂A

(−1)|A−B|Ψ(B)

=
∑
B⊂A

(−1)|A−B| log
[

Π(xA)

Π(0)

]
=
∑
B⊂A

(−1)|A−B| log Π(xA),

I Because

Φ(A) = −UA(xA) = −UA(x), ∀x ∈ Ω

by (34), the proof is completed.
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Equivalence Theorem

Theorem
Let G be a neighborhood system on S. Then Π is a
Gibbsian random field w.r.t G if and only if Π is a
Markov random field w.r.t G, in which case {VA} in
(46) is a Gibbsian potential.

I The original version is in
[Hammersley and Clifford, 1968] and others under
some restrictions; see [Kinderman and Snell, 1980]
and the references therein. The statement and proof
here are essentially due to [Grimmett, 1973].
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Proof: ′′ =⇒′′ (1)

I Let Π have a Gibbsian representation w.r.t. G for
some V :

Π(x) = Z−1e−H(x), H(x) =
∑
C∈C

VC(x). (54)

I For x ∈ Ω, s ∈ S, λ ∈ Λ, let (λ, x(s)) denote the
configuration obtained by replacing xs by λ:

(λ, x(s))r =

{
xr , r 6= s,
λ, r = s.
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Proof: ′′ =⇒′′ (2)
I Because VA(λ, x(s)) = VA(x) if s /∈ A,

Πs(xs|x(s)) =
e−H(x)∑

λ∈Λ e−H(λ,x(s))

=
e−

∑
A∈C,s/∈A VA(x)−

∑
A∈C,s∈A VA(x)∑

λ∈Λ e−
∑

A∈C,s/∈A VA(λ,x(s))−
∑

A∈C,s∈A VA(λ,x(s))

=
e−

∑
A∈C,s∈A VA(x)∑

λ∈Λ e−
∑

A∈C,s∈A VA(λ,x(s))
.

I A ∈ C and s ∈ A imply that A ⊂ Gs ∪ {s}.
I Hence Πs(xs|x(s)) depends only on xt for

t ∈ Gs ∪ {s}, and it follows that,

Πs(xs|x(s)) =
e−

∑
A∈C,s∈A⊂Gs∪{s} VA(x)∑

λ∈Λs
e−

∑
A∈C,s∈A⊂Gs∪{s} VA(λ,x(s))

.
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Proof: ′′ =⇒′′ (3)
I For the derivation of Π(xs|xr , r ∈ Gs), introduce the

following notations.
I Let

J = {j : j /∈ Gs ∪ {s}} .

I For x ∈ Ω, λ ∈ Λs, λj ∈ Λj , j ∈ J, let (λJ , x(J)) denote
the configuration

(λJ , x(J))r =

{
xr , r ∈ Gs ∪ {s},
λj , r /∈ Gs ∪ {s},

I let (λJ , x(J+s)) denote the configuration such that

(λJ , x(J+s))r =


xr , r ∈ Gs,

λ, r = s,
λj , r /∈ Gs.
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Proof: ′′ =⇒′′ (3)
I For the derivation of Π(xs|xr , r ∈ Gs), introduce the

following notations.
I Let

J = {j : j /∈ Gs ∪ {s}} .

I For x ∈ Ω, λ ∈ Λs, λj ∈ Λj , j ∈ J, let (λJ , x(J)) denote
the configuration

(λJ , x(J))r =

{
xr , r ∈ Gs ∪ {s},
λj , r /∈ Gs ∪ {s},

I let (λJ , x(J+s)) denote the configuration such that

(λJ , x(J+s))r =


xr , r ∈ Gs,

λ, r = s,
λj , r /∈ Gs.



Proof: ′′ =⇒′′ (4)
I Then

Π(xs|xr , r ∈ Gs)

=
Π(xs, xr , r ∈ Gs)

Π(xr , r ∈ Gs)

=

∑
λj∈Λj
j∈J

Π(λj , j ∈ J, xs, xr , r ∈ Gs)∑
λj∈Λj
j∈J

∑
λ∈Λs

Π(λj , j ∈ J, λ, xr , r ∈ Gs)

=

∑
λj∈Λj
j∈J

e−H(λJ ,x(J))

∑
λj∈Λj
j∈J

∑
λ∈Λs

e−H(λJ ,x(J+s))

=

∑
λj∈Λj
j∈J

e−
∑

A∈C,s/∈A VA(λJ ,x(J))−
∑

A∈C,s∈A VA(λJ ,x(J))

∑
λ∈Λs

∑
λj∈Λj
j∈J

e−
∑

A∈C,s/∈A VA(λJ ,x(J+s))−
∑

A∈C,s∈A VA(λJ ,x(J+s))



Proof: ′′ =⇒′′ (5)

I For every A ∈ C, if s /∈ A,

VA(λJ , x(J)) = VA(λJ , x(J+s)).

I Therefore

Π(xs|xr , r ∈ Gs) =

∑
λj∈Λj
j∈J

e−
∑

A∈C,s∈A⊂Gs∪{s} VA(λJ ,x(J))

∑
λ∈Λs

∑
λj∈Λj
j∈J

e−
∑

A∈C,s∈A⊂Gs∪{s} VA(λJ ,x(J+s))
.

I For s ∈ A ⊂ Gs ∪ {s},

VA(λJ , x(J)) = VA(x), (55)

VA(λJ , x(J+s)) = VA(λ, x(s)). (56)
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j∈J

e−
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A∈C,s∈A⊂Gs∪{s} VA(λJ ,x(J))

∑
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∑
λj∈Λj
j∈J
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.

I For s ∈ A ⊂ Gs ∪ {s},

VA(λJ , x(J)) = VA(x), (55)

VA(λJ , x(J+s)) = VA(λ, x(s)). (56)



Proof: ′′ =⇒′′ (6)

I Hence

Π(xs|xr , r ∈ Gs) =

∑
λj∈Λj
j∈J

e−
∑

A∈C,s∈A⊂Gs∪{s} VA(x)

∑
λ∈Λs

∑
λj∈Λj
j∈J

e−
∑

A∈C,s∈A⊂Gs∪{s} VA(λ,x(s))

(57)

= Πs(xs|x(s)). (58)
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Proof: ′′ ⇐=′′ (1)

I Now suppose Π is a MRF w.r.t. G and let V = (VA)
be the canonical potential associated with Π as in
(46) or (48).

I The proof will be completed by showing that
VA(x) = 0 if A /∈ C.

I Choose A /∈ C.
I There ∃s, t ∈ A such that t /∈ Gs ∪ {s}.
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Proof: ′′ ⇐=′′ (1)

I Now suppose Π is a MRF w.r.t. G and let V = (VA)
be the canonical potential associated with Π as in
(46) or (48).

I The proof will be completed by showing that
VA(x) = 0 if A /∈ C.

I Choose A /∈ C.
I There ∃s, t ∈ A such that t /∈ Gs ∪ {s}.



Proof: ′′ ⇐=′′ (2)
−VA(x) =

∑
B⊂A

(−1)|A−B| log Π(xB
s |xB

(s))

=
∑

B⊂A,s/∈B,t /∈B

(−1)|A−B| log Π(xB
s |xB

(s)) +
∑

B⊂A,s∈B,t /∈B

(−1)|A−B| log Π(xB
s |xB

(s))

+
∑

B⊂A,s/∈B,t∈B

(−1)|A−B| log Π(xB
s |xB

(s)) +
∑

B⊂A,s∈B,t∈B

(−1)|A−B| log Π(xB
s |xB

(s))

=
∑

B⊂A−{s}−{t}

(−1)|A−B| log Π(xB
s |xB

(s)) +
∑

s∈B1⊂A−{t}

(−1)|A−B1| log Π(xB1
s |x

B1
(s))

+
∑

t∈B2⊂A−{s}

(−1)|A−B2| log Π(xB2
s |x

B2
(s)) +

∑
{s,t}⊂B3⊂A

(−1)|A−B3| log Π(xB3
s |x

B3
(s))

=
∑

B⊂A−{s}−{t}

(−1)|A−B| log Π(xB
s |xB

(s))

+
∑

B⊂A−{s}−{t}

(−1)|A−B−{s}| log Π(xB∪{s}
s |xB∪{s}

(s) )

+
∑

B⊂A−{s}−{t}

(−1)|A−B−{t}| log Π(xB∪{t}
s |xB∪{t}

(s) )

+
∑

B⊂A−{s}−{t}

(−1)|A−B−{s}−{t}| log Π(xB∪{s,t}
s |xB∪{s,t}

(s) ).



Proof: ′′ ⇐=′′ (3)

VA(x) =
∑

B⊂A−{s}−{t}

(−1)|A−B| log

 Π(xB
s |xB

(s))Π(xB∪{s,t}
s |xB∪{s,t}

(s) )

Π(xB∪{s}
s |xB∪{s}

(s) )Π(xB∪{t}
s |xB∪{t}

(s) )

 .
I By the MRF property,

Π(xB
s |xB

(s)) = Π(xB
s |xB

r , r ∈ Gs),

Π(xB∪{t}
s |xB∪{t}

(s) ) = Π(xB∪{t}
s |xB∪{t}

r , r ∈ Gs).

I For every subset B of S, if t /∈ B and r 6= t , we have

xB
r = xB∪{t}

r .

I Because t /∈ Gs ∪ {s},

Π(xB
s |xB

(s)) = Π(xB∪{t}
s |xB∪{t}

(s) ).
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Proof: ′′ ⇐=′′ (4)

I Similarly, we have

Π(xB∪{s}
s |xB∪{s}

(s) ) = Π(xB∪{s,t}
s |xB∪{s,t}

(s) )

and consequently that VA(x) = 0.

Remark
If V is a Gibbsian potential, we have seen in the above
theorem that

Π(xs|x(s)) = Z−1
s e−

∑
A∈C,s∈A VA(x) (59)

Zs =
∑
λ∈Λs

e−
∑

A∈C,s∈A VA(λ,x(s)) (60)
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