Group Actions on Surfaces

John Franks

Department of Mathematics Northwestern University

Workshop on Global Dynamics Beijing, August 2009

John Franks Group Actions on Surfaces

ヘロト ヘアト ヘビト ヘビト

ъ

Definition

An action of a group *G* on a manifold *M* is a continuous (or differentiable) function $\phi : G \times M \rightarrow M$ satisfying

•
$$\phi(g_1, \phi(g_2, x)) = \phi(g_1g_2, x)$$

• $\phi(e, x) = x$ for all x where e is the identity of G.

A homeomorphism $f: M \to M$ defines an action of \mathbb{Z} on on M by $\phi(n, x) = f^n(x)$.

We will be interested in actions of discrete non-compact groups such as $SL(n,\mathbb{Z})$ is the group of $n \times n$ integer matrices with determinant 1.

ヘロン 人間 とくほとく ほとう

Let Homeo(M) and Diff(M) denote the groups of orientation preserving homeomorphisms and diffeomorphisms of the compact manifold M.

Definition (Alternate)

An action of a group G on a manifold M is a homomorphism

 $\phi: \mathbf{G} \to \operatorname{Homeo}(\mathbf{M})$

or

 $\phi: \boldsymbol{G} \to \operatorname{Diff}(\boldsymbol{M}).$

John Franks Group Actions on Surfaces

ヘロン 人間 とくほ とくほ とう

1

Conjecture (R. Zimmer [21])

Any C^{∞} volume preserving action of $SL(n,\mathbb{Z})$ on a compact manifold with dimension less than n, factors through an action of a finite group.

We are really interested in results valid for all finite index subgroups of $SL(n, \mathbb{Z})$.

Theorem (D. Witte [20])

Let \mathcal{G} be a finite index subgroup of $SL(n,\mathbb{Z})$ with $n \ge 3$. Any homomorphism

 $\phi: \mathcal{G} \to \operatorname{Homeo}(S^1)$

has a finite image.

ヘロア 人間 アメヨア 人口 ア

Example

The group $SL(3,\mathbb{Z})$ acts analytically on S^2 by projectivizing the standard action on \mathbb{R}^3 .

 S^2 is the set of unit vectors in \mathbb{R}^3 . If $x \in S^2$ and $g \in SL(3, \mathbb{Z})$, we can define $\phi(g) : S^2 \to S^2$ by

$$\phi(g)(x)=\frac{gx}{|gx|}.$$

Question

Let \mathcal{G} be a finite index subgroup of $SL(4, \mathbb{Z})$. Does every homomorphism from \mathcal{G} to $Diff(S^2)$ or $Homeo(S^2)$ have a finite image? What about other surfaces?

イロト イポト イヨト イヨト 三日

Example

The group of integer matrices of the form

$$\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$$

is called the Heisenberg group.

ヘロン 人間 とくほ とくほ とう

2

lf

$$g = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } h = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Their commutator $f = [g, h] := g^{-1}h^{-1}gh$ is

$$f = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 and it commutes with g and h .

This implies

$$[g^n,h^n]=f^{n^2}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Definition (Gromov)

An element g in a finitely generated group G is called a distortion element if it has infinite order and

$$\liminf_{n\to\infty}\frac{|g^n|}{n}=0,$$

where |g| denotes the minmal word length of g in some set of generators. If G is not finitely generated then g is distorted if it is distorted in some finitely generated subgroup.

Example

In the subgroup G of $SL(2, \mathbb{R})$ generated by

$$A = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix} \text{ and } B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
$$A^{-1}BA = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} = B^4 \text{ and } A^{-n}BA^n = B^{4n}$$

so B is distorted.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Example

In the Heisenberg group the identity

$$[g^n,h^n]=f^{n^2}.$$

shows f is distorted since it implies $|f^{n^2}| \le 4n$.

Example (G. Mess)

Consider the subgroup of $Aff(T^2)$ generated by the automorphism given by

$$\mathsf{A} = \begin{pmatrix} \mathsf{2} & \mathsf{1} \\ \mathsf{1} & \mathsf{1} \end{pmatrix}$$

and a translation T(x) = x + w where $w \neq 0$ is parallel to the unstable manifold of A. The element T is distorted.

3

Proof: Let λ be the expanding eigenvalue of A. The element $h_n = A^n T A^{-n}$ satisfies $h_n(x) = x + \lambda^n w$ and $g_n = A^{-n} T A^n$ satisfies $g_n(x) = x + \lambda^{-n} w$. Hence $g_n h_n(x) = x + (\lambda^n + \lambda^{-n}) w$. Since $tr A^n = \lambda^n + \lambda^{-n}$ is an integer we conclude $T^{tr A^n} = g_n h_n$, so $|T^{tr A^n}| \le 4n + 2$. Thus

$$\lim_{n\to\infty}\frac{|T^{trA^n}|}{trA^n}=0,$$

so T is distorted.

(四) (日) (日) 日

Question

Can one characterize the dynamics of distortion elements in $Homeo(S^1)$ or $Diff(S^2)$ or in area preserving diffeomorphisms of S^2 ? What about irrational rotations of S^1 or S^2 in the area preserving or analytic case.

Theorem (D. Calegari)

There is a C^0 action of the Heisenberg group on S^2 whose center generated by an irrational rotation.

The example of Calegari for the Heisenberg group acting on S^2 is not conjugate to a C^1 example.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof: For $a \in \mathbb{R}$ let

$$S(x, y) = (x + y, y),$$

 $T_a(x, y) = (x + a, y),$ and
 $U(x, y) = (x, y + 1)$

be maps of \mathbb{R}^2 . Since *U* and *S* commute with T_a they induce homeomorphisms \hat{U} , \hat{T}_a and \hat{S} of the infinite cylinder \mathbb{R}^2/T_θ (identifying (x, y) with $(x + \theta, y)$. If θ is irrational then \hat{T}_1 is an irrational rotation of *C*.

It is easy to check that $[U, S] = T_1$ so $[\hat{U}, \hat{S}] = \hat{T}_1$. Hence the group generated by \hat{U} and \hat{S} is isomorphic to the Heisenberg group \mathcal{H} . Compactifying the two ends of *C* by adding points gives an action of \mathcal{H} by *homeomorphisms* on S^2 .

(過) (ヨ) (ヨ)

Theorem (D. Calegari and M. Freedman [1])

An irrational rotation of S^2 is distorted in $\text{Diff}^{\infty}(S^2)$.

Theorem (D. Calegari and M. Freedman [1])

An irrational rotation of S^1 is distorted in Diff¹(S^1).

Question

Is an irrational rotation of S^1 distorted in $\text{Diff}^r(S^1)$ for $r \ge 2$?

イロト イポト イヨト イヨト 一日

Recall the definition:

Definition (Gromov)

An element g in a finitely generated group G is called a distortion element if it has infinite order and

$$\liminf_{n\to\infty}\frac{|g^n|}{n}=0,$$

where |g| denotes the minmal word length of g in some set of generators. If G is not finitely generated then g is distorted if it is distorted in some finitely generated subgroup.

Theorem (Lubotzky-Mozes-Ragunathan [12])

Suppose Γ is a non-uniform irreducible lattice in a semi-simple Lie group \mathcal{G} with \mathbb{R} -rank ≥ 2 . Suppose further that \mathcal{G} is connected, with finite center and no nontrivial compact factors. Then Γ has distortion elements, in fact, elements whose word length growth is at most logarithmic.

▲御♪ ▲臣♪ ▲臣♪ 二臣

Definition

An interval exchange transformation (IET) is an invertible map $\phi : T^1 \to T^1$ of the circle $T^1 = \mathbb{R}/\mathbb{Z}$ which acts as a piecewise translation on a finite collection of subintervals.

Theorem (Novak [14])

If d(f) denotes the number of discontinuities of an IET f then $d(f^n)$ is either bounded or has linear growth in n.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Novak [14])

Let \mathcal{E} denote the group of interval exchange transformations on T^1 . Then there are no distortion elements in \mathcal{E} .

Corollary

Many finitely generated groups are not isomorphic to subgroups of \mathcal{E} .

Question

Is \mathcal{F}_2 , the free group on two generators, isomorphic to a subgroup of \mathcal{E} .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Definition

A group is called almost simple if every normal subgroup is finite or has finite index.

Theorem (Margulis)

Assume Γ is an irreducible lattice in a semi-simple Lie group with \mathbb{R} -rank ≥ 2 , e.g. any finite index subgroup of $SL(n, \mathbb{Z})$ with $n \geq 3$. Then any normal subgroup of Γ is either finite and in the center of Γ or has finite index. In particular Γ is almost simple.

Proposition

If \mathcal{G} is a finitely generated almost simple group which contains a distortion element and $\mathcal{H} \subset \mathcal{G}$ is a normal subgroup, then the only homomorphism from \mathcal{H} to \mathbb{R} is the trivial one.

ヘロト ヘアト ヘビト ヘ

.≣⇒

Theorem (Thurston [19])

Suppose G is a finitely generated group,

 $\phi: \boldsymbol{G} \to \operatorname{Diff}^1(\boldsymbol{M}^n)$

is a homomorphism and there is $x_0 \in M$ such that for all $g \in \mathcal{G}$

$$\phi(g)(x_0) = x_0 \text{ and } D\phi(g)(x_0) = I.$$

Then either ϕ is trivial or there is a non-trivial homomorphism from \mathcal{G} to \mathbb{R} .

The proof we give is due to W. Schachermayer [18].

ヘロト ヘアト ヘビト ヘビト

Proof of Thurston's stability theorem

Let $\{g_i\}$ be a set of generators for $\phi(\mathcal{G})$. WLOG assume $M = \mathbb{R}^m$ and $x_0 = 0$ is not in the interior of $\operatorname{Fix}(\phi(\mathcal{G}))$. For $g \in \phi(\mathcal{G})$ let $\hat{g}(x) = g(x) - x$, so $g(x) = x + \hat{g}(x)$ and $D\hat{g}(0) = 0$. We compute

$$\begin{split} \widehat{gh}(x) &= g(h(x)) - x \\ &= h(x) - x + g(h(x)) - h(x) \\ &= \widehat{h}(x) + \widehat{g}(h(x)) \\ &= \widehat{h}(x) + \widehat{g}(x + \widehat{h}(x)) \\ &= \widehat{g}(x) + \widehat{h}(x) + (\widehat{g}(x + \widehat{h}(x)) - \widehat{g}(x)) \end{split}$$

Hence for all $g, h \in \mathcal{G}$ and for all $x \in \mathbb{R}^m$

$$\widehat{gh}(x) = \widehat{g}(x) + \widehat{h}(x) + (\widehat{g}(x + \widehat{h}(x)) - \widehat{g}(x)).$$
 (1)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Choose a sequence $\{x_n\}$ in \mathbb{R}^m converging to 0 such that for some *i* we have $|\widehat{g}_i(x_n)| \neq 0$ for all *n*. Possible since 0 is not in the interior of $\operatorname{Fix}(\phi(\mathcal{G}))$.

Let $M_n = \max\{|\widehat{g}_1(x_n)|, \dots, |\widehat{g}_k(x_n)|\}$. Passing to a subsequence we may assume that for each *i* the limit

$$L_i = \lim_{n \to \infty} \frac{\widehat{g}_i(x_n)}{M_n}$$

exists and that $||L_i|| \le 1$. For some *i* we have $||L_i|| = 1$; say for i = 1. If $q \in \mathcal{G}$ and the limit

$$L = \lim_{n \to \infty} \frac{\widehat{g}(x_n)}{M_n}$$

exists then for each i we will show that

$$\lim_{n\to\infty}\frac{\widehat{g_ig}(x_n)}{M_n}=L_i+L.$$
 (2)

(四) (日) (日) 日

By Equation (1) it suffices to show

$$\lim_{n\to\infty}\frac{\widehat{g}_i(x_n+\widehat{g}(x_n))-\widehat{g}_i(x_n)))}{M_n}=0. \tag{3}$$

By the mean value theorem

$$\begin{split} \lim_{n \to \infty} \Big\| \frac{\widehat{g}_i(x_n + \widehat{g}(x_n)) - \widehat{g}_i(x_n)))}{M_n} \Big\| \\ & \leq \lim_{n \to \infty} \sup_{t \in [0,1]} \| D\widehat{g}_i(z_n(t)) \| \Big\| \frac{\widehat{g}(x_n)}{M_n} \Big\|, \end{split}$$

where $z_n(t) = x_n + t \hat{g}(x_n)$. But

$$\lim_{n\to\infty}\frac{\widehat{g}(x_n)}{M_n}=L \text{ and } \lim_{n\to\infty}\sup_{t\in[0,1]}\|D\widehat{g}_i(z_n(t))\|=0,$$

so Equation (3) holds. Defining $\Theta: \phi(\mathcal{G}) \to \mathbb{R}^m$ by

$$\Theta(g) = \lim_{n \to \infty} \frac{\widehat{g}(x_n)}{M_n}$$

gives a homomorphism from $\phi(\mathcal{G})$ to \mathbb{R}^m .

Definition

If \mathcal{G} is a group, a function $\phi : \mathcal{G} \to \mathbb{R}$ is called a quasi-morphism if there is D > 0 such that $|\phi(gh) - \phi(g) - \phi(h)| < D$ for all $g, h \in \mathcal{G}$.

Let $f: S^1 \to S^1$ be a degree one homeomorphism with lift $F: \mathbb{R} \to \mathbb{R}$

Proposition

For $x_0 \in \mathbb{R}$ define the function $\phi : \mathbb{Z} \to \mathbb{R}$ by $\phi(n) = F^n(x_0) - x_0$. Then ϕ is a quasi-morphism, in fact, $|\phi(n+m) - \phi(n) - \phi(m)| < 1$ for all $n, m \in \mathbb{Z}$. Moreover $|\phi(kn) - k\phi(n)| \le k$ for all $k, n \in \mathbb{Z}$.

イロト イポト イヨト イヨト 一臣

Proposition

For any $x_0 \in \mathbb{R}$ the limit

$$\tau(x_0,F) = \lim_{n \to \infty} \frac{F^n(x_0) - x_0}{n}$$

exists and is independent of x_0 . (Only because we are on S^1 .)

Definition

The translation number of *F* is $\tau(F) = \tau(x_0, F)$ and the rotation number of *f* is $\rho(f) = (\tau(F) + \mathbb{Z}) \in \mathbb{R}/\mathbb{Z}$.

$\rho(f)$ is independent of the choice of lift *F*.

ヘロン 人間 とくほ とくほ とう

1

In general the function ρ : Homeo(S^1) $\rightarrow \mathbb{R}/\mathbb{Z}$ is not a homomorphism, but

Proposition

If μ is a Borel measure on S^1 then

$$\rho: \operatorname{Homeo}_{\mu}(S^{1}) \to \mathbb{R}/\mathbb{Z}$$

is a homomorphism, where $Homeo_{\mu}(S^1)$ denotes the group of orientation preserving homeomorphism which preserve the measure μ .

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

N.B.: For definitive results on C^1 actions on S^1 see E. Ghys, [9].

Theorem (Toy Theorem)

Suppose G is a finitely generated almost simple group and has a distortion element and suppose μ is a finite probability measure on S^1 . If

 $\phi: \mathcal{G} \to \textit{Diff}_{\mu}(S^1)$

is a homomorphism then $\phi(\mathcal{G})$ is finite.

Proof:

- The rotation number $\rho: Diff_{\mu}(S^1) \to \mathbb{R}/\mathbb{Z}$ is a homomorphism.
- If *f* is distorted $\rho(f^n) = 0$ for some n > 0 so $Fix(f^n)$ is

non-empty.

- $supp(\mu) \subset Fix(f^n)$
- $\mathcal{G}_0 := \{g \in \mathcal{G} \mid \phi(g) \text{ pointwise fixes } supp(\mu)\}$ is infinite and normal, and hence finite index.
- $\phi(\mathcal{G}_0)$ is trivial by Thurston stability.

Theorem (F-Handel [5])

Suppose that *S* is a closed oriented surface, that *f* is a distortion element in $\text{Diff}(S)_0$ and that μ is an *f*-invariant Borel probability measure.

- If S has genus at least two then Per(f) = Fix(f) and supp(µ) ⊂ Fix(f).
- ② If $S = T^2$ and $Per(f) \neq \emptyset$, then all points of Per(f) have the same period, say *n*, and $supp(\mu) \subset Fix(f^n)$
- If S = S² and if fⁿ has at least three fixed points for some smallest n > 0, then Per(f) = Fix(fⁿ) and supp(µ) ⊂ Fix(fⁿ).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (F-Handel [5])

Suppose S is a closed oriented surface of genus at least one and μ is a Borel probability measure on S with infinite support. Suppose G is finitely generated, almost simple and has a distortion element. Then any homomorphism

 $\phi: \mathcal{G} \to \mathrm{Diff}_{\mu}(\mathcal{S})$

has finite image.

This result was previously known in the special case of symplectic diffeomorphisms and Lebesgue measure by a result of L. Polterovich [17].

The result above also holds even when $supp(\mu)$ is finite if \mathcal{G} is a

Kazhdan group (aka \mathcal{G} has property T).

・ロン ・四 と ・ ヨ と ・ ヨ と …

Proof:

• If f is distorted $supp(\mu) \subset Fix(f)$, so Fix(f) is an infinite closed set.

• Let $\mathcal{G}_0 := \{g \in \mathcal{G} \mid \phi(g) \text{ pointwise fixes } supp(\mu)\}$. It is infinite and normal, and hence finite index in \mathcal{G} .

• Let $x \in Fix(f)$. There is a common eigenvector with eigenvalue 1 for $Dg_x : TM_x \to TM_x$ for every $g \in \phi(\mathcal{G}_0)$.

•
$$Dg_x = Id$$
 for every $g \in \phi(\mathcal{G}_0)$.

- $\phi(\mathcal{G}_0)$ is trivial by Thurston stability.
- $\mathcal{G}/ker(\phi)$ is finite.

Theorem (F-Handel [5])

Suppose S is a closed oriented surface with Borel probability measure μ and \mathcal{G} is a finitely generated, almost simple group with a subgroup isomorphic to the Heisenberg group. Then any homomorphism

 $\phi: \mathcal{G} \to \mathrm{Diff}_{\mu}(\mathcal{S})$

has finite image.

ヘロン 人間 とくほ とくほ とう

ъ

In general there seem to be strong parallels between results about $\mathrm{Diff}(S^1)_0$ and $\mathrm{Diff}_\mu(S)_0$. In addition to our results above there is Witte's theorem

Theorem (D. Witte [20])

Let \mathcal{G} be a finite index subgroup of $SL(n,\mathbb{Z})$ with $n \ge 3$. Any homomorphism

 $\phi: \mathcal{G} \to \operatorname{Homeo}(S^1)$

has a finite image.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Parallels between $\text{Diff}(S^1)_0$ and $\text{Diff}_{\mu}(S)_0$

Also there are the following results

Theorem (Hölder)

Suppose G is a subgroup of $Homeo(S^1)_0$ which acts freely (no non-trivial element has a fixed point). Then G is Abelian.

Theorem (Conley-Zehnder, Matsumoto)

Suppose

$$f \in \operatorname{Homeo}_{\omega}(\mathrm{T}^2)_0$$

is a commutator (ω is Lebesgue measure). Then f has (at least three) fixed points.

Corollary

Suppose G is a subgroup of $Homeo_{\omega}(T^2)_0$ which acts freely. Then G is Abelian.

ロ とうゆ とう さん うん

Definition

A group N is called nilpotent provided when we define

$$\mathbb{N}_0 = \mathbb{N}, \ \mathbb{N}_i = [\mathbb{N}, \mathbb{N}_{i-1}],$$

there is an $n \ge 1$ such that $\mathbb{N}_n = \{e\}$. Note if n = 1 it is Abelian.

Theorem (Plante - Thurston [15])

Let N be a nilpotent subgroup of $\operatorname{Diff}^2(S^1)_0$. Then N must be Abelian.

Theorem (Farb - F)

Every finitely-generated, torsion-free nilpotent group is isomorphic to a subgroup of $\text{Diff}^1(S^1)_0$.

ヘロト 人間 ト ヘヨト ヘヨト

Theorem (F - Handel[5])

Let \mathbb{N} be a nilpotent subgroup of $\operatorname{Diff}_{\mu}^{1}(S)_{0}$ with μ a probability measure with $\operatorname{supp}(\mu) = S$. If $S \neq S^{2}$ then \mathbb{N} is Abelian, if $S = S^{2}$ then \mathbb{N} is Abelian or has an index 2 Abelian subgroup.

Proof: (For the case genus(S) > 1) Suppose

$$\mathbb{N} = \mathbb{N}_1 \supset \cdots \supset \mathbb{N}_m \supset \{1\}$$

is the lower central series of \mathbb{N} . then \mathbb{N}_m is in the center of \mathbb{N} . If m > 1 there is a non-trivial $f \in \mathbb{N}_m$ and elements g, h with f = [g, h]. No non-trivial element of $\text{Diff}^1(S)_0$ has finite order since S has genus > 1. So g, h generate a Heisenberg group and f is distorted. Our theorem says $\text{supp}(\mu) \subset \text{Fix}(f)$, but $\text{supp}(\mu) = S$ so f = id. This is a contradiction unless m = 1 and \mathbb{N} is abelian.

Theorem (Handel (1992) [10])

Let \mathcal{G} be a subgroup of $\operatorname{Diff}^1(S^2)_0$ generated by two commuting diffeomorphisms. Then there is a subgroup \mathcal{G}_0 of \mathcal{G} of index at most two and a point $x \in S^2$ such that g(x) = x for all g in \mathcal{G}_0 .

(雪) (ヨ) (ヨ)

Theorem (F, Handel, Parwani [7])

Let \mathcal{G} be an abelian subgroup of $\text{Diff}^1(S^2)_0$. Then there is a subgroup \mathcal{G}_0 of \mathcal{G} of index at most two and a point $x \in S^2$ such that g(x) = x for all g in \mathcal{G}_0 .

Theorem (F, Handel, Parwani [7])

Let \mathcal{G} be an abelian subgroup of $\text{Diff}^1(\mathbb{R}^2)_0$ with the property that there is a compact \mathcal{G} invariant subset of \mathbb{R}^2 . Then there is a point $x \in \mathbb{R}^2$ such that g(x) = x for all g in \mathcal{G} .

・ 回 ト ・ ヨ ト ・ ヨ ト

Theorem (F, Handel, Parwani [8])

Suppose *S* is a closed oriented surface of genus at least two and that \mathcal{F} is an abelian subgroup of $\text{Diff}_0(S)$ Then the set of global fixed points, $\text{Fix}(\mathcal{F})$ is non-empty.

Theorem (F, Handel, Parwani [8])

Suppose *S* is a closed oriented surface of genus at least two and that \mathcal{F} is an abelian subgroup of Diff(*S*). Then \mathcal{F} has a finite index subgroup \mathcal{F}_0 such that $Fix(\mathcal{F}_0)$ is non-empty.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (F, Handel [6])

Let \mathcal{G} be a subgroup of $\operatorname{Homeo}(D^2)$ and let f be an element of the center of \mathcal{G} . Suppose $\operatorname{Fix}(f) \cap \partial D^2$ consists of a finite set with more than two elements each of which is either an attracting or repelling fixed point for $f : D \to D$. Let $\mathcal{G}_0 \subset \mathcal{G}$ denote the finite index subgroup whose elements pointwise fix $\operatorname{Fix}(f) \cap \partial D^2$. Then $\operatorname{Fix}(\mathcal{G}_0) \cap \operatorname{int}(D)$ is non-empty.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Definition

The mapping class group MCG(S) of a surface S with genus g is the group of isotopy classes of orientation preserving homeomorphisms of S.

• MCG(
$$S^2$$
) \cong {1}

•
$$MCG(T^2) \cong SL(2,\mathbb{Z})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

There is a natural homomorphism

```
Homeo(S) \rightarrow MCG(S).
```

Definition

A lift of a subgroup Γ of MCG(S) is a homomorphism $\Phi : \Gamma \to Homeo(S)$ such that the composition

 $\Gamma \rightarrow \operatorname{Homeo}(S) \rightarrow \operatorname{MCG}(S)$

is the inclusion.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Question

Which subgroups of MCG(S) lift to Homeo(S)[Diff(S)]?

 $MCG(T^2)$ lifts to $Diff(T^2)$ so assume that $g \ge 2$.

- Any free group or any free abelian group
- Any finite group [Kerckhoff]
- MCG(S) does not lift to Diff(S) for g ≥ 5 [Morita]
- MCG(S) does not lift to Homeo(S) for $g \ge 6$ [Markovic]

ヘロン 人間 とくほ とくほ とう

1

An elementary proof of Morita's Theorem.

Theorem (F, Handel [6])

If *S* has genus $g \ge 3$ then MCG(*S*) does not lift to Diff(*S*).

Strategy of Proof

Let $S = M \# T^2$, where *M* has genus $g - 1 \ge 2$. If there is a lift Φ of MCG(*S*) to Diff(*S*) we will show there is are infinitely many global fixed point for $\Phi(MCG(M, \partial M))$. This leads to a contradiction.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Theorem (Thurston)

Suppose G is a finitely generated group,

 $\phi:\mathcal{G}\to \mathrm{Diff}^1(M^n)$

is a homomorphism and there is $x_0 \in M$ such that for all $g \in \mathcal{G}$

$$\phi(g)(x_0) = x_0 \text{ and } D\phi(g)(x_0) = I.$$

Then either ϕ is trivial or there is a non-trivial homomorphism from \mathcal{G} to \mathbb{R} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (Korkmaz (see [11]))

If the genus g of S is \geq 2 there is no non-trivial homomorphism to \mathbb{R} from MCG(S) or from MCG(S, ∂ S) if ∂ S is connected.

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Lemma

Let $f : X \to X$ be a homeomorphism of a locally compact metric space with a global attracting point x_0 i.e., suppose in the Hausdorf topology

$$\lim_{n\to\infty}f^n(Y)=\{x_0\}$$

for any compact subset Y of X. If $g : X \to X$ is a homeomorphism which commutes with f then there exists m > 0 such that $h = f^m g$ satisfies

$$\lim_{n\to\infty}h^n(Y)=\{x_0\}$$

for any compact subset Y of X.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (F, Handel [6])

Let \mathcal{G} be a subgroup of $\operatorname{Homeo}(D^2)$ and let f be an element of the center of \mathcal{G} . Suppose $\operatorname{Fix}(f) \cap \partial D^2$ consists of a finite set with more than two elements each of which is either an attracting or repelling fixed point for $f : D \to D$. Let $\mathcal{G}_0 \subset \mathcal{G}$ denote the finite index subgroup whose elements pointwise fix $\operatorname{Fix}(f) \cap \partial D^2$. Then $\operatorname{Fix}(\mathcal{G}_0) \cap \operatorname{int}(D)$ is non-empty.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Theorem (Parwani [16])

Let *M* be a connected orientable surface with finitely many punctures, finitely many boundary components, and genus at least 6. Then any C^1 action of the mapping class group MCG(M) on the circle S^1 is trivial.

Let $M = M_1 \# M_2$, where each M_i has genus $g \ge 3$. Also let $\mathcal{G}_i = \text{MCG}(M_i, \partial M_i)$ (each of which we consider as a subgroup of MCG(M)).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Then we apply the following theorem.

Theorem (Parwani [16])

Let \mathcal{H} and \mathcal{G} be two finitely generated groups such that $H_1(\mathcal{G}, \mathbb{Z}) = H_1(\mathcal{H}, \mathbb{Z}) = 0$. Then for any C^1 action of $\mathcal{H} \times \mathcal{G}$ on the circle, either $\mathcal{H} \times id$ acts trivially or $id \times \mathcal{G}$ acts trivially.

Theorem (Deroin, Kleptsyn and Navas [2])

Let \mathcal{G} be a countable group with an orientation preserving C^1 action on the circle. If there is no \mathcal{G} -invariant probability measure for the action, then there exists an element $g \in \mathcal{G}$ whose fixed point set is non-empty and finite.

・ロン ・四 と ・ ヨ と ・ ヨ と …

- D. Calegari and M. Freedman Distortion in Transformation Groups Geometry and Topology 10 (2006) 267–293.
- B. Deroin, V. Kleptsyn, A. Navas, Sur la dynamique unidimensionnelle en régularité intermédiaire, Acta Math. 199 (2007) 199–262.
- B. Farb and J. Franks, Groups of homeomorphisms of one-manifolds, III: Nilpotent subgroups, Ergodic Th. and Dyn. Sys. 23 (2003) 1467–1484.

・ 同 ト ・ ヨ ト ・ ヨ ト …

[4] J. Franks,

Distortion in groups of circle and surface diffeomorphisms, Panoramas et Synth'eses, Soc. Math.de France **21** (2006) 35–52. http://arxiv.org/abs/0705.4054

 J. Franks and M. Handel, Distortion Elements in Group actions on surfaces, Duke Math. Jour. 131 (2006) 441-468. http://front.math.ucdavis.edu/math.DS/0404532

 [6] J. Franks and M. Handel, Global fixed points for centralizers and Morita's Theorem, Geometry and Topology, 13 (2009) 87–98.

くぼう くほう くほう

References III

- [7] J. Franks, M. Handel, and K. Parwani Fixed Points of Abelian Actions on S², to appear in Erg. Th. and Dyn. Sys. http://front.math.ucdavis.edu/math.DS/0509574
- [8] J. Franks, M. Handel, and K. Parwani Fixed Points of Abelian Actions, to appear in Jour. of Modern Dynamics http://front.math.ucdavis.edu/math.DS/0607557

 [9] É. Ghys, *Actions de réseaux sur le cercle*, Invent. Math. 137 (1999), no. 1, 199–231.

 [10] M. Handel, *Commuting Homeomorphisms of S²*, Topology 31 (1992) 293–303.

(雪) (ヨ) (ヨ)

[11] M. Korkmaz,

Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. **26** (2002) 101–114.

[12] A. Lubotzky, S. Mozes and M.S. Raghunathan, The word and Riemannian metric on lattices in semisimple Lie groups, IHES Publ. Math. 91 (2000), 5–53

[13] G.A. Margulis,

Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, **17** Springer-Verlag, Berlin (1991)

[14] C. Novak, Journal of Modern Dynamics

<ロ> (四) (四) (三) (三) (三) (三)

[15] J. Plante and W. Thurston,

Polynomial Growth in Holonomy Groups of Foliations Comment. Math. Helvetica **51** 567-584.

[16] K. Parwani

*C*¹ actions on the mapping class groups on the circle, Algebr. Geom. Topol. **8** (2008), no. 2, 935–944.

[17] L. Polterovich,

Growth of maps, distortion in groups and symplectic geometry, http://front.math.ucdavis.edu/math.DS/0111050

[18] W. Schachermayer

Une modification standard de la demonstration non standard de Reeb et Schweitzer

Springer Lecture Notes 652 (1978), 139-140.

[19] W. Thurston

A generalization of the Reeb stability theorem Topology **13** (1974) 347Â352

[20] **D. Witte**

Arithmetic Groups of Higher Q-rank Cannot Act on 1-manifolds

Proc. of the Amer. Math. Soc. 122 (1994) 333Â340

[21] R. Zimmer,

Actions of semisimple groups and discrete subgroups, Proc. Internat. Congr. Math. (Berkeley 1986), Vol 2 A. W. Gleason, ed., Amer. Math. Soc., Providence, RI, (1987) 1247–1258

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……