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Bayes’ Theorem

I For events A and B, provided Pr(B) 6= 0,

Pr(A|B) =
Pr(A)Pr(B|A)

Pr(B)
. (1)

I For two continuous random variables, Bayes’
theorem is stated with the density functions.

Bayes’ Theorem at wikipedia

http://en.wikipedia.org/wiki/Bayes'_theorem
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Bayes’ Theorem: derivation

I Bayes’ theorem may be derived from the definition of
conditional probability

Pr(A|B) =
Pr(A ∩ B)

Pr(B)
Pr(B) 6= 0; (2)

Pr(B|A) =
Pr(A ∩ B)

Pr(A)
Pr(A) 6= 0. (3)

I

Pr(A ∩ B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A). (4)

I

Pr(A|B) =
Pr(A)Pr(B|A)

Pr(B)
. (5)

Bayes’ Theorem at wikipedia

http://en.wikipedia.org/wiki/Bayes'_theorem
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Bayes’ Formula: extended form

I Let A1, · · · ,An be a partition of the event space, i.e.,
independent events with positive probabilities
Pr(Ai) > 0 and that ∪n

i=1Ai is the whole event space.
I By the law of total probability,

Pr(B) =
n∑

i=1

Pr(B|Ai)Pr(Ai). (6)

I For 1 ≤ j ≤ n,

Pr(Aj |B) =
Pr(Aj)Pr(B|Aj)∑n
i=1 Pr(Ai)Pr(B|Ai)

. (7)

Bayes’ Theorem at wikipedia

http://en.wikipedia.org/wiki/Bayes'_theorem
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Bayesian Interpretation

I Events are equivalent to propositions.
I Probability measures a degree of belief.
I Bayes’ theorem then links the degree of belief in a

proposition before and after accounting for evidence.
I For proposition A and evidence B,

I Pr(A), the prior, is the initial degree of belief in A
before B is observed.

I Pr(A|B), the posterior, is the degree of belief in A
after B is observed.

I
Pr(B|A)

Pr(B)
is a factor representing the impact of B on

the degree of belief in A.
I The numerator Pr(B|A) is called the likelihood.

Bayes’ Theorem at wikipedia

Bayesian Inference at wikipedia

http://en.wikipedia.org/wiki/Bayes'_theorem
http://en.wikipedia.org/wiki/Bayesian_inference
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Bayesian Inference

I In statistics, Bayesian inference is a method of
statistical inference in which Bayes’ theorem is used
to calculate how the degree of belief in a proposition
changes due to evidence.

I Bayes’ theorem provides the rational update given
the evidence.

I The initial degree of belief is called the prior and
the updated degree of belief the posterior.

I Bayesian inference has applications in science,
engineering, medicine and law.

I Research has suggested that the brain may employ
Bayesian inference.

Bayesian Inference at wikipedia

http://en.wikipedia.org/wiki/Bayesian_inference
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Bayesian Inference in Data Processing

I A unknown quantity θ which is to be inferred is called
the state.

I Θ denotes the set of all possible states and is called
state space.

I Typically, experiments are performed to obtain
information about θ.

I Experiments are designed so that the observations
are distributed according to some probability
distribution, which has θ as an unknown parameter.

I In such situations, θ is called the parameter and Θ
the parameter space.

I References
i [Mumford, 1994].
ii [Berger, 1985].
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Bayesian Analysis

I When a statistical investigation is performed to
obtain information about θ, the outcome (a random
variable) will be denoted by X .

I Often X will be a vector, X = (X1, · · · ,Xn).
I A particular realization will be denoted by x .

I The set of possible outcomes is the sample space,
and will be denoted by X.

I X is either a continuous or discrete random variable,
with the conditional density Pr(x |θ).

I Pr(x |θ) is called the data model.

I References
i [Mumford, 1994].
ii [Berger, 1985].
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Bayesian Analysis

I Prior information about θ is seldom very precise.
I The symbol Pr(θ) will be used to represent a prior

density of θ.
I The posterior distribution of θ given x is Pr(θ|x),

the conditional distribution of θ given the sample
observation x .

I Bayesian analysis is conducted by combing the prior
information and the sample information into the
posterior distribution, from which all decision and
inference are made.
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i [Mumford, 1994].
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Joint and Marginal Densities

I θ and X have joint density

h(x , θ) = Pr(θ, x) = Pr(θ)Pr(x |θ), (8)

and that X has the (unconditional) marginal
density

m(x) =

∫
Θ

Pr(θ)Pr(x |θ) dθ. (9)

I Providing m(x) 6= 0, by Bayes’ Theorem,

Pr(θ|x) =
h(x , θ)

m(x)
=

Pr(θ)Pr(x |θ)

m(x)
. (10)

I References
i [Berger, 1985].
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Bayesian Decision Rules: MAP

I To estimate θ, a number of classical techniques can
be applied to the posterior distribution.

I Definition
The maximum a posterior (MAP) estimate of θ is the
largest mode of Pr(θ|x) (i.e., the value θ which maximizes
Pr(θ|x))

θMAP = arg max
θ

Pr(θ|x) = arg max
θ

Pr(θ)Pr(x |θ). (11)

I References
i [Berger, 1985].
ii [Wrinkler, 1995].
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Maximum Likelihood Principle

I The maximum likelihood (ML) estimate is the
estimate of θ, which maximizes the likelihood
function Pr(x |θ):

θML = arg max
θ

Pr(x |θ). (12)

I The maximum likelihood principle is implicitly
assumed in the MAP, when there is no prior
information about θ other than contained in Pr(x |θ)
(for the given x).

I References
i [Berger, 1985].
ii [Mumford, 1994].
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Bayesian Decision Rules: MMSE

I Another reasonable estimate is the mean value of
the posterior distribution.

Definition
The minimum mean squares estimate (MMSE) of θ
is the mean value of Pr(θ|x):

θMMSE =

∫
θ∈Θ

θPr(θ|x) dθ =

∫
θ∈Θ

θPr(θ)Pr(x |θ) dθ. (13)

I References
i [Berger, 1985].
ii [Wrinkler, 1995].
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Bayesian Risk

I The performance of estimators are studied in terms
of loss functions.

I The loss between a true θ and its estimate θ̂(x) is
measured by a loss function such that
L : Θ×Θ→ R+ and

I L(θ, θ̂) ≥ 0;
I L(θ, θ) = 0.

I The Bayesian risk of the estimate is the mean
loss

R̂ =

∫
Θ×X

L(θ, θ̂(x))Pr(θ, x). (14)

I References
i [Wrinkler, 1995].
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Bayesian Estimator

I An estimator minimizing this risk is called a
Bayesian estimator.

I The quality of an estimator depends on both the prior
model and the loss function.

I Prior information about θ is seldom very precise.
I The choice of L is problem specific.

I The MAP, ML and MMSE estimators are Bayes
estimators for certain loss functions.

I One of the reasons why the above estimators were
introduced is that they can be computed (or at least
approximated).

I References
i [Wrinkler, 1995].
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0-1 Loss and MAP
I 0-1 loss function

L(θ, θ̂) =

{
0, if θ = θ̂;
1, if θ 6= θ̂.

(15)

I The Bayesian risk

R̂ =

∫
Θ×X

L(θ, θ̂(x))Pr(θ, x) (16)

=

∫
X

∫
Θ

L(θ, θ̂(x))Pr(θ, x) (17)

=

∫
X

{
m(x)− Pr(θ̂(x), x)

}
(18)

= 1−
∫
X

Pr(θ̂(x), x) (19)

is minimized when Pr(θ̂(x), x) is maximized, by (10).
I References

i [Wrinkler, 1995].
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∑
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|θs − θ̂s|2. (20)
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∫
X

∫
Θ
‖θ − θ̂(x)‖2Pr(θ, x) (21)
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∫
X

∫
Θ

{
‖θ‖2 − 2

〈
θ, θ̂(x)

〉
+ ‖θ̂(x)‖2

}
Pr(θ, x)

(22)

=

∫
X

∫
Θ
‖θ‖2Pr(θ, x)−

∫
X

{
2
〈
θMMSE (x), θ̂(x)

〉
− ‖θ̂(x)‖2

}
m(x)

(23)

=

∫
X

∫
Θ
‖θ‖2Pr(θ, x)−

∫
X
‖θMMSE (x)‖2m(x) +

∫
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‖θMMSE (x)− θ̂(x)‖2

}
m(x)

(24)

is minimized when θ̂(x) = θMMSE (x).
I References

i [Wrinkler, 1995].
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Other Estimators and Loss Functions

I Marginal posterior mode estimate (MPME)
minimizes the Bayesian risk for the Hamming
distance

L(θ, θ̂) =
1
|S|
|{s ∈ S : θs 6= θ̂s}|. (25)

I Posterior median minimizes the Bayesian risk
for the absolute-value loss function:

L(θ, θ̂) = ‖θ − θ̂‖1 =
∑

s

|θs − θ̂s|. (26)

I References
i [Wrinkler, 1995].
ii Point estimation at wikipedia.

http://en.wikipedia.org/wiki/Point_estimation
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Bayesian Approach

I The Bayesian approach entails constructing the prior
distribution Pr(θ) and finding algorithm to compute
the Bayesian reconstruction.

I This consists of identifying the prior and specifying
the data model.

I The following are several approaches to assign the
prior distribution for θ.

I References
i [Berger, 1985].
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Non-informative Priors
I There have been attempts to use the Bayesian

approach even when no (or minimal) prior
information is available.

I What is needed is a non-informative prior, by
which is meant a prior which contains no information
about θ.

I The simplest situation to consider is when Θ is a
finite set, consisting of n elements.

I The obvious prior is to then give each of Θ
probability 1/n.

I For infinite set, the uniform non-informative prior
Pr(θ) = c is proposed, where c is a constant.

I Comments: lack of invariance under transformation
and improper probability distribution.

I References
i [Berger, 1985].
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Jeffreys’ Rule
Given RULE for assigning prior distribution for θ. Assume
that g is a function of θ. One can also assign a prior
distribution for the random variable ξ = g(θ) by this
RULE. Then it should hold that

Pr(θ) = Pr(ξ)|det(∇g(θ))| = Pr(g(θ))|det(∇g(θ))| (27)

I Since ∫
g(A)

Pr(ξ)dξ =

∫
A

Pr(θ)dθ,

Jeffreys’ Rule requires that the prior distribution is
invariant under transformation.

I References
i [Berger, 1985].
ii [Zhang and Cheng, 1994].
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Fisher Information matrix

I Jeffrey showed that if

I(θ) = E
[(

∂ ln Pr(X |θ)

∂θi

∂ ln Pr(X |θ)

∂θj

)]
= E

[(
∂ ln Pr(X |θ)

∂θ

)
·
(
∂ ln Pr(X |θ)

∂θ

)tr
]
,

(28)

then
Pr(θ) = |det I(θ)|1/2 (29)

is a prior satisfying (27).

I References
i [Berger, 1985].
ii [Zhang and Cheng, 1994].
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Proof
I We assume that g(·) is a smooth homeomorphism.
I Since(

∂ ln Pr(X |θ)

∂θ

)
=

(
∂g(θ)

∂θ

)
·
(
∂ ln Pr(X |θ)

∂ξ

)
,

I we have

I(θ) = E

[(
∂ ln Pr(X |θ)

∂θ

)
·
(
∂ ln Pr(X |θ)

∂θ

)tr
]

= E

[(
∂g(θ)

∂θ

)
·
(
∂ ln Pr(X |θ)

∂ξ

)
·
(
∂ ln Pr(X |θ)

∂ξ

)tr

·
(
∂g(θ)

∂θ

)tr
]

=

(
∂g(θ)

∂θ

)
· E

[(
∂ ln Pr(X |θ)

∂ξ

)
·
(
∂ ln Pr(X |θ)

∂ξ

)tr
]
·
(
∂g(θ)

∂θ

)tr

.

I Therefore

det I(θ) = det I(ξ) ·
∣∣∣∣det

(
∂g(θ)

∂θ

)∣∣∣∣2 .
So (27) holds.

I References
i [Zhang and Cheng, 1994].
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Maximum Entropy Principle

I When partial prior information is available, it is
desired to use a prior that is as non-informative as
possible.

I E.g., suppose the prior mean is specified. Among
prior distributions with this mean the most
non-informative distribution is sought.

I A useful method of dealing with this problem is
through the concept of entropy.

I References
i [Berger, 1985].
ii [Zhang and Cheng, 1994].
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Entropy
I Entropy is most easily understood for discrete

distributions.

I Definition
Assume Θ is discrete and let Pr(·) be a probability
density on Θ. The entropy of Pr(·), denoted by E(Pr(·)),
is defined as

E(Pr(·)) = −
∑

Θ

Pr(θi) log Pr(θi) (30)

If Θ is continuous,

E(Pr(·)) = −
∫

Θ
Pr(θ) log

Pr(θ)

π0(θ)
dθ (31)

where π0 is a natural “invariant” non-informative prior for
the problem.

i [Berger, 1985].
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Entropy Maximization

I Entropy has a direct relationship to information
theory.

I It is a measure of the amount of uncertainty inherent
in the probability distribution.

I The principle is to seek the prior distribution which
maximizes entropy among all those distributions
which satisfy the given set of restrictions.

I Entropy maximization was first proposed as a
general inference procedure by Jaynes
[Jaynes, 1957a, Jaynes, 1957b].

I It has historical roots in physics [Elsasser, 1937].
I It has been applied successfully in a remarkable

variety of fields.

i [Berger, 1985].
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Controversies

I The foundations of the principle is the entropy’s
unique properties as an uncertainty measure.

I To some, entropy’s unique properties make it obvious
that entropy maximization is the correct way to
account for constraint information.

I To others, such an informal and intuitive justification
yields plausibility but not proof — why maximize
entropy; why not some other function?

I A more serious problem is that the maximizer may
not exist.

i [Berger, 1985].
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Edwin Thompson Jaynes

I The maximum entropy distribution “is uniquely
determined as the one which is maximally
noncommittal with regard to missing
information”([Jaynes, 1957a, p. 623])

I It “agrees with what is known, but expresses
‘maximum uncertainty’ with regard to all other
matters, and thus leaves a maximum possible
freedom for our final decision to be influenced by the
subsequent sample data”([Jaynes, 1968, p. 231]).

I Jaynes demonstrated that the maximum entropy
distribution is equal to the frequency distribution that
can be realized in the great number of ways.

I In [Shore and Johonson, 1980]: maximizing any
function but entropy will lead to inconsistencies
unless that function and entropy have identical
maxima.
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Kullback’s Theorem
I Assume that the distribution density Pr(θ) satisfies

E [gk (θ)] = µk , i = 1, · · · ,m (32)

where gk (·) and µk are known functions and
constants.

I Theorem
(Kullback’s Theorem) If the maximum entropy distribution
density π̂ of θ subject to the constraints (32) exists, then

π̂(θ) =
π0(θ)e

∑m
k=1 λk gk (θ)∫

Θ π0(θ)e
∑m

k=1 λk gk (θ)dθ
. (33)

where λk are constants to be determined from the
constraints in (32).

i [Berger, 1985].
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Proof
I By Lagrange’s multiplier method, let

G(π) = −
∫

Θ
Pr(θ) log

Pr(θ)

π0(θ)
dθ+

m∑
k=1

λk [E [gk (θ)]− µk ]+µ[

∫
Θ

Pr(θ)dθ−1].

I if the maximum entropy distribution density π̂ of θ
subject to the constraints (32) exists, we have
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]
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1∫

Θ π0(θ)e
∑m

k=1 λk gk (θ)
.

Therefore, π̂ is given by (33).
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