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Introduction

I This lecture is a review on functional analsysis and
Fourier analysis for L1 and L2 functions and
tempered distributions.

I Various function spaces will be briefly reviewed.
I References are [Stein, 1970, Stein and Weiss, 1971,

Yosida, 1980, Hömander, 1990, Rudin, 1991,
Natterer, 2001, Natterer and Wübbeling, 2001].
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Vector Spaces I
I A set X is called a vector space or liner space

over a field K if the following conditions are satisfied.
I An addition + is defined on X such that X is an
abelian group,

i (associativity of addition)

(x + y) + z = x + (y + z), ∀x , y , z ∈ X ; (1)

ii (commutativity of addition)

x + y = y + x , ∀x , y ∈ X ; (2)

iii (identity element of addition) There exists an element
θ ∈ X , called the zero vector, such that

x + θ = x , ∀x ∈ X ; (3)

iv (inverse elements of addition) for all x ∈ X , there
exists an element u ∈ X , called the inverse of x with
repect to the addition +, such that

x + u = θ. (4)

The inverse is denoted by −x , ∀x ∈ X .
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Vector Spaces II
I A scalar multiplication is defined as a map

from K× X → X denoted as (α, x) ∈ K× → αx ∈ X
for such that

v (distributivity of scalar multiplication with respect to
vector addition)

α(x + y) = αx + αy , ∀α ∈ K,∀x , y ∈ X ; (5)

vi (distributivity of scalar multiplication with respect to
field addition)

(α + β)x = αx + βx , ∀α, β ∈ K,∀x ∈ X ; (6)

vii (compatibility of scalar multiplication with field
multiplication)

α(βx) = (αβ)x , ∀α, β ∈ K,∀x ∈ X ; (7)

viii (identity element of scalar multiplication)

1x = x , ∀x ∈ X , (8)

where 1 is the multiplicative identity in the field K.
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Vector Spaces III

I References
i [Yosida, 1980, p. 20];
ii [Rudin, 1991, Chapter 1];
ii Vector space at Wikipedia.

http://en.wikipedia.org/wiki/Vector_space
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Inner Product Spaces I
I A vector space X is called a inner product
space if to each pair of vectors x and y ∈ X is
associated a number 〈x , y〉, called the inner
product of x and y , such that the following rules
hold,

i
〈x , y〉 = 〈y , x〉, ∀x , y ∈ X , (9)

where the overline denotes complex conjugation;
ii

〈x + y , z〉 = 〈x , z〉+ 〈y , z〉, ∀x , y , z ∈ X , (10)

iii
〈αx , y〉 = α〈x , y〉, ∀α ∈ K,∀x ∈ X ; (11)

iv
〈x , x〉 ≥ 0, ∀x ∈ X ; (12)

v
〈x , x〉 = 0, only if x = θ. (13)
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Inner Product Spaces II

I References
i [Rudin, 1991, Chapter 12].
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Normed Spaces I

I A vector space X is said to be a normed space if to
every x ∈ X is associated a nonnegative real number
||x ||, called the norm of x , such that the following
rules hold,

i
||x + y || ≤ ||x ||+ ||y ||, ∀x , y ∈ X ; (14)

ii
||αx || = |α|||x ||, ∀α ∈ K,∀x ∈ X ; (15)

iii
||x || ≥ 0, if x 6= θ. (16)

I References
i [Rudin, 1991, Chapter 1].
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every x ∈ X is associated a nonnegative real number
||x ||, called the norm of x , such that the following
rules hold,

i
||x + y || ≤ ||x ||+ ||y ||, ∀x , y ∈ X ; (14)

ii
||αx || = |α|||x ||, ∀α ∈ K,∀x ∈ X ; (15)

iii
||x || ≥ 0, if x 6= θ. (16)

I References
i [Rudin, 1991, Chapter 1].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References

Normed Spaces I

I A vector space X is said to be a normed space if to
every x ∈ X is associated a nonnegative real number
||x ||, called the norm of x , such that the following
rules hold,

i
||x + y || ≤ ||x ||+ ||y ||, ∀x , y ∈ X ; (14)

ii
||αx || = |α|||x ||, ∀α ∈ K,∀x ∈ X ; (15)

iii
||x || ≥ 0, if x 6= θ. (16)

I References
i [Rudin, 1991, Chapter 1].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References

Normed Spaces I

I A vector space X is said to be a normed space if to
every x ∈ X is associated a nonnegative real number
||x ||, called the norm of x , such that the following
rules hold,

i
||x + y || ≤ ||x ||+ ||y ||, ∀x , y ∈ X ; (14)

ii
||αx || = |α|||x ||, ∀α ∈ K,∀x ∈ X ; (15)

iii
||x || ≥ 0, if x 6= θ. (16)

I References
i [Rudin, 1991, Chapter 1].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References

Metric Spaces
I A set X is said to be a metric space if to every

pair x , y ∈ X is associated a nonnegative real
number d(x , y), called the distance between x and
y , such that the following rules hold,

i
0 ≤ d(x , y) <∞, ∀x , y ∈ X ; (17)

ii
d(x , y) = 0, if and only if x = y ; (18)

iii
d(x , y) = d(y , x), ∀x , y ∈ X ; (19)

iv

d(x , y) ≤ d(x , z) + d(z, y), ∀x , y , z ∈ X ; (20)

I References
i [Rudin, 1991, Chapter 1].
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Inner Product Spaces, Noremed Spaces, and
Metric Spaces

I Every inner product space in slide 5 is a normed
space, by defining its norm as

||x || =
√
〈x , x〉. (21)

I Every normed space in slide 7 is a metric space, by
defining its metric as

d(x , y) = ||x − y ||. (22)
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Topological Spaces

I A topological space is a set X in which a
collection τ of subsets (called open sets) has been
specified, with the following properties,

i X ∈ τ , ∅ ∈ τ ;
ii (finite intersection) A

⋂
B ∈ τ if A and B ∈ τ ;

iii (arbitrary union) if Aλ ∈ τ , with λ ∈ Λ,
⋃

λ∈Λ Aλ ∈ τ .
I References

i [Rudin, 1991, Chapter 1].
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Topology in Metric Spaces

I In a metric space (X ,d), the open ball with center
at x ∈ X and radius r > 0 is the set

Br (x) = {y ∈ X : d(x , y) < r} . (23)

I A subset A ⊂ X is defined to be open if for every
a ∈ A, there exists a ball with center at a and radius
ε > 0 such that Bε(a) ⊂ A.

I Metrics are topological spaces in this way.
I References

i [Rudin, 1991, Chapter 1].
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Topological Definitions

In a topology space (X , τ),
I a subset E ⊂ X is closed if and only if its

complement is open;
I the closure E of a subset E is the intersection of all

closed sets that contain E ;
I the interior of a subset E is the union of all open

sets that are subsests of E ;
I a neighborhood of a point x ∈ X is any open set

that contains x ;
I τ is a Hausdorff topology if distinct points of X

have disjoint neighborhoods.
I References

i [Rudin, 1991, Chapter 1].
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Convergence Definitions
I In a Hausdorff topology space (X , τ), a sequence
{xn} converges to a point x ∈ X ,

lim
n

xn = x , (24)

if every neighborhood of x contains all but finitely
many of the points xn.

I In a metric space (X ,d), a sequence {xn}
converges to a point x ∈ X , if and only if

lim
n

d(xn, x) = 0. (25)

I In a normed space (X , || · ||), a sequence {xn}
converges to a point x ∈ X , if and only if

lim
n
||xn − x || = 0. (26)

I References
i [Rudin, 1991, Chapter 1].
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Cauchy Sequences and Completeness
I In a metric space (X ,d), a sequence {xn} is a
Cauchy sequence, if to every ε > 0, there exists an
integer N, such that

d(xm, xn) < ε, (27)

whenever m > N and n > N.

I If every Cauchy sequence in (X ,d) converges to a
point of X , then d is said to be a complete metric
on X .

I (X ,d) is said to be a complete metric space.

I Complete normed spaces are called Banach
spaces.

I Complete inner product spaces are called Hilbert
spaces.

I References
i [Rudin, 1991, Chapter 1].
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Continuity Definitions

Let f be a map from a topology space X to another
topology space Y .

I For x0 ∈ X , f is continuous at x0, if for every
neighborhood Vf (x0) of f (x0), there exists a
neighborhood Ux0 of x0 such that f (Ux0) ⊂ Vf (x0).

I f is continuous if f is continuous at every x ∈ X .

I If X and Y are metric spaces with metrics d and ρ,
respectively, f is continuous at x0, if ∀ε > 0, there
exists δ > 0, such that

ρ(f (x), f (x0)) < ε, (28)

whenever d(x , x0) < δ.
I References

i [Dugundji, 1966, Chapter III and IX].
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Topological Vector Spaces

I Suppose τ is a topology on a vector space such that
i every point of X is a closed set;
ii the vector space operations, + and ·, are continuous

with respect to τ ;

τ is said to be a vector topology on X and X is a
topological vector space.

I Theorem
Every topological vector space is a Hausdorff space.

I References
i [Rudin, 1991, Chapter 1].
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Seminorms

I A seminorm on a vector space X is a real valued
function p such that

i
p(x + y) ≤ p(x) + p(y), ∀x , y ∈ X ; (29)

ii
p(αx) = |α|p(x), ∀α ∈ K,∀x ∈ X ; (30)

I A family P of seminorms on X is said to be
separating if to each x 6= θ, there is at least on
p ∈ P such that p(x) 6= 0.

I References
i [Rudin, 1991, Chapter 1].
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Metric by Countable Separating Family of
Seminorms

I If P = {pi : i = 1,2,3, · · · } is a countable separating
family of seminorms on X .

I Let

d(x , y) =
∞∑

i=1

1
2i

p(x − y)

1 + p(x − y)
. (31)

I d is a metric on X , and compatiable with the
topology induced by P.

I {xn} converges to x if and only if pi(xn − x)→ 0, ∀i .
I (X ,d) is a topological vector space, Frechét
space, i.e., locally convex vector space
with a complete tranlation-invariant
metric.

I A set E ⊂ X is bounded if and only if every p is
bounded on E .

I References
i [Rudin, 1991, Chapter 1].
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space, i.e., locally convex vector space
with a complete tranlation-invariant
metric.

I A set E ⊂ X is bounded if and only if every p is
bounded on E .

I References
i [Rudin, 1991, Chapter 1].
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Dual Spaces

I The dual space of a topolological vector space is
the space X ∗ whose elements are the continuous
linear functionals on X .

I Theorem
Let X be a metrizable topological vector space and
f ∈ X ∗. The following for properties are equivalent,

i f is continuous;
ii f is bounded;
iii If xn → θ, then {f (xn)} is bounded;
iv If xn → θ, then f (xn)→ 0.

I References
i [Rudin, 1991, Chapter 1].
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C(Ω)

I Let Ω be an open set of Rn.
I Ω is the union of countable many compact sets Kn.
I C(Ω) is the vector space of all (complex) valued

continuous functions on Ω, topologized by the
separating family of seminorms

pn(f ) = sup{|f (x)| : x ∈ Kn} (32)

I References
i [Rudin, 1991, Chapter 1].
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Notations for Analsis on Rn

I The term multi-index denotes an ordered n-tuple

α = (α1, · · · , αn), (33)

of nonnegative integers.
I With each multi-index α is associated the
differential operator

∂α = Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

, (34)

whose order is

|α| = α1 + · · ·+ αn. (35)

I If |α| = 0, Dαf = f .
I References

i [Rudin, 1991, Chapter 1].
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Ck(Ω)

I Ck (Ω) is the vector space of all (complex) valued
continuous functions on Ω which have continuous
partial derivatives of order up to and including k ,
topologized by the separating family of seminorms

pn(f ) = sup{|Dαf (x)| : |α| ≤ k , x ∈ Kn}, (36)

for n = 1, · · · .
I References

i [Rudin, 1991, Chapter 1].
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C∞(Ω)

I C∞(Ω) is the vector space of all (complex) valued
continuous functions on Ω which have continuous
partial derivatives of any order, topologized by the
separating family of seminorms

pn(f ) = sup{|Dαf (x)| : |α| ≤ n, x ∈ Kn} (37)

I References
i [Rudin, 1991, Chapter 1].
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Support

I If ϕ ∈ C(Ω), the support of ϕ, denoted by supp ϕ,
is the closure of the set

{x ∈ Ω : ϕ(x) 6= 0}, (38)

i.e., supp ϕ is the smallest closed subset of Ω such
that ϕ = 0 in Ω \ supp ϕ.

I References
i [Hömander, 1990].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References

Support

I If ϕ ∈ C(Ω), the support of ϕ, denoted by supp ϕ,
is the closure of the set

{x ∈ Ω : ϕ(x) 6= 0}, (38)

i.e., supp ϕ is the smallest closed subset of Ω such
that ϕ = 0 in Ω \ supp ϕ.

I References
i [Hömander, 1990].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References

Support

I If ϕ ∈ C(Ω), the support of ϕ, denoted by supp ϕ,
is the closure of the set

{x ∈ Ω : ϕ(x) 6= 0}, (38)

i.e., supp ϕ is the smallest closed subset of Ω such
that ϕ = 0 in Ω \ supp ϕ.

I References
i [Hömander, 1990].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References

Ck
K (Ω) and Ck

0 (Ω)

I For a compact set K ⊂ Ω, let Ck
K (Ω) denote the

space of all f ∈ Ck (Ω) whose support lies in K .
I Ck

K (Ω) is a closed subspace of Ck (Ω).
I

Ck
0 (Ω) ,

⋃
K⊂Ω

Ck
K (Ω), (39)

where the union is for all compact subsets K ⊂ Ω.
I Ck

0 (Ω) consists of functions in Ck (Ω) with compact
supports contained in Ω.

I This condition on function supports is written as
supp f b Ω.

I References
i [Rudin, 1991, Chapter 1 and 6].
ii [Yosida, 1980, Chapter I].
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denote the space of all f ∈ C∞(Ω) whose support
lies in K .

I DK (Ω) is a closed subspace of C∞(Ω).
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I D(Ω) = C∞0 (Ω) consists of functions in C∞(Ω) with

compact supports contained in Ω.
I

D(Ω) = {f ∈ C∞(Ω) : supp f b Ω}. (41)
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Test Functions D(Ω)

I The elements of D(Ω) are called test functions.
I The heuristics for this term is clear from the following

theorem.

Theorem
([Hömander, 1990, Theorem 1.2.4]) If f and g are locally
integrable functions on Ω and∫

Ω
fφdx =

∫
Ω

gφdx , ∀ϕ ∈ D(Ω), (42)

then f = g almost everywhere (a.e.) in Ω.
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Lp(Ω)
I Another class of spaces is the Lp(Ω) space,

1 ≤ p <∞, of all measurable functions f on Ω such
that

||f ||p =

(∫
Ω
|f |p dx

) 1
p

<∞. (43)

I ||f ||p is called the Lp norm of f .

I For p =∞, the space L∞(Ω) consists of all
essentially bounded measurable
functions on Ω.

I For f ∈ L∞(Ω), let ||f ||∞ be the essential
supremum of |f |(x).

I Lp(Ω) is a Banach space.
I The dual of Lp(Ω) (1 ≤ p <∞) is Lq(Ω), with

1
p + 1

q = 1.
I References

i [Adams, 2003, Chapter 2],
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Lp(Ω)
I Another class of spaces is the Lp(Ω) space,

1 ≤ p <∞, of all measurable functions f on Ω such
that

||f ||p =

(∫
Ω
|f |p dx

) 1
p

<∞. (43)

I ||f ||p is called the Lp norm of f .

I For p =∞, the space L∞(Ω) consists of all
essentially bounded measurable
functions on Ω.

I For f ∈ L∞(Ω), let ||f ||∞ be the essential
supremum of |f |(x).

I Lp(Ω) is a Banach space.
I The dual of Lp(Ω) (1 ≤ p <∞) is Lq(Ω), with

1
p + 1

q = 1.
I References

i [Adams, 2003, Chapter 2],
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C0(Rn)

I C0(Ω) is the subspace of C(Rn) of functions
vanishing at infinity,

lim
x→∞

f = 0, (44)

with the max-norm, or L∞-norm,

||f ||∞ = sup{|f (x)| : x ∈ Rn} (45)

I It is a Banach space.
I References

i [Stein and Weiss, 1971, Chapter 1].
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Fourier transform

I If f ∈ L1(Rn), the Fourier transform F f of f is
the function F f = f̂ defined by

(F f )(ξ) = f̂ (ξ) =

∫
Rn

f (x)e−2πiξ·x dx , ∀ξ ∈ Rn.

(46)
I References

i [Stein and Weiss, 1971, Chapter 1].
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Fourier transform in L1

Theorem
([Stein and Weiss, 1971, Theorem I.1.1–1.2])

(a) The mapping F : f → f̂ is a bounded linear
transform from L1(Rn) into L∞(Rn). In fact,
||̂f ||∞ ≤ ||f ||1.

(b) If f ∈ L1(Rn), then f̂ is uniformly continuous.

(c) (Riemann-Lebesgue) If f ∈ L1(Rn), then
f̂ (ξ)→ 0 as |ξ| → ∞.
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Convolution in L1

I In addition to the vector space operations, L1(Rn) is
endowed with a “multiplication” making it a Banach
algebra.

I This operation, called convolution, is defined in
the following way.

I If f and g ∈ L1(Rn), their convolution h = f ∗ g is
the function defined by

h(x) =

∫
Rn

f (x − y)g(y) dy , ∀x ∈ Rn. (47)

I References
i [Stein and Weiss, 1971, Chapter 1].
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Convolution in Lp × L1

More generally, h = f ∗ g is defined for f ∈ Lp(Rn) and
g ∈ L1(Rn). In fact, we have the following result.

Theorem
([Stein and Weiss, 1971, Theorem I.1.3]) If f ∈ Lp(Rn),
1 ≤ p ≤ ∞, and g ∈ L1(Rn), then h = f ∗ g is well-defined
and belongs to Lp(Rn). Moreover,

||h||p ≤ ||f ||p||g||1. (48)
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Convolution Theorem

An essential feature is the fact that the Fourier transform
of the convolution of two functions is the
(point-wise) product of their Fourier
transforms.

Theorem
([Stein and Weiss, 1971, Theorem I.1.4]) If f and
g ∈ L1(Rn), then

(̂f ∗ g) = f̂ ĝ. (49)
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Some notations

I Many other important operations of analysis have
particularly simple relations with the Fourier
transform.

I Let τh denote the translation operator by
h ∈ Rn, defined by

(τhf )(x) = f (x − h). (50)

I If a > 0, let Da denote the dilation operator,
defined by

(Daf )(x) = f (a · x). (51)

I References
i [Stein and Weiss, 1971, Chapter 1].
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Convolution Properties
Theorem
([Stein and Weiss, 1971, pp. 3 – 5]) Assume that f and
functions involved belong to L1(Rn) in the following. Then

(i) (̂τhf )(ξ) = e−2πih·ξ f̂ (ξ).
(ii) (e2πih·x f (x))∧(ξ) = (τh f̂ )(ξ).
(iii) D̂af (ξ) = 1

an f̂ ( 1
aξ).

In particular, if f is a homogeneous
function of order k, i.e., Daf = ak f , for
a > 0, then f̂ is a homogenous function of
order −n − k.

(iv) ∂̂f
∂xk

(ξ) = 2πiξk f̂ (ξ).

(v) ∂ f̂
∂ξk

(ξ) = (−2πixk f (x))∧(ξ).
(vi) If P(x) is a polynomial in the variables

x1, · · · , xn and P(∂) is the associated
differential operator, i.e., we replace xα by
∂α, then

P̂(∂)f (ξ) = P(2πiξ)f̂ (ξ) (52)

P(∂)f̂ (ξ) = (P(−2πixk )f (x))∧(ξ). (53)
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(v) ∂ f̂
∂ξk

(ξ) = (−2πixk f (x))∧(ξ).
(vi) If P(x) is a polynomial in the variables

x1, · · · , xn and P(∂) is the associated
differential operator, i.e., we replace xα by
∂α, then

P̂(∂)f (ξ) = P(2πiξ)f̂ (ξ) (52)

P(∂)f̂ (ξ) = (P(−2πixk )f (x))∧(ξ). (53)
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Convolution Properties
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Multiplication Formula

Another important property is the multiplication
formula.

Theorem
([Stein and Weiss, 1971, Theorem I.1.15]) If f and
g ∈ L1(Rn), then∫

Rn
f̂ (x)g(x) dx =

∫
Rn

f (x)ĝ(x) dx (54)
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Inverse Fourier Transform

I If g ∈ L1(Rn), the inverse Fourier transform
of g is the function f̌ defined by

ǧ(x) =

∫
Rn

g(ξ)e2πiξ·x dξ, ∀x ∈ Rn. (55)

I However, the Fourier transform of f ∈ L1(Rn) is not
always integrable.

I Hence, the inverse Fourier transfrom may not be
applied directly to obtain f from f̂ by the inverse
transform.

I In order to get around this difficulty, we shall use
certain summability methods for integrals.

I References
i [Stein and Weiss, 1971, Chapter 1].
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Abel method of summability
I For each ε > 0, define the Abel mean,

Aε(f ) = Aε =

∫
Rn

f (x)e−ε||x || dx . (56)

I If f ∈ L1(Rn),

lim
ε→0

Aε(f ) =

∫
Rn

f (x) dx . (57)

I On the other hand, these Abel means are
well-defined even when f is not integrable.
Nevertheless, their limit

lim
ε→0

Aε(f ) (58)

may exist.
I Whenever, the limit in Eq. (58) exists and is finite we

say the
∫

Rn f (x) dx is Abel summable to this limit.
I References

i [Stein and Weiss, 1971, Chapter 1].
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Gauss summability

I Gauss summability is defined by the Gauss
means.

Gε(f ) = Gε =

∫
Rn

f (x)e−ε||x ||
2

dx . (59)

I
∫

Rn f (x) dx is Gauss summable to

lim
ε→0

Aε(f ), (60)

if this limit exists and is finite.
I References

i [Stein and Weiss, 1971, Chapter 1].
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Methods of summability

I Both the methods can be put in the form

Mε,Φ(f ) = Mε(f ) =

∫
Rn

f (x)Φ(εx) dx , (61)

where Φ ∈ C0 (cf. slide 11) and Φ(0) = 1.
I Then

∫
Rn f (x) dx is summable to I if limε→0 Mε(f ) = I.

I We call Mε(f ) the Φ means of this integral.
I We shall need the Fourier transform of the functions

e−ε||x ||2 and e−ε||x ||.
I References

i [Stein and Weiss, 1971, Chapter 1].
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Theorem on summability

Theorem
([Stein and Weiss, 1971, Theorem I.1.13 and 1.14])

(a) For all α > 0,∫
Rn

e−2πiξ·xe−πα||x ||
2

dx = α−n/2e−
π||x||2

α .

(62)
(b) For all α > 0,∫

Rn
e−2πiξ·xe−2πα||x || dx = cn

α

(α2 + ||ξ||2)
n+1

2

.

(63)

where cn =
Γ[ n+1

2 ]

π
n+1

2
.
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Weierstrass-Gauss kernel and Poisson kernel
I In the following, let W and P be the Fourier

transforms of

e−4π2α||x ||2 (64)

e−2πα||x || (65)

for α > 0, respectively,
I

W (t , α) =
1

(4πα)
n
2

e−
||t||2

4α , (66)

P(t , α) = cn
α

(α2 + ||t ||2)
n+1

2

. (67)

I W is called the Weierstrass kernel (or
Weierstrass-Gauss kernel).

I P is called the Poisson kernel.
I References

i [Stein and Weiss, 1971, Chapter 1].
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Characterization of the Φ Means
Theorem
([Stein and Weiss, 1971, Theorem I.1.16]) If f and
Φ ∈ L1(Rn) and ϕ = Φ̂, then∫

Rn
f̂ (ξ)e2πiξ·x Φ(εξ) dξ =

∫
Rn

f (y)ϕε(x − y) dy , (68)

where
ϕε(x) =

1
εn
ϕ(

x
ε

) = (̂DεΦ)(x). (69)

In particular,∫
Rn

f̂ (ξ)e2πiξ·xe−2πε||x || dξ =

∫
Rn

f (x)P(x − y , ε) dy , (70)

and∫
Rn

f̂ (ξ)e2πiξ·xe−4π2ε||x || dξ =

∫
Rn

f (x)W (x − y , ε) dy .

(71)
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Approximation Properties of the Φ Means
Theorem
([Stein and Weiss, 1971, Theorem I.1.18]) Let
ϕ ∈ L1(Rn), with

∫
Rn ϕ(x) dx = 1, and for ε > 0, let

ϕε(x) =
1
εn
ϕ(

x
ε

). (72)

If f ∈ Lp(Rn), 1 ≤ p <∞, or f ∈ C0 ⊂ L∞(Rn), then
||f ∗ ϕε − f ||p → 0 as ε→ 0. In particular,

u(x , ε) =

∫
Rn

f (x)P(x − y , ε) dy , Poisson integral,

(73)
and

s(x , ε) =

∫
Rn

f (x)W (x−y , ε) dy , Gauss-Weierstrass integral,

(74)
converges to f in the Lp norm as ε→ 0.
If
∫

Rn ϕ(x) dx = 0, then ||f ∗ ϕε||p → 0 as ε→ 0.
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L1 Convergence of the Φ Means

Theorem
([Stein and Weiss, 1971, Theorem I.1.20]) If Φ and its
Fourier transform ϕ = Φ̂ are integrable and∫

Rn ϕ(x) dx = 1 (i.e., Φ(0) = 1), then the Φ means of the
integral ∫

Rn
f̂ (ξ)e2πiξ·x dξ (75)

converges to f (x) in the L1 norm.
In particular, the Abel and Gauss means of this integral
converges to f (x) in the L1 norm, respectively.
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Point-wise Convergence of the Φ Means

Theorem
([Stein and Weiss, 1971, Corollary 1.18]) If both f and
f̂ ∈ L1(Rn), then

f (x) =

∫
Rn

f̂ (ξ)e2πiξ·x dξ (76)

for almost every x.
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A Corollary for Inverse Fourier Transform in
L1(Rn)

Corollary
If both f and f̂ are integrable, then

(f̂ )∧ = f (−x) (77)

for almost every x.
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Extension of F from L1(Rn) to L2(Rn)

I Theorem
([Stein and Weiss, 1971, Theorem I.2.1]) If
f ∈ L1(Rn) ∩ L2(Rn), then

||F f ||2 = ||f ||2. (78)

I It follows that
I F is a bounded linear operator defined on the dense

subset ∈ L1(Rn) ∩ L2(Rn) of L2(Rn);
I there exists a unique bounded extension, F (using

the same notation), to all of L2(Rn).
I F will be called the Fourier transform on

L2(Rn).
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Fourier Transform on L2

I If f ∈ L2(Rn), f̂ is the L2 limit of the sequence {ĥk}
where {hk} is any sequence in L1(Rn) ∩ L2(Rn)
converging to f in the L2 norm.

I Let

hk (x)

{
f (x), ||x || ≤ k ,
0, otherwise.

(79)

I f̂ is the L2 limit of the sequence of functions defined
by

ĥk (ξ) =

∫
||x ||≤k

f (x)e−2πiξ·x dx . (80)

I References
i [Stein and Weiss, 1971, Chapter 1].
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Plancherel Theorem I

I A linear operator on L2(Rn) that is an isometry and
maps onto L2(Rn) is called a unitary operator.

I F is an isometry and onto L2(Rn).
I The first of Plancherel theorems in the L2 theory

of the Fourier transform is the following theorem.

I Theorem
([Stein and Weiss, 1971, Theorem I.2.3]) The Fourier
transform is a unitary operator on L2(Rn).
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Plancherel Theorem II

I The second of Plancherel theorems in the L2

theory of the Fourier transform is the following
theorem.

I Theorem
([Stein and Weiss, 1971, Theorem I.2.4]) The inverse of
the Fourier transform, F−1, can be obtained by letting
(F−1g)(x) = (Fg)(−x) for all g ∈ L2(Rn).
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Distributions are Linear Functionals

I The basic idea in the theory of distributions is
to consider them as linear functionals on some
space of “regular” functions — the so-called “testing
functions”.

I The space of testing functions is assumed
to be well-behaved with respect to the operations
(differentiation, Fourier transform, convolution,
translation, etc).

I We are naturally led to the definition of such a space
of testing functions by the following considerations.

I References
i [Stein and Weiss, 1971, Chapter 1].
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to be well-behaved with respect to the operations
(differentiation, Fourier transform, convolution,
translation, etc).

I We are naturally led to the definition of such a space
of testing functions by the following considerations.

I References
i [Stein and Weiss, 1971, Chapter 1].
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Space of Testing Functions

I Suppose we want these operations to be defined on
a function space, S, and to preserve it.

I Then it would certainly have to consist of functions
that are indefinitely differentiable.

I This, in view of Property (vi) in Theorem 2.4,
indicates that each function of S, after being
multiplied by a polynomial, must still be in S.

I References
i [Stein and Weiss, 1971, Chapter 1].
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The Function Space S I

I The space S of rapidly decreasing
functions is defined to be the class of all those
C∞ functions ϕ on Rn such that

sup
x∈Rn

|xα(Dβϕ)(x)| <∞ (81)

for all n-tuples α and β of nonnegative integers.
I The space S is called the Schwartz space.

I ϕ(x) = e−λ||x||
2 ∈ S, λ > 0.

I ϕ(x) = e−λ||x|| fails to be differentiable at the origin
and, therefore, does not belong to S.

I References
i [Stein and Weiss, 1971, Chapter 1];
ii [Rudin, 1991, Chapter 6];
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The Function Space S II

I S contains the space D of all C∞ functions with
compact support.

I If P is a polynomial in n variables and ϕ ∈ S, then
P(x)ϕ(x) and P(∂)ϕ(x) are again in S.

I The space C0 and Lp(Rn), 1 ≤ p <∞, contains S.

I Each subspace is a dense subspace of its “parent”
space.

I References
i [Stein and Weiss, 1971, Chapter 1].
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S under Fourier Transform

By Property (vi) of Theorem 2.4,

Theorem
([Stein and Weiss, 1971, Theorem I.3.2]) If ϕ ∈ S, then
ϕ̂ ∈ S.
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S under Convolution

I If ϕ and ψ ∈ S, the above theorem implies that ϕ̂ and
ψ̂ ∈ S.

I Therefore, ϕ̂ψ̂ ∈ S.
I Since (ϕ ∗ ψ)∧ = ϕ̂ψ̂, applying the inverse Fourier

transform shows that

Theorem
([Stein and Weiss, 1971, Theorem I.3.3]) If ϕ and ψ ∈ S,
so is ϕ ∗ ψ.
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Metric on S
I For each ordered pair of n-tuples nonnegative

integer indices (α, β), define, in view of Eq. (81),

ραβ(ϕ) = sup
x∈Rn

|xα(Dβϕ)(x)|, ∀ϕ ∈ S. (82)

I {ραβ} is a countable family of separting
seminorms.

I Define

ρ(ϕ) =
∑
α,β

1
2|α|+|β|

dαβ(ϕ), (83)

d(ϕ,ψ) = ρ(ϕ− ψ), (84)

for ϕ and ψ ∈ S.

I References
i [Stein and Weiss, 1971, Chapter 1].
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(S,d) as a Topological Vector Space

Theorem
([Stein and Weiss, 1971, p. 21])

(a) The mapping ϕ(x)→ xα(Dβϕ)(x) is
continuous.

(b) If ϕ ∈ S, then limh→0 τhϕ = ϕ.
(c) (S,d) is a complete metric space (F-space).
(d) The Fourier transform is a homeomorphism

of S onto itself.
(e) D is a dense subset of S.
(f) S is separable.
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(f) S is separable.
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Tempered Distributions

I The collection S ′ of all continuous linear functionals
on S is called the space of tempered
distributions.

I It is also called generalized functions.

I References
i [Stein and Weiss, 1971, Chapter 1].
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Lp(Rn) Functions as Tempered Distributions

Example
([Stein and Weiss, 1971, p. 21]) For f ∈ Lp(Rn),
1 ≤ p ≤ ∞, the linear functional L = Lf defined by

L(ϕ) = Lf (ϕ) =

∫
Rn

f (x)ϕ(x) dx , (85)

for ϕ ∈ S, is a tempered distribution.
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Measures as Tempered Distributions

Example
([Stein and Weiss, 1971, p. 21]) If µ is a finite Borel
measure, the linear functional L = Lµ defined by

L(ϕ) = Lµ(ϕ) =

∫
Rn
ϕdµ, (86)

for ϕ ∈ S, is a tempered distribution.
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Tempered Lp Functions
Example
([Stein and Weiss, 1971, pp. 21 – 22])

I A measurable function f such that

f (x)

(1 + ||x ||2)k ∈ Lp(Rn), (87)

for some 1 ≤ p ≤ ∞ and some positive integer k, is
called a tempered Lp function.

I The linear functional L = Lf defined by

L(ϕ) = Lf (ϕ) =

∫
Rn

f (x)ϕ(x) dx , (88)

for ϕ ∈ S, is a tempered distribution.

I When p =∞, such a function is often called a
slowly increasing function.
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Tempered Measures

Example
([Stein and Weiss, 1971, p. 22])

I A tempered measure is a Borel measure µ such that∫
Rn

1
(1+||x ||2)k dµ <∞, for some integer k.

I As in Example 3.5, Lµ defines a tempered
distribution.
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Tempered Measures

Example
([Stein and Weiss, 1971, p. 22])

I A tempered measure is a Borel measure µ such that∫
Rn

1
(1+||x ||2)k dµ <∞, for some integer k.

I As in Example 3.5, Lµ defines a tempered
distribution.
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Tempered Measures

Example
([Stein and Weiss, 1971, p. 22])

I A tempered measure is a Borel measure µ such that∫
Rn

1
(1+||x ||2)k dµ <∞, for some integer k.

I As in Example 3.5, Lµ defines a tempered
distribution.
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Dirac δ-function
Example
([Stein and Weiss, 1971, p. 22])

I For x0 ∈ Rn and an n tuple β,

L(ϕ) = (Dβϕ)(x0), (89)

for ϕ ∈ S, defines a tempered distribution.

I The Dirac δ-function at x0

L(ϕ) = ϕ(x0), (90)

This is a special case of the measures having mass
1 concentrated at z0.

I When Dβ = ∂
∂xi

, i.e., L(ϕ) = ∂ϕ
∂xi

(0), it is a tempered
distribution that is not within the previous four types
of distributions.
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Functions and Tempered Distributions

I The tempered distributions of Lp functions in
Example 3.4, or more generally, tempered Lp

functions Example 3.6, are called functions.
I Example 3.5 and Example 3.7 define the

distributions that are called measures.
I We shall write, in these cases, f and µ, instead of Lf

and Lµ.
I These functions and measures may be considered

as embedded in S ′.
I References

i [Stein and Weiss, 1971, Chapter 1].
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Characterization of Tempered Distributions

Theorem
([Stein and Weiss, 1971, Theorem I.3.11]) A linear
functional L on S is a tempered distribution if and only if
there exists a constant C and integers m and k such that

|L(ϕ)| ≤ C
∑

|α|≤m,|β|≤k

ραβ(ϕ) (91)

for all ϕ ∈ S.
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Operations for Tempered Distributions

I Operations on functions
I convolution,
I differentiation,
I translastion,
I dilation,
I Fourier transform,

can be extended to tempered distributions in S ′.
I The basid approach is to use the adjoint
operator for testing functions

〈Tϕ,ψ〉 = 〈ϕ,T ∗ψ〉 (92)

and then use the result to define extended
operations.
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Operations for Tempered Distributions

I Operations on functions
I convolution,
I differentiation,
I translastion,
I dilation,
I Fourier transform,

can be extended to tempered distributions in S ′.
I The basid approach is to use the adjoint
operator for testing functions

〈Tϕ,ψ〉 = 〈ϕ,T ∗ψ〉 (92)

and then use the result to define extended
operations.
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Operations for Tempered Distributions

I Operations on functions
I convolution,
I differentiation,
I translastion,
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I Fourier transform,

can be extended to tempered distributions in S ′.
I The basid approach is to use the adjoint
operator for testing functions

〈Tϕ,ψ〉 = 〈ϕ,T ∗ψ〉 (92)

and then use the result to define extended
operations.
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I convolution,
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can be extended to tempered distributions in S ′.
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and then use the result to define extended
operations.
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and then use the result to define extended
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Convolution for Tempered Distributions I

I If g is any function on Rn, its reflection, g̃, is
defined as

g̃(x) = g(−x). (93)

I Fubini’s theorem implies, if u, ϕ and ψ are all in S,∫
Rn

(u ∗ ϕ)(x)ψ(x) dx =

∫
Rn

u(x)(ϕ̃ ∗ ψ)(x) dx . (94)

I The mappings

ψ
u∗ϕ
−−−−→

∫
Rn

(u ∗ ϕ)(x)ψ(x) dx , (95)

θ
u

−−−−→
∫

Rn
u(x)θ(x) dx , (96)

are continuous linear functionals on S, respectively.
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Convolution for Tempered Distributions I

I If g is any function on Rn, its reflection, g̃, is
defined as

g̃(x) = g(−x). (93)

I Fubini’s theorem implies, if u, ϕ and ψ are all in S,∫
Rn

(u ∗ ϕ)(x)ψ(x) dx =

∫
Rn

u(x)(ϕ̃ ∗ ψ)(x) dx . (94)

I The mappings

ψ
u∗ϕ
−−−−→

∫
Rn

(u ∗ ϕ)(x)ψ(x) dx , (95)

θ
u

−−−−→
∫

Rn
u(x)θ(x) dx , (96)

are continuous linear functionals on S, respectively.
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Convolution for Tempered Distributions II
I Denoting them by u ∗ ϕ and u, Eq. (94) implies

(u ∗ ϕ)(ψ) = u(ϕ̃ ∗ ψ). (97)

I If u ∈ S ′ and ϕ, ψ ∈ S, the right-hand side of Eq. (97)
is well-defined since

ϕ̃ ∗ ψ ∈ S. (98)

I Furthermore, the mapping

ψ −−→ ϕ̃ ∗ ψ
u
−−→ u(ϕ̃ ∗ ψ), (99)

being the composition of two continuous functions, is
continuous.

I Thus, the convolution of the distribution u with the
testing function ϕ, u ∗ ϕ, is defined by Eq. (97).

I References
i [Stein and Weiss, 1971, Chapter 1].
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is well-defined since

ϕ̃ ∗ ψ ∈ S. (98)

I Furthermore, the mapping

ψ −−→ ϕ̃ ∗ ψ
u
−−→ u(ϕ̃ ∗ ψ), (99)

being the composition of two continuous functions, is
continuous.

I Thus, the convolution of the distribution u with the
testing function ϕ, u ∗ ϕ, is defined by Eq. (97).

I References
i [Stein and Weiss, 1971, Chapter 1].
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is well-defined since

ϕ̃ ∗ ψ ∈ S. (98)

I Furthermore, the mapping

ψ −−→ ϕ̃ ∗ ψ
u
−−→ u(ϕ̃ ∗ ψ), (99)

being the composition of two continuous functions, is
continuous.

I Thus, the convolution of the distribution u with the
testing function ϕ, u ∗ ϕ, is defined by Eq. (97).

I References
i [Stein and Weiss, 1971, Chapter 1].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References
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I Denoting them by u ∗ ϕ and u, Eq. (94) implies

(u ∗ ϕ)(ψ) = u(ϕ̃ ∗ ψ). (97)

I If u ∈ S ′ and ϕ, ψ ∈ S, the right-hand side of Eq. (97)
is well-defined since

ϕ̃ ∗ ψ ∈ S. (98)

I Furthermore, the mapping

ψ −−→ ϕ̃ ∗ ψ
u
−−→ u(ϕ̃ ∗ ψ), (99)

being the composition of two continuous functions, is
continuous.

I Thus, the convolution of the distribution u with the
testing function ϕ, u ∗ ϕ, is defined by Eq. (97).

I References
i [Stein and Weiss, 1971, Chapter 1].
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I Denoting them by u ∗ ϕ and u, Eq. (94) implies

(u ∗ ϕ)(ψ) = u(ϕ̃ ∗ ψ). (97)

I If u ∈ S ′ and ϕ, ψ ∈ S, the right-hand side of Eq. (97)
is well-defined since

ϕ̃ ∗ ψ ∈ S. (98)

I Furthermore, the mapping

ψ −−→ ϕ̃ ∗ ψ
u
−−→ u(ϕ̃ ∗ ψ), (99)

being the composition of two continuous functions, is
continuous.

I Thus, the convolution of the distribution u with the
testing function ϕ, u ∗ ϕ, is defined by Eq. (97).
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Convolution for Tempered Distributions II
I Denoting them by u ∗ ϕ and u, Eq. (94) implies

(u ∗ ϕ)(ψ) = u(ϕ̃ ∗ ψ). (97)

I If u ∈ S ′ and ϕ, ψ ∈ S, the right-hand side of Eq. (97)
is well-defined since

ϕ̃ ∗ ψ ∈ S. (98)

I Furthermore, the mapping

ψ −−→ ϕ̃ ∗ ψ
u
−−→ u(ϕ̃ ∗ ψ), (99)

being the composition of two continuous functions, is
continuous.

I Thus, the convolution of the distribution u with the
testing function ϕ, u ∗ ϕ, is defined by Eq. (97).

I References
i [Stein and Weiss, 1971, Chapter 1].
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Convolution for Tempered Distributions III

I This convolution is associative in the sense that

(u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ), (100)

for u ∈ S ′ and ϕ, ψ ∈ S.

I Theorem
([Stein and Weiss, 1971, Theorem I.3.13]) If u ∈ S ′ and
ϕ ∈ S, then the convolution u ∗ ϕ is the function f , whose
value at x ∈ Rn, is

f (x) = u(τx ϕ̃). (101)

Moreover, f belongs to C∞, and it, as well as all its
derivatives, are slowly increasing.
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Convolution for Tempered Distributions III

I This convolution is associative in the sense that

(u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ), (100)

for u ∈ S ′ and ϕ, ψ ∈ S.

I Theorem
([Stein and Weiss, 1971, Theorem I.3.13]) If u ∈ S ′ and
ϕ ∈ S, then the convolution u ∗ ϕ is the function f , whose
value at x ∈ Rn, is

f (x) = u(τx ϕ̃). (101)

Moreover, f belongs to C∞, and it, as well as all its
derivatives, are slowly increasing.
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Convolution for Tempered Distributions III

I This convolution is associative in the sense that

(u ∗ ϕ) ∗ ψ = u ∗ (ϕ ∗ ψ), (100)

for u ∈ S ′ and ϕ, ψ ∈ S.

I Theorem
([Stein and Weiss, 1971, Theorem I.3.13]) If u ∈ S ′ and
ϕ ∈ S, then the convolution u ∗ ϕ is the function f , whose
value at x ∈ Rn, is

f (x) = u(τx ϕ̃). (101)

Moreover, f belongs to C∞, and it, as well as all its
derivatives, are slowly increasing.
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Differentiation for Tempered Distributions I

I Integration by parts implies∫
Rn

(Dβu)(x)ϕ(x) dx = (−1)|β|
∫

Rn
u(x)(Dβϕ)(x) dx

(102)
for u, ϕ ∈ S.

I The mapping

ϕ
Dβu
−−−−→

∫
Rn

(Dβu)(x)ϕ(x) dx , (103)

θ
u

−−−−→
∫

Rn
u(x)θ(x) dx , (104)

are continuous linear functionals on S, repectively.
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Differentiation for Tempered Distributions I

I Integration by parts implies∫
Rn

(Dβu)(x)ϕ(x) dx = (−1)|β|
∫

Rn
u(x)(Dβϕ)(x) dx

(102)
for u, ϕ ∈ S.

I The mapping

ϕ
Dβu
−−−−→

∫
Rn

(Dβu)(x)ϕ(x) dx , (103)

θ
u

−−−−→
∫

Rn
u(x)θ(x) dx , (104)

are continuous linear functionals on S, repectively.
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Differentiation for Tempered Distributions II

I Denoting them by Dβu and u, Eq. (102) implies

(Dβu)(ϕ) = (−1)|β|u(Dβϕ). (105)

I The right-hand side is well-defined since Dβϕ ∈ S.
I Furthermore, , the mapping

ϕ −−→ Dβϕ
u
−−→ u(Dβϕ), (106)

being the composition of two continuous functions, is
continuous.

I Thus, the the partial derivative Dβu of the
distribution u, is defined by Eq. (105).

I References
i [Stein and Weiss, 1971, Chapter 1].



Image
Reconstruction

Ming Jiang

Function Spaces
Functional Analysis

Function Spaces

Theory of the
Fourier Transform
The L1 Theory of the
Fourier Transform

Inverse Fourier Transform

The L2 Theory of the
Fourier Transform

Tempered
Distributions
Operators for Tempered
Distributions

Convolution

Differentiation

References

Differentiation for Tempered Distributions II

I Denoting them by Dβu and u, Eq. (102) implies

(Dβu)(ϕ) = (−1)|β|u(Dβϕ). (105)

I The right-hand side is well-defined since Dβϕ ∈ S.
I Furthermore, , the mapping

ϕ −−→ Dβϕ
u
−−→ u(Dβϕ), (106)

being the composition of two continuous functions, is
continuous.

I Thus, the the partial derivative Dβu of the
distribution u, is defined by Eq. (105).

I References
i [Stein and Weiss, 1971, Chapter 1].
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Differentiation for Tempered Distributions II

I Denoting them by Dβu and u, Eq. (102) implies

(Dβu)(ϕ) = (−1)|β|u(Dβϕ). (105)

I The right-hand side is well-defined since Dβϕ ∈ S.
I Furthermore, , the mapping

ϕ −−→ Dβϕ
u
−−→ u(Dβϕ), (106)

being the composition of two continuous functions, is
continuous.

I Thus, the the partial derivative Dβu of the
distribution u, is defined by Eq. (105).
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i [Stein and Weiss, 1971, Chapter 1].
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I Denoting them by Dβu and u, Eq. (102) implies
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I The right-hand side is well-defined since Dβϕ ∈ S.
I Furthermore, , the mapping

ϕ −−→ Dβϕ
u
−−→ u(Dβϕ), (106)
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continuous.

I Thus, the the partial derivative Dβu of the
distribution u, is defined by Eq. (105).
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i [Stein and Weiss, 1971, Chapter 1].
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(Dβu)(ϕ) = (−1)|β|u(Dβϕ). (105)

I The right-hand side is well-defined since Dβϕ ∈ S.
I Furthermore, , the mapping

ϕ −−→ Dβϕ
u
−−→ u(Dβϕ), (106)

being the composition of two continuous functions, is
continuous.

I Thus, the the partial derivative Dβu of the
distribution u, is defined by Eq. (105).
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