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Basic Concepts

The Entropy

Definition
1 The Shannon information content of an outcome x is defined to be

h(x) = log2

1

P(x)

2 The entropy of an ensemble X is defined to be the average Shannon
information content of an outcome:

H(X ) =
∑
x∈X

P(X ) log2

1

P(X )
(1)

3 Conditional Entropy: the entropy of a r.v.,given another r.v.

H(X |Y ) = −
∑
i

∑
j

p(xi , yj) log2 p(xi |yj) (2)
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Basic Concepts

The Entropy

The Joint Entropy

The joint entropy of X; Y is:

H(X ,Y ) =
∑

x∈X ,y∈Y
p(x , y) log2

1

p(x , y)
(3)

Remarks

1 The entropy H answers the question that what is the ultimate data
compression.

2 The entropy is a measure of the average uncertainty in the random
variable.It is the number of bits on the average required to describe
the random variable.

Reference for [[2]Thomas and [4]David ]

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 5 / 80



Basic Concepts

The Entropy

The Joint Entropy

The joint entropy of X; Y is:

H(X ,Y ) =
∑

x∈X ,y∈Y
p(x , y) log2

1

p(x , y)
(3)

Remarks

1 The entropy H answers the question that what is the ultimate data
compression.

2 The entropy is a measure of the average uncertainty in the random
variable.It is the number of bits on the average required to describe
the random variable.

Reference for [[2]Thomas and [4]David ]

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 5 / 80



Basic Concepts

The Entropy

The Joint Entropy

The joint entropy of X; Y is:

H(X ,Y ) =
∑

x∈X ,y∈Y
p(x , y) log2

1

p(x , y)
(3)

Remarks

1 The entropy H answers the question that what is the ultimate data
compression.

2 The entropy is a measure of the average uncertainty in the random
variable.It is the number of bits on the average required to describe
the random variable.

Reference for [[2]Thomas and [4]David ]

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 5 / 80



Basic Concepts

The Entropy

The Joint Entropy

The joint entropy of X; Y is:

H(X ,Y ) =
∑

x∈X ,y∈Y
p(x , y) log2

1

p(x , y)
(3)

Remarks

1 The entropy H answers the question that what is the ultimate data
compression.

2 The entropy is a measure of the average uncertainty in the random
variable.It is the number of bits on the average required to describe
the random variable.

Reference for [[2]Thomas and [4]David ]

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 5 / 80



Basic Concepts

The Entropy

The Joint Entropy

The joint entropy of X; Y is:

H(X ,Y ) =
∑

x∈X ,y∈Y
p(x , y) log2

1

p(x , y)
(3)

Remarks

1 The entropy H answers the question that what is the ultimate data
compression.

2 The entropy is a measure of the average uncertainty in the random
variable.It is the number of bits on the average required to describe
the random variable.

Reference for [[2]Thomas and [4]David ]

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 5 / 80



Basic Concepts

The Mutual Information

Definition

The mutual information is the reduction in uncertainty when given another
r.v., for two r.v. X and Y this reduction is

I (X ; Y ) = H(X )− H(X |Y ) =
∑
x ,y

p(x , y) log
p(x , y)

p(x)p(y)
(4)

The capacity of channel is

C = max
p(x)

I(X ; Y )
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Basic Concepts

The relationships

Figure: The relationships between Entropy and Mutual Information

Graphic from [[3]Simon,2011].
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Basic Concepts

The relative entropy

Definition

The relative entropy or Kullback Leibler distance between two probability
mass functions p(x) and q(x) is defined as

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)

q(x)
= Ep log

p(X )

q(X )
. (5)

1 The relative entropy and mutual information

I (X ; Y ) = D(p(x , y) ‖ p(x)p(y)) (6)

2 Pythagorean decomposition: let X = AU, then

D(px ‖ pu) = D(px ‖ p̃x) + D(p̃x ‖ pu). (7)
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Basic Concepts

Conditional definitions

Conditional mutual information

I (X ; Y |Z ) = H(X |Z )− H(X |Y ,Z ) (8)

= Ep(x ,y ,z) log
p(X , y |Z )

p(X |Z )p(Y |Z )
. (9)

Conditional relative entropy

D(p(y |x) ‖ q(y |x)) =
∑
x

p(x)
∑
y

p(y |x) log
p(y |x)

q(y |x)
(10)

= Ep(x ,y) log
p(Y |X )

q(Y |X )
. (11)
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Basic Concepts

Differential entropy

Definition 1

The differential entropy h(X1,X2, ...,Xn), some times written h(f ), is
defined by

h(X1,X2, ...,Xn) = −
∫

f (x) log f (x)dx (12)

Definition 2

The relative entropy between probability densities f and g is

D(f ‖ g) = −
∫

f (x) log(f (x)/g(x))dx (13)
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Basic Concepts

Chain Rules

1 Chain rule for entropy

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1). (14)

2 Chain rule for information

I (X1,X2, . . . ,Xn; Y ) =
n∑

i=1

I (Xi ; Y |Xi−1, . . . ,X1). (15)

3 Chain rule for entropy

D(p(x , y) ‖ q(x , y)) = D(p(x) ‖ q(x)) + D(p(y |x) ‖ q(y |x)). (16)
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Basic inequalities

Outline

1 Basic Concepts

2 Basic inequalities

3 Bounds on Entropy
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Basic inequalities

Jensen’s inequality

Definition

A function f is said to be convex if

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2) (17)

for all 0 ≤ λ ≤ 1 and all x1 and x2 in the convex domain of f .

Theorem

If f is convex,then
f (EX ) ≤ Ef (x) (18)

Proof

We consider discrete distributions only. The proof is given by induction.
For a two mass point distribution, by definition. for k mass points, let
p′i = pi/(1− pk) for i ≤ k − 1, the result can be derived easily.
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Basic inequalities

Log sum inequality

Theorem

For positive numbers, a1, a2, . . . , an and b1, b2, . . . , bn,

n∑
i=1

ai log
ai
bi
≥ (

n∑
i=1

ai ) log(

∑n
i=1 ai∑n
i=1 bi

) (19)

with equality iff ai
bi

= constant.

Proof

We substitute discrete distribution parameters in Jensen’s Inequality by
αi = bi/

∑n
j=1 bj and the variables by ti = ai/bi , we obtain the inequality.
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Basic inequalities

Inequalities in Entropy Theory

By Jensen’s inequality and Log Sum inequality, we can easily prove
following basic conclusions:

0 ≤ H(X ) ≤ log | X | (20)

D(p ‖ q) ≥ 0 (21)

Further more,
I (X ; Y ) ≥ 0 (22)

Note:the conditions when the equalities holds.
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Basic inequalities

Inequalities in Entropy Theory(cont.)

Conditioning reduces entropy:

H(X |Y ) ≤ H(X )

The chain rule and independence bound on entropy:

H(X1,X2, . . . ,Xn) =
n∑

i=1

H(Xi |Xi−1, . . . ,X1) ≤
n∑

i=1

H(Xi ) (23)

Note: the conclusions continue to hold for differential entropy.

If X and Y are independent, then

h(X + Y ) ≥ h(Y )
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Basic inequalities

Convexity & concavity entropy theory

Theorem

D(p ‖ q) is convex in the pair (p, q),i.e., if (p1, q1) and (p2, q2)are two
pairs of probability mass functions, then

D(λp1 + (1− λ)p2 ‖ λq1 + (1− λ)q2) ≤ λD(p1 ‖ q1) + (1− λ)D(p2 ‖ q2)
(24)

for all 0 ≤ λ ≤ 1.

Apply the log sum inequality to the term on the left hand side of (24).
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Basic inequalities

Convexity & concavity in entropy theory(cont.)

Theorem

H(p) is a concave function of p.

Let u be the uniform distribution on |X | outcomes, then the
concavity of H then follows directly from then convexity of D, since
the following equality holds.

H(p) = log |X | − D(p ‖ u) (25)

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 18 / 80



Basic inequalities
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Basic inequalities

Convexity & concavity in entropy theory(cont.)

Theorem

Let(X ,Y ) ∼ p(x , y) = p(x)p(y |x). The mutual information I (X ; Y ) is a
concave function of p(x) for fixed p(y |x) and a convex function of p(y |x)
for fixed p(X ).

The detailed proof can be found in [[2]Thomas, section2.7]. An
alternative proof is given in [1],P51-52.
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Basic inequalities

Convexity & concavity in entropy theory(cont.)

Theorem

Let(X ,Y ) ∼ p(x , y) = p(x)p(y |x). The mutual information I (X ; Y ) is a
concave function of p(x) for fixed p(y |x) and a convex function of p(y |x)
for fixed p(X ).

The detailed proof can be found in [[2]Thomas, section2.7]. An
alternative proof is given in [1],P51-52.

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 19 / 80



Bounds on Entropy

Outline
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Bounds on Entropy

L1 bound on entropy

Theorem

Let p and q be two probability mass functions on X such that

‖ p − q ‖1=
∑
x∈X
| p(x)− q(x) |≤ 1

2
.

Then

| H(p)− H(q) |≤ − ‖ p − q ‖1 log
‖ p − q ‖1
| X |

. (26)
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Bounds on Entropy

Proof of L1 bound on entropy

Proof

Consider the function f (t) = −t log t,it is concave and positive on [0, 1],
since f (0) = f (1) = 0.

1 Let 0 ≤ ν ≤ 1
2 , for any 0 ≤ t ≤ 1− ν,we have

| f (t)− f (t + ν) |≤ max{f (ν), f (1− ν)} = −ν log ν. (27)

2 Let r(x) =| p(x)− q(x) |. Then

| H(p)− H(q) | =|
∑
x∈X

(−p(x) log p(x) + q(x) log q(x) | (28)

≤
∑
x∈X
| (−p(x) log p(x) + q(x) log q(x) | (29)
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Bounds on Entropy

Proof of L1 bound on entropy

Proof(cont.)

By using (27), we have

Left ≤
∑
x∈X
−r(x) log r(x) (30)

=‖ p − q ‖1
∑
x∈X
− r(x)

‖ p − q ‖1
log

r(x)

‖ p − q ‖1
‖ p − q ‖1 (31)

= − ‖ p − q ‖1 log ‖ p − q ‖1 + ‖ p − q ‖1 H

(
r(x)

‖ p − q ‖1

)
(32)

≤ − ‖ p − q ‖1 log ‖ p − q ‖1 + ‖ p − q ‖1 log | X | . (33)
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Bounds on Entropy

The lower bound of relative entropy

Theorem

D(P1 ‖ P2) ≥ 1

2 ln 2
‖ P1 − P2 ‖21 . (34)

Proof

(1)Binary case. Consider two binary distribution with parameter p and q
with p ≤ q. We will show that

p log
p

q
+ (1− p) log

1− p

1− q
≥ 4

2 ln 2
(p − q)2.

Let

g(p, q) = p log
p

q
+ (1− p) log

1− p

1− q
− 4

2 ln 2
(p − q)2.
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Bounds on Entropy

The lower bound of relative entropy

Proof(cont.)

Then
∂g(p, q)

∂q
≤ 0

since q(1− q) ≤ 1
4 and q ≤ p. For q = p, g(p, q) = 0, and hence

g(p, q) ≥ 0 for q ≤ p, which proves the binary case.
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Bounds on Entropy

The lower bound of relative entropy

Proof(cont.)

(2)For the general case, for any two distribution P1 and P2,let
A = {x : P1(x) > P2(x)}. Define Y = φ(X ), the indicator of the set
A,and let P̂1 and P̂2 be the distribution of Y. By the data processing
inequality([2]Thomas,section 2.8) applied to relative entropy, we have

D(P1 ‖ P2) ≥ D(P̂1 ‖ P̂2) ≥ 4

2 ln 2
(P1(A)− P2(A))2 =

1

2 ln 2
‖ P1−P2 ‖21 .

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 26 / 80



Part II

Entropy in Statistics
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Entropy in Markov chain

Outline

4 Entropy in Markov chain

5 Bounds on entropy on distributions
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Entropy in Markov chain

Data processing inequality and its corollaries

Data processing inequality

If X → Y → Z , then
I (X ; Y ) ≥ I (X ; Z ). (35)

Corollary

In particular, if Z = g(Y ),we have

I (X ; Y ) ≥ I (X ; g(Y )). (36)

Corollary

If X → Y → Z , then
I (X ; Y |Z ) ≥ I (X ; Y ). (37)

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 29 / 80



Entropy in Markov chain

Data processing inequality and its corollaries

Data processing inequality

If X → Y → Z , then
I (X ; Y ) ≥ I (X ; Z ). (35)

Corollary

In particular, if Z = g(Y ),we have

I (X ; Y ) ≥ I (X ; g(Y )). (36)

Corollary

If X → Y → Z , then
I (X ; Y |Z ) ≥ I (X ; Y ). (37)

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 29 / 80



Entropy in Markov chain

Data processing inequality and its corollaries

Data processing inequality

If X → Y → Z , then
I (X ; Y ) ≥ I (X ; Z ). (35)

Corollary

In particular, if Z = g(Y ),we have

I (X ; Y ) ≥ I (X ; g(Y )). (36)

Corollary

If X → Y → Z , then
I (X ; Y |Z ) ≥ I (X ; Y ). (37)

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 29 / 80



Entropy in Markov chain

Entropy in Markov chain

Theorem

For a Markov Chain:

1 Relative entropy D(µn ‖ µ′n) decreases with time.

2 Relative entropy D(µn ‖ µ) between a distribution and the stationary
distribution decreases with time.

3 Entropy H(Xn) increases if the stationary distribution is uniform.

4 The conditional entropy H(Xn|X1) increases with time for a stationary
Markov chain.

5 Shuffles increase entropy.

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 30 / 80



Entropy in Markov chain

Entropy in Markov chain

Theorem

For a Markov Chain:

1 Relative entropy D(µn ‖ µ′n) decreases with time.

2 Relative entropy D(µn ‖ µ) between a distribution and the stationary
distribution decreases with time.

3 Entropy H(Xn) increases if the stationary distribution is uniform.

4 The conditional entropy H(Xn|X1) increases with time for a stationary
Markov chain.

5 Shuffles increase entropy.

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 30 / 80



Entropy in Markov chain

Entropy in Markov chain

Theorem

For a Markov Chain:

1 Relative entropy D(µn ‖ µ′n) decreases with time.

2 Relative entropy D(µn ‖ µ) between a distribution and the stationary
distribution decreases with time.

3 Entropy H(Xn) increases if the stationary distribution is uniform.

4 The conditional entropy H(Xn|X1) increases with time for a stationary
Markov chain.

5 Shuffles increase entropy.

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 30 / 80



Entropy in Markov chain

Entropy in Markov chain

Theorem

For a Markov Chain:

1 Relative entropy D(µn ‖ µ′n) decreases with time.

2 Relative entropy D(µn ‖ µ) between a distribution and the stationary
distribution decreases with time.

3 Entropy H(Xn) increases if the stationary distribution is uniform.

4 The conditional entropy H(Xn|X1) increases with time for a stationary
Markov chain.

5 Shuffles increase entropy.

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 30 / 80



Entropy in Markov chain

Entropy in Markov chain

Theorem

For a Markov Chain:

1 Relative entropy D(µn ‖ µ′n) decreases with time.

2 Relative entropy D(µn ‖ µ) between a distribution and the stationary
distribution decreases with time.

3 Entropy H(Xn) increases if the stationary distribution is uniform.

4 The conditional entropy H(Xn|X1) increases with time for a stationary
Markov chain.

5 Shuffles increase entropy.

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 30 / 80



Entropy in Markov chain

Entropy in Markov chain

Theorem

For a Markov Chain:

1 Relative entropy D(µn ‖ µ′n) decreases with time.

2 Relative entropy D(µn ‖ µ) between a distribution and the stationary
distribution decreases with time.

3 Entropy H(Xn) increases if the stationary distribution is uniform.

4 The conditional entropy H(Xn|X1) increases with time for a stationary
Markov chain.

5 Shuffles increase entropy.

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 30 / 80



Entropy in Markov chain

Proof for item 1

Let µn and µ′nbe two probability distributions on the state space of a
Markov chain at time n, corresponding to p and q as joint mass functions.
By the chain rule:

D(p(xn, xn+1) ‖ q(xn, xn+1))

= D(p(xn) ‖ q(xn)) + D(p(xn+1|xn) ‖ q(xn+1|xn))

= D(p(xn+1) ‖ q(xn+1)) + D(p(xn|xn+1) ‖ q(xn|xn+1))
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Entropy in Markov chain

Proof for item 1(cont.)

Since the probability transition function p(xn+1|xn) = q(xn+1|xn) from the
Markov chain, hence D(p(xn+1|xn) ‖ q(xn+1|xn)) = 0, and
alsoD(p(xn|xn+1) ‖ q(xn|xn+1)) ≥ 0, we have

D(p(xn) ‖ q(xn)) ≥ D(p(xn+1) ‖ q(xn+1))

or
D(µn ‖ µ′n) ≥ D(µn+1 ‖ µ′n+1).
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Entropy in Markov chain

Proof for item 2

Let µ′n = µ, and µ′n+1 = µ, µ can be any stationary distribution. By item
1, the inequality holds.

Remarks

The monotonically non-increasing non-negative sequence D(µn ‖ µ) has 0
as its limit if the stationary distribution is unique.

Remark on item 3

Let the stationary distribution µ be uniform, then by

D(µn ‖ µ) = log |X | − H(µn) = log |X | − H(Xn)

we know the conclusion holds.
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Entropy in Markov chain

Proof for item 4

H(Xn|X1) ≥ H(Xn|X1,X2) = H(Xn|X2) = H(Xn−1|X1)

Remarks on item 5

If T is a shuffle permutationof cards and X is the initial random position,
and if T is independent of X , then

H(TX ) ≥ H(X )

where TX is the permutation by the shuffle T on X .

Proof

H(TX ) ≥ H(TX |T ) = H(T−1TX |T ) = H(X |T ) = H(X )

Reference for [[2]Thomas, section 4.4.]
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Entropy in Markov chain

Entropy in Markov chain

Theorem(Fano’s inequality)

For any estimator X̂ such that X → Y → X̂ ,with Pe = Pr(X 6= X̂ ) , we
have

H(Pe) + Pe log(|X |) ≥ H(X |X̂ ) ≥ H(X |Y ) (38)

this inequality can be weakened to

1 + Pe log | X |≥ H(X |Y ) (39)

or

Pe ≥
H(X |Y )− 1

log | X |
. (40)
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Entropy in Markov chain

Proof of Fano’s inequality

Proof

Define an error random varible,

E =

{
1, if X̂ 6= X

0, if X̂ = X

Then,

H(E ,X |X̂ ) = H(X |X̂ ) + H(E |X , X̂ )︸ ︷︷ ︸
=0

= H(E |X̂ )︸ ︷︷ ︸
≤H(E)=H(Pe)

+ H(X |E , X̂ )︸ ︷︷ ︸
≤Pe log(|X |)

.

since

H(X |E , X̂ ) = Pr(E = 0)H(X |X̂ ,E = 0) + Pr(E = 1)H(X |X̂ ,E = 1)

≤ (1− Pe)0 + Pe log | X | .
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Entropy in Markov chain

Proof of Fano’s inequality

Proof(cont.)

By the data-processing inequality, we have I (X ; X̂ ) ≥ I (X ; Y ) since
X → Y → X̂ is a Markov chain, and therefore H(X |X̂ ) ≥ H(X |Y ). Thus
we have (38) holds.

For any two random variables X and Y , if the estimator g(Y ) takes
values in the set X , we can strengthen the inequality slightly by
replacing log | X | with log (| X | −1).
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Entropy in Markov chain

Empirical probability mass function

Theorem

Let X1,X2, . . . ,Xn be i.i.d ∼ p(x). Let p̃n be the empirical probability
mass function of X1,X2, . . . ,Xn . Then

ED(p̂n ‖ p) ≤ ED(p̂n−1 ‖ p) (41)

Proof

Use D(p̂n ‖ p) = Ep̂n log p̂n
p(x) = Ep̂n log p̂n − log p(x), we

haveEpD(p̂n ‖ p) = H(p)− H(p̂n),then by item 3 in Markov Chain.
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Bounds on entropy on distributions

Outline

4 Entropy in Markov chain

5 Bounds on entropy on distributions
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Bounds on entropy on distributions

Entropy of a multivariate normal distribution

Lemma

LetX1,X2, . . . ,Xn have a multivariate normal distribution with mean µ and
covariance matrix K. Then

h(X1,X2, . . . ,Xn) = h(N (µ,K)) =
1

2
log(2πe)n | K | bits, (42)

where | K | denotes the determinant of K .
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Bounds on entropy on distributions

Bounds on differential entropies

Theorem

Let the random vectorX ∈ Rn have zero mean and covariance K = EXXt ,
i.e., Kij = EXiXj ,1 ≤ j , j ≤ n. Then

h(X) ≤ 1

2
log (2πe)n |K|, (43)

with equality iff X ∼ N (0,K).
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Bounds on entropy on distributions

Bounds on differential entropies

Proof

Let g(x) be any density satisfying
∫

g(x)xixjdx = Kij for all i , j . Let
φK ∼ N (0,K ). Note that log φK (x) is a quadratic form and∫

xixjφK (x)dx = Kij . Then

0 ≤ D(g ‖ φK )

=

∫
g log(g/φK )

= −h(g)−
∫

g log φK

= −h(g)−
∫
φK log φK

= −h(g) + h(φK )

since h(φK ) = 1
2 log (2πe)n |K|, the conclusion holds.
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Bounds on entropy on distributions

Bounds on discrete entropies

Theorem

H(p1, p2, . . .) ≤
1

2
log(2πe)

 ∞∑
i=1

pi i
2 −

( ∞∑
i=1

ipi

)2

+
1

12

 (44)

Proof

Define new r.v. X , with the distribution Pr(X = i) = pi , U ∼ U(0, 1),
define X̃ by X̃ = X + U. Then

H(X ) = −
∞∑
i=1

pi log pi

= −
∞∑
i=1

(∫ i+1

i
fX̃ (x)dx

)
log

(∫ i+1

i
fX̃ (x)dx

)
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Bounds on entropy on distributions

Bounds on discrete entropies

Proof(cont.)

H(X ) = −
∞∑
i=1

∫ i+1

i
fX̃ (x) log fX̃ (x)dx

= −
∫ ∞
1

fX̃ (x) log fX̃ (x)dx

= h(X̃ )

since fX̃ (x) = pi for i ≤ x < i + 1. Hence

h(X̃ ) ≤ 1

2
log(2πe)Var(X̃ ) =

1

2
log(2πe)(Var(X ) + Var(U))

=
1

2
log(2πe)

 ∞∑
i=1

pi i
2 −

( ∞∑
i=1

ipi

)2

+
1

12

 .
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Bounds on entropy on distributions

Entropy and fisher information

The Fisher information matrix is a measure of the minimum error in
estimating a parameter vector of a distribution.

The Fisher information matrix of the distribution of X with a
parameter vector θ is defined as

J(θ) = E{
[
∂

∂θ
log fθ(X )

] [
∂

∂θ
log fθ(X )

]T
} (45)

for any θ ∈ Θ.

If fθ is twice differentiable in θ, and alternative expression is

J(θ) = −E

[
∂2

∂θ∂θT
log fθ(X )

]
. (46)

Reference in [5].
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Bounds on entropy on distributions

Fisher information of a distribution

Let X be any r.v. with density f (x), for a location parameter θ, the
fisher information w.r.t. θ is given by

J(θ) =

∫ ∞
−∞

f (x − θ)

[
∂

∂θ
ln f (x − θ)

]2
dx .

As the differentiation w.r.t. x is equivalent to θ, so we can rewrite the
Fisher information as

J(X ) = J(θ) =

∫ ∞
−∞

f (x)

[
∂

∂x
ln f (x)

]2
dx

=

∫ ∞
−∞

f (x)

[
∂
∂x f (x)

f (x)

]2
dx .
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Bounds on entropy on distributions

Cramér-Rao inequality

Theorem

The mean-squared error of any unbiased estimator T (X ) of the parameter
θ is lower bounded by the reciprocal of the Fisher information:

Var [T (X )] ≥ [J(θ)]−1 . (47)

Proof

By Cauchy-Schwarz inequality,

Var [T (X )]Var

(
∂ log f

∂θ

)
≥ Cov2

(
T (X ),

∂ log f

∂θ

)
Then

Cov2

(
T (X ),

∂ log f

∂θ

)
= E

(
T (X )

∂ log f

∂θ

)
=

∂

∂θ
Eθ(T (X )) = 1.
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Bounds on entropy on distributions

Entropy and Fisher information

Theorem

Let X be any random variable with a finite variance with a density f (x).
Let Z be an independent normally distributed random variable with zero
mean and unit variance. Then

∂

∂t
he(X +

√
tZ ) =

1

2
J(X +

√
tZ ), (48)

where he is the differential entropy to base e. In particular, if the limit
exists as t → 0,

∂

∂t
he(X +

√
tZ ) |t=0=

1

2
J(X ). (49)
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Bounds on entropy on distributions

Proof

Let Yt = X +
√

tZ . Then the density of Yt is

gt(y) =

∫ ∞
−∞

f (x)
1√
2πt

e−
(y−x)2

2t dx .

It’s easy to verify that

∂

∂t
gt(y) =

1

2

∂2

∂y2
gt(y). (50)
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Bounds on entropy on distributions

Proof

Since he(Yt) = −
∫∞
−∞ gt(y) ln gt(y)dy Differentiating, by∫

gt(y)dy = 1 and (50), then integrate by parts, we obtain

∂

∂t
he(Yt) = −1

2

[
∂gt(y)

∂y
ln gt(y)

]∞
−∞

+
1

2

∫ ∞
−∞

[
∂

∂y
gt(y)

]2 1

gt(y)
dy .

The first term above goes to 0 at both limit, and by definition, the
first term is 1

2J(Yt). Thus the theorem is prove.
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Part III

Some important theories deduced from

entropy
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Entropy rates of subsets

Outline

6 Entropy rates of subsets

7 The Entropy power inequality
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Entropy rates of subsets

Entropy on subsets

Definition: Average Entropy Rate

Let (X1,X2, . . . ,Xn) have a density, and for every S ⊆ {1, 2, . . . , n},denote
by X (S) the subset {Xi : i ∈ S}. Let

h
(n)
k =

1(n
k

) ∑
S:|S |=k

h(X (S))

k
. (51)

Here h
(n)
k is the average entropy in bits per symbol of a randomly drawn

k-element subset of (X1,X2, . . . ,Xn).

The average conditional entropy rate and average mutual information
rate can be defined similarly on h(X (S)|X (Sc)) andI (X (S); X (Sc)).
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Entropy rates of subsets

Entropy on subsets

Theorem

1 For average entropy rate,

h
(n)
1 ≥ h

(n)
2 ≥ . . . ≥ h

(n)
n . (52)

2 For average conditional entropy rate,

g
(n)
1 ≤ g

(n)
2 ≤ . . . ≤ g

(n)
n . (53)

3 For average mutual information,

f
(n)
1 ≥ f

(n)
2 ≥ . . . ≥ f

(n)
n . (54)
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Entropy rates of subsets

Proof for Theorem, item 1

We first proof h
(n)
n ≤ h

(n)
n−1. Since for i = 1, 2, . . . , n,

h(X1,X2, . . . ,Xn) = h(X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xn)

+ h(Xi |X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xn)

≤ h(X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xn)

+ h(Xi |X1,X2, . . . ,Xi−1)

Adding these n inequalities and using the chain rule, we obtain

1

n
h(X1,X2, . . . ,Xn) ≤ 1

n

n∑
i=1

h(X1,X2, . . . ,Xi−1,Xi+1, . . . ,Xn)

n − 1

Thus h
(n)
n ≤ h

(n)
n−1 holds.
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Entropy rates of subsets

Proof for Theorem, item 1(cont.)

For each k-element subset, h
(k)
k ≤ h

(k)
k−1,

and hence the inequality remains true after taking the expectation
over all k-element subsets chosen uniformly from the n elements.
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Entropy rates of subsets

Entropy on subsets

Proof for Theorem,item 2 and 3

(1) We prove g
(n)
n ≤ g

(n)
n−1 first.By

h(X1,X2, . . . ,Xn) ≤
n∑

i−1
h(Xi )

(n − 1)h(X1,X2, . . . ,Xn) ≥
n∑

i=1

(h(X1,X2, . . . ,Xn)− h(Xi ))

=
n∑

i=1

h(X1,X2, . . . ,Xi−1,Xi , . . . ,Xn|Xi ).

Similar as the proof of item 1, we have g
(k)
k ≤ g

(k)
k−1.

(2) Since I (X (S); X (Sc) = h(X (S))− h(X (S)|X (Sc)), item 3 holds.
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The Entropy power inequality

Outline

6 Entropy rates of subsets

7 The Entropy power inequality

Xu Chen (IS, SMS, at PKU) Inequalities in Information Theory Mar.20, 2012 58 / 80



The Entropy power inequality

The Entropy power inequality

Theorem

If X and Y are independent random n-vectors with densities, then

2
2
n
h(X+Y) ≥ 2

2
n
h(X) + 2

2
n
h(Y). (55)

Remarks

For normal distributions, since 22h(X ) = (2πe)σ2X , we have a new
statement of the entropy power inequality.
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The Entropy power inequality

The entropy power inequality

Theorem: the entropy power inequality

For two independent random variables X and Y ,

h(X + Y ) ≥ h(X ′ + Y ′)

where X ′ and Y ′ are independent normal random variables with
h(X ′) = h(X ) and h(Y ′) = h(Y ).
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The Entropy power inequality

Definitions

The set sum A + B of two sets A,B ⊂ Rn is defined as the set
{x + y : x ∈ A, y ∈ B}.
Example: The set sum of two spheres of radius 1 at the origins is a
sphere of radius 2 at the origin.

Let the Lr norm of the density be defined by ‖ f ‖r=
(∫

f r (x)dx
) 1

r .

The Rényi entropy hr (X ) of order r is defined as

hr (X ) =
1

1− r
log

[∫
f r (x)dx

]
(56)

for 0 < r <∞,r 6= 1.
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The Entropy power inequality

Remarks on definition

Remarks

If we take the limit as r → 1, we obtain the Shannon entropy function

h(X ) = h1(x) = −
∫

f (x) log f (x)dx .

If we take the limit as r → 0, we obtain the logarithm of the support
set,

h0 = log(µ{x : f (x) > 0}).

Thus the zeroth order Rényi entropy gives the measure of the support
set of the density of f .
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The Entropy power inequality

The Brunn-Minkowski inequality

Theorem: Brunn-Minkowski inequality

The volume of the set sum of two sets A and B is greater than the volume
of the set sum of two spheres A′ and B ′ with the same volume as A and
B, respectively, i.e.,

V (A + B) ≥ V (A′ + B ′)

where A′ and B ′ are spheres with V (A′) = V (A) and V (B ′) = V (B).
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The Entropy power inequality

The Rényi Entropy Power

Definition

The Rényi entropy power Vr (X ) of order r is defined as

Vr (X ) =


[∫

f r (x)dx
] 2
n
r′
r , 0 < r ≤ ∞, r 6= 1, 1r + 1

r ′ = 1

exp[ 2nh(X )], r = 1

µ({x : f (x) > 0})
2
n , r = 0

Theorem

For two independent random variables X and Y and any 0 ≤ r <∞ and
any 0 ≤ λ ≤ 1, let p = r

r+λ(1−r) , q = r
r+(1−λ)(1−r) , we have

log Vr (X + Y ) ≥ λ log Vp(X ) + (1− λ) log Vq(Y ) + H(λ) (57)

+

(
1 + r

1− r

)[
H

(
r + λ(1− r)

1 + r

)
− H

(
r

1 + r

)]
. (58)
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The Entropy power inequality

Remarks on the Rényi Entropy Power

The Entropy power inequality. Taking the limit of (58) as r → 1 and

setting λ = V1(X )
V1(X )+V1(Y ) , we obtain

V1(X + Y ) ≥ V1(X ) + V1(Y ).

The Brunn-Minkowski inequality. Similarly letting r → 0 and

choosing λ =

√
V0(X )√

V0(X )+
√

V0(Y )
, we obtain

√
V0(X + Y ) ≥

√
V0(X ) +

√
V0(Y )

Now let A and B be the support set of X and Y . Then A + B is the
support set of X + Y , and the equation above reduces to

[µ(A + B)]1/n ≥ [µ(A)]1/n + [µ(B)]1/n,

which is the Brunn-Minkowski inequality.
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Part IV

Important applications
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The Method of Types

Outline

8 The Method of Types

9 Combinatorial Bounds on Entropy
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The Method of Types

Basic concepts

Definition

1 The type Px of a sequence x1, x2, . . . , xn is the relative proportion of
occurrences in X ,i.e., Px(a) = N(a|x)/n for all a ∈ X .

2 Let Pn denote the set of types with a sequence of n symbols.

3 If P ∈ Pn, then the type class of P, denoted T (P) is defined as:

T (P) = {x ∈ X n : Px = P}
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The Method of Types

Bound on number of types

Theorem: the probability of x

If X1,X2, . . . ,Xn are drawn i.i.d.∼ Q(x), then the probability of x depends
only on its type and is given by

Q(n)(x) = 2−n(H(Px)+D(Px‖Q)) (59)

Proof

Q(n)(x) =
n∏

i=1

Q(Xi ) =
∏
a∈X

Q(a)N(a|x)

=
∏
a∈X

Q(a)nPx(a) =
∏
a∈X

2nPx logQ(a)

= 2
n
∑

a∈X (−Px(a) log
Px(a)
Q(a)

+Px(a) logPx(a)).
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The Method of Types

Size of type class T (P)

Theorem

| Pn |≤ (n + 1)|X |. (60)

Theorem

For any type of P ∈ Pn,

1

(n + 1)|X |
2nH(P) ≤| T (P) |≤ 2nH(P). (61)
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The Method of Types

Size of type class T (P)

Proof

By (59), if x ∈ T (P), then P(n)(x) = 2−nH(P), we have

1 ≥ P(n)(T (P)) =
∑

x∈T (P)

P(n)(x) =
∑

x∈T (P)

2−nH(P) =| T (P) | 2−nH(P).

For the lower bound, we use the fact P(n)(T (P)) ≥ P(n)(T (P̂)), for all
P̂ ∈ Pn without proof.

1 =
∑
Q∈Pn

P(n)(T (Q)) ≤
∑
Q∈Pn

P(n)(T (P))

≤ (n + 1)|X |P(n)(T (P)) = (n + 1)|X | | T (P) | 2−nH(P).
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The Method of Types

Probability of type class

Theorem

for any P ∈ Pn and any distribution Q, the probability of the type class
T (P) under Q(n) is

1

(n + 1)|X |
2−nD(P‖Q) ≤| Q(n)(T (P)) |≤ 2−nD(P‖Q). (62)

Proof

Q(n)(T (P)) =
∑

x∈T (P)

Q(n)(x) =
∑

x∈T (P)

2−n(D(P‖Q)+H(P))

=| T (P) | 2−n(D(P‖Q)+H(P))

Then use the bounds on | T (P) | derived in last theorem.
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The Method of Types

Summarize

We can summarize the basic theorems concerning types in four
equations:

| Pn |≤ (n + 1)|X |, (63)

Q(n)(x) = 2−n(H(Px)+D(Px‖Q)), (64)

| T (P) | .= 2nH(P), (65)

Q(n)(T (P))
.

= 2−nD(P‖Q). (66)

There are only a polynomial number of types and an exponential
number of sequences of each type.

We can calculate the behavior of long sequences based on the
properties of the type of the sequence.
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Combinatorial Bounds on Entropy
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Combinatorial Bounds on Entropy

Tight bounds on the size of
(

n
k

)

Lemma

For 0 < p < 1, q = 1− p, such that np is an integer,

1√
8npq

≤
(

n

np

)
2−nH(p) ≤ 1

√
πnpq

. (67)
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Combinatorial Bounds on Entropy

Tight bounds on the size of
(

n
k

)
Proof of Lemma

Applying a strong form of Stirling’s approximation, which states that

√
2πn

(n

e

)n
≤ n! ≤

√
2πn

(n

e

)n
e

1
12n . (68)

we obtain (
n

np

)
≤

√
2πn

(
n
e

)n
e

1
12n

√
2πnp

(np
e

)np√
2πnq

(nq
e

)nq
=

1√
2πnpq

1

pnpqnq
e

1
12n

<
1

√
πnpq

2nH(p)

Since e
1

12n < e
1
12 <

√
2. The lower bound is obtained similarly.
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Combinatorial Bounds on Entropy

Tight bounds on the size of
(

n
k

)
Proof of Lemma(cont.)

(
n

np

)
≥

√
2πn

(
n
e

)n
e
−
(

1
12np

+ 1
12nq

)
√

2πnp
(np

e

)np√
2πnq

(nq
e

)nq
=

1√
2πnpq

1

pnpqnq
e
−
(

1
12np

+ 1
12nq

)

<
1√

2πnpq
2nH(p)e

−
(

1
12np

+ 1
12nq

)

If np ≥ 1, and nq ≥ 3,then e
−
(

1
12np

+ 1
12nq

)
≥ e−

1
9 = 0.8948 >

√
π
2 = 0.8862.

For np = 1, nq = 1or 2, and np = 2, nq = 2 can easily be verified that the
inequality still holds. Thus we proved the Lemma.
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