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Definition of Group Action

Definition
An action of a group G on a manifold M is a continuous (or
differentiable) function φ : G ×M → M satisfying

φ(g1, φ(g2, x)) = φ(g1g2, x)

φ(e, x) = x for all x where e is the identity of G.

A homeomorphism f : M → M defines an action of Z on on M
by φ(n, x) = f n(x).

We will be interested in actions of discrete non-compact groups
such as SL(n,Z) is the group of n × n integer matrices with
determinant 1.
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Group Actions

Let Homeo(M) and Diff(M) denote the groups of orientation
preserving homeomorphisms and diffeomorphisms of the
compact manifold M.

Definition (Alternate)
An action of a group G on a manifold M is a homomorphism

φ : G→ Homeo(M)

or
φ : G→ Diff(M).
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A Motivating Conjecture

Conjecture (R. Zimmer [21])

Any C∞ volume preserving action of SL(n,Z) on a compact
manifold with dimension less than n, factors through an action
of a finite group.

We are really interested in results valid for all finite index
subgroups of SL(n,Z).

Theorem (D. Witte [20])

Let G be a finite index subgroup of SL(n,Z) with n ≥ 3. Any
homomorphism

φ : G → Homeo(S1)

has a finite image.
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Example

The group SL(3,Z) acts analytically on S2 by projectivizing the
standard action on R3.

S2 is the set of unit vectors in R3. If x ∈ S2 and g ∈ SL(3,Z),
we can define φ(g) : S2 → S2 by

φ(g)(x) =
gx
|gx |

.

Question
Let G be a finite index subgroup of SL(4,Z). Does every
homomorphism from G to Diff(S2) or Homeo(S2) have a finite
image? What about other surfaces?
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The Heisenberg group

Example
The group of integer matrices of the form1 a b

0 1 c
0 0 1


is called the Heisenberg group.
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If

g =

1 1 0
0 1 0
0 0 1

 and h =

1 0 0
0 1 1
0 0 1


Their commutator f = [g,h] := g−1h−1gh is

f =

1 0 1
0 1 0
0 0 1

 and it commutes with g and h.

This implies
[gn,hn] = f n2

.
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Distortion in Groups

Definition (Gromov)
An element g in a finitely generated group G is called a
distortion element if it has infinite order and

lim inf
n→∞

|gn|
n

= 0,

where |g| denotes the minmal word length of g in some set of
generators. If G is not finitely generated then g is distorted if it
is distorted in some finitely generated subgroup.
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Example

In the subgroup G of SL(2,R) generated by

A =

(
1/2 0
0 2

)
and B =

(
1 1
0 1

)

A−1BA =

(
1 4
0 1

)
= B4 and A−nBAn = B4n

so B is distorted.
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Example
In the Heisenberg group the identity

[gn,hn] = f n2
.

shows f is distorted since it implies |f n2 | ≤ 4n.

Example (G. Mess)

Consider the subgroup of Aff(T2) generated by the
automorphism given by

A =

(
2 1
1 1

)
and a translation T (x) = x + w where w 6= 0 is parallel to the
unstable manifold of A. The element T is distorted.
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Distortion in Aff(T2)

Proof: Let λ be the expanding eigenvalue of A. The element
hn = AnTA−n satisfies hn(x) = x + λnw and gn = A−nTAn

satisfies gn(x) = x + λ−nw . Hence gnhn(x) = x + (λn + λ−n)w .
Since trAn = λn + λ−n is an integer we conclude T trAn

= gnhn,
so |T trAn | ≤ 4n + 2. Thus

lim
n→∞

|T trAn |
trAn = 0,

so T is distorted.
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Question
Can one characterize the dynamics of distortion elements in
Homeo(S1) or Diff(S2) or in area preserving diffeomorphisms of
S2? What about irrational rotations of S1 or S2 in the area
preserving or analytic case.

Theorem (D. Calegari)

There is a C0 action of the Heisenberg group on S2 whose
center generated by an irrational rotation.

The example of Calegari for the Heisenberg group acting on S2

is not conjugate to a C1 example.

John Franks Group Actions on Surfaces



Proof: For a ∈ R let

S(x , y) = (x + y , y),

Ta(x , y) = (x + a, y), and
U(x , y) = (x , y + 1)

be maps of R2. Since U and S commute with Ta they induce
homeomorphisms Û, T̂a and Ŝ of the infinite cylinder R2/Tθ
(identifying (x , y) with (x + θ, y). If θ is irrational then T̂1 is an
irrational rotation of C.

It is easy to check that [U,S] = T1 so [Û, Ŝ] = T̂1. Hence the
group generated by Û and Ŝ is isomorphic to the Heisenberg
group H. Compactifying the two ends of C by adding points
gives an action of H by homeomorphisms on S2.
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Theorem (D. Calegari and M. Freedman [1])

An irrational rotation of S2 is distorted in Diff∞(S2).

Theorem (D. Calegari and M. Freedman [1])

An irrational rotation of S1 is distorted in Diff1(S1).

Question

Is an irrational rotation of S1 distorted in Diffr (S1) for r ≥ 2?
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Distortion in Groups

Recall the definition:

Definition (Gromov)
An element g in a finitely generated group G is called a
distortion element if it has infinite order and

lim inf
n→∞

|gn|
n

= 0,

where |g| denotes the minmal word length of g in some set of
generators. If G is not finitely generated then g is distorted if it
is distorted in some finitely generated subgroup.
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Many Lattices have Distortion

Theorem (Lubotzky-Mozes-Ragunathan [12])

Suppose Γ is a non-uniform irreducible lattice in a semi-simple
Lie group G with R−rank ≥ 2. Suppose further that G is
connected, with finite center and no nontrivial compact factors.
Then Γ has distortion elements, in fact, elements whose word
length growth is at most logarithmic.
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Interval Exchange Transformations

Definition
An interval exchange transformation (IET) is an invertible map
φ : T1 → T1 of the circle T 1 = R/Z which acts as a piecewise
translation on a finite collection of subintervals.

Theorem (Novak [14])

If d(f ) denotes the number of discontinuities of an IET f then
d(f n) is either bounded or has linear growth in n.
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Interval Exchange Transformations

Theorem (Novak [14])
Let E denote the group of interval exchange transformations on
T1. Then there are no distortion elements in E .

Corollary
Many finitely generated groups are not isomorphic to
subgroups of E .

Question
Is F2, the free group on two generators, isomorphic to a
subgroup of E .
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Margulis’ normal subgroup theorem

Definition
A group is called almost simple if every normal subgroup is
finite or has finite index.

Theorem (Margulis)
Assume Γ is an irreducible lattice in a semi-simple Lie group
with R−rank ≥ 2, e.g. any finite index subgroup of SL(n,Z) with
n ≥ 3. Then any normal subgroup of Γ is either finite and in the
center of Γ or has finite index. In particular Γ is almost simple.

Proposition
If G is a finitely generated almost simple group which contains a
distortion element and H ⊂ G is a normal subgroup, then the
only homomorphism from H to R is the trivial one.
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Thurston’s stability theorem

Theorem (Thurston [19])
Suppose G is a finitely generated group,

φ : G→ Diff1(Mn)

is a homomorphism and there is x0 ∈ M such that for all g ∈ G

φ(g)(x0) = x0 and Dφ(g)(x0) = I.

Then either φ is trivial or there is a non-trivial homomorphism
from G to R.

The proof we give is due to W. Schachermayer [18].
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Proof of Thurston’s stability theorem

Let {gi} be a set of generators for φ(G). WLOG assume
M = Rm and x0 = 0 is not in the interior of Fix(φ(G)).
For g ∈ φ(G) let ĝ(x) = g(x)− x , so g(x) = x + ĝ(x) and
Dĝ(0) = 0. We compute

ĝh(x) = g(h(x))− x
= h(x)− x + g(h(x))− h(x)

= ĥ(x) + ĝ(h(x))

= ĥ(x) + ĝ(x + ĥ(x))

= ĝ(x) + ĥ(x) +
(
ĝ(x + ĥ(x))− ĝ(x)

)
.

Hence for all g,h ∈ G and for all x ∈ Rm

ĝh(x) = ĝ(x) + ĥ(x) +
(
ĝ(x + ĥ(x))− ĝ(x)

)
. (1)
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Choose a sequence {xn} in Rm converging to 0 such that for
some i we have |ĝi(xn)| 6= 0 for all n. Possible since 0 is not in
the interior of Fix(φ(G)).
Let Mn = max{|ĝ1(xn)|, . . . , |ĝk (xn)|}. Passing to a
subsequence we may assume that for each i the limit

Li = lim
n→∞

ĝi(xn)

Mn

exists and that ‖Li‖ ≤ 1. For some i we have ‖Li‖ = 1; say for
i = 1.
If g ∈ G and the limit

L = lim
n→∞

ĝ(xn)

Mn

exists then for each i we will show that

lim
n→∞

ĝig(xn)

Mn
= Li + L. (2)
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By Equation (1) it suffices to show

lim
n→∞

ĝi(xn + ĝ(xn))− ĝi(xn)))

Mn
= 0. (3)

By the mean value theorem

lim
n→∞

∥∥∥ ĝi(xn + ĝ(xn))− ĝi(xn)))

Mn

∥∥∥
≤ lim

n→∞
sup

t∈[0,1]

‖Dĝi(zn(t))‖
∥∥∥ ĝ(xn)

Mn

∥∥∥,
where zn(t) = xn + t ĝ(xn). But

lim
n→∞

ĝ(xn)

Mn
= L and lim

n→∞
supt∈[0,1]‖Dĝi(zn(t))‖ = 0,

so Equation (3) holds. Defining Θ : φ(G)→ Rm by

Θ(g) = lim
n→∞

ĝ(xn)

Mn

gives a homomorphism from φ(G) to Rm.
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Rotation Numbers

Definition
If G is a group, a function φ : G → R is called a quasi-morphism
if there is D > 0 such that |φ(gh)− φ(g)− φ(h)| < D for all
g,h ∈ G.

Let f : S1 → S1 be a degree one homeomorphism with lift
F : R→ R

Proposition

For x0 ∈ R define the function φ : Z→ R by φ(n) = F n(x0)− x0.
Then φ is a quasi-morphism, in fact,
|φ(n + m)− φ(n)− φ(m)| < 1 for all n,m ∈ Z. Moreover
|φ(kn)− kφ(n)| ≤ k for all k ,n ∈ Z.
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Rotation Numbers

Proposition
For any x0 ∈ R the limit

τ(x0,F ) = lim
n→∞

F n(x0)− x0

n

exists and is independent of x0. (Only because we are on S1.)

Definition
The translation number of F is τ(F ) = τ(x0,F ) and the rotation
number of f is ρ(f ) = (τ(F ) + Z) ∈ R/Z.

ρ(f ) is independent of the choice of lift F .
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Measure and Rotation numbers

In general the function ρ : Homeo(S1)→ R/Z is not a
homomorphism, but

Proposition

If µ is a Borel measure on S1 then

ρ : Homeoµ(S1)→ R/Z

is a homomorphism, where Homeoµ(S1) denotes the group of
orientation preserving homeomorphism which preserve the
measure µ.
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N.B.: For definitive results on C1 actions on S1 see E. Ghys, [9].

Theorem (Toy Theorem)
Suppose G is a finitely generated almost simple group and has
a distortion element and suppose µ is a finite probability
measure on S1. If

φ : G → Diffµ(S1)

is a homomorphism then φ(G) is finite.

Proof:
• The rotation number ρ : Diffµ(S1)→ R/Z is a homomorphism.
• If f is distorted ρ(f n) = 0 for some n > 0 so Fix(f n) is
non-empty.
• supp(µ) ⊂ Fix(f n)
• G0 := {g ∈ G | φ(g) pointwise fixes supp(µ)} is infinite and
normal, and hence finite index.
• φ(G0) is trivial by Thurston stability.
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Distortion and Measure

Theorem (F-Handel [5])
Suppose that S is a closed oriented surface, that f is a
distortion element in Diff(S)0 and that µ is an f -invariant Borel
probability measure.

1 If S has genus at least two then Per(f ) = Fix(f ) and
supp(µ) ⊂ Fix(f ).

2 If S = T 2 and Per(f ) 6= ∅, then all points of Per(f ) have the
same period, say n, and supp(µ) ⊂ Fix(f n)

3 If S = S2 and if f n has at least three fixed points for some
smallest n > 0, then Per(f ) = Fix(f n) and
supp(µ) ⊂ Fix(f n).
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Theorem (F-Handel [5])
Suppose S is a closed oriented surface of genus at least one
and µ is a Borel probabilty measure on S with infinite support.
Suppose G is finitely generated, almost simple and has a
distortion element. Then any homomorphism

φ : G → Diffµ(S)

has finite image.

This result was previously known in the special case of symplectic
diffeomorphisms and Lebesgue measure by a result of L. Polterovich
[17].
The result above also holds even when supp(µ) is finite if G is a
Kazhdan group (aka G has property T).
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Proof:
• If f is distorted supp(µ) ⊂ Fix(f ), so Fix(f ) is an infinite closed
set.

• Let G0 := {g ∈ G | φ(g) pointwise fixes supp(µ)}. It is infinite
and normal, and hence finite index in G.

• Let x ∈ Fix(f ). There is a common eigenvector with
eigenvalue 1 for Dgx : TMx → TMx for every g ∈ φ(G0).

• Dgx = Id for every g ∈ φ(G0).

• φ(G0) is trivial by Thurston stability.

• G/ker(φ) is finite.
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Heisenberg again

Theorem (F-Handel [5])
Suppose S is a closed oriented surface with Borel probabilty
measure µ and G is a finitely generated, almost simple group
with a subgroup isomorphic to the Heisenberg group. Then any
homomorphism

φ : G → Diffµ(S)

has finite image.
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Parallels between Diff(S1)0 and Diffµ(S)0

In general there seem to be strong parallels between results
about Diff(S1)0 and Diffµ(S)0. In addition to our results above
there is Witte’s theorem

Theorem (D. Witte [20])

Let G be a finite index subgroup of SL(n,Z) with n ≥ 3. Any
homomorphism

φ : G → Homeo(S1)

has a finite image.
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Parallels between Diff(S1)0 and Diffµ(S)0

Also there are the following results

Theorem (Hölder)

Suppose G is a subgroup of Homeo(S1)0 which acts freely (no
non-trivial element has a fixed point). Then G is Abelian.

Theorem (Conley-Zehnder, Matsumoto)
Suppose

f ∈ Homeoω(T2)0

is a commutator (ω is Lebesgue measure). Then f has (at least
three) fixed points.

Corollary

Suppose G is a subgroup of Homeoω(T2)0 which acts freely.
Then G is Abelian.
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Nilpotent Groups

Definition
A group N is called nilpotent provided when we define

N0 = N, Ni = [N,Ni−1],

there is an n ≥ 1 such that Nn = {e}. Note if n = 1 it is Abelian.

Theorem (Plante - Thurston [15])

Let N be a nilpotent subgroup of Diff2(S1)0. Then N must be
Abelian.

Theorem (Farb - F)
Every finitely-generated, torsion-free nilpotent group is
isomorphic to a subgroup of Diff1(S1)0.

John Franks Group Actions on Surfaces



An Analogue of the Plante - Thurston Theorem

Theorem (F - Handel[5])

Let N be a nilpotent subgroup of Diff1
µ(S)0 with µ a probability

measure with supp(µ) = S. If S 6= S2 then N is Abelian, if
S = S2 then N is Abelian or has an index 2 Abelian subgroup.

Proof: (For the case genus(S) > 1) Suppose

N = N1 ⊃ · · · ⊃ Nm ⊃ {1}

is the lower central series of N. then Nm is in the center of N. If
m > 1 there is a non-trivial f ∈ Nm and elements g,h with
f = [g,h]. No non-trivial element of Diff1(S)0 has finite order
since S has genus > 1. So g,h generate a Heisenberg group
and f is distorted. Our theorem says supp(µ) ⊂ Fix(f ) , but
supp(µ) = S so f = id . This is a contradiction unless m = 1
and N is abelian.
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Two Commuting Diffeomorphisms of S2

Theorem (Handel (1992) [10])

Let G be a subgroup of Diff1(S2)0 generated by two commuting
diffeomorphisms. Then there is a subgroup G0of G of index at
most two and a point x ∈ S2 such that g(x) = x for all g in G0.
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Fixed Points for Abelian Actions

Theorem (F, Handel, Parwani [7])

Let G be an abelian subgroup of Diff1(S2)0. Then there is a
subgroup G0of G of index at most two and a point x ∈ S2 such
that g(x) = x for all g in G0.

Theorem (F, Handel, Parwani [7])

Let G be an abelian subgroup of Diff1(R2)0 with the property
that there is a compact G invariant subset of R2. Then there is a
point x ∈ R2 such that g(x) = x for all g in G.
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Abelian Actions: Genus ≥ 2

Theorem (F, Handel, Parwani [8])
Suppose S is a closed oriented surface of genus at least two
and that F is an abelian subgroup of Diff0(S) Then the set of
global fixed points, Fix(F) is non-empty.

Theorem (F, Handel, Parwani [8])
Suppose S is a closed oriented surface of genus at least two
and that F is an abelian subgroup of Diff(S). Then F has a
finite index subgroup F0 such that Fix(F0) is non-empty.
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A Fixed point Theorem

Theorem (F, Handel [6])

Let G be a subgroup of Homeo(D2) and let f be an element of
the center of G. Suppose Fix(f ) ∩ ∂D2 consists of a finite set
with more than two elements each of which is either an
attracting or repelling fixed point for f : D → D. Let G0 ⊂ G
denote the finite index subgroup whose elements pointwise fix
Fix(f ) ∩ ∂D2. Then Fix(G0) ∩ int(D) is non-empty.
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The Lifting Problem

Definition
The mapping class group MCG(S) of a surface S with genus g
is the group of isotopy classes of orientation preserving
homeomorphisms of S.

MCG(S2) ∼= {1}
MCG(T 2) ∼= SL(2,Z)
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The Lifting Problem

There is a natural homomorphism

Homeo(S)→ MCG(S).

Definition
A lift of a subgroup Γ of MCG(S) is a homomorphism
Φ : Γ→ Homeo(S) such that the composition

Γ→ Homeo(S)→ MCG(S)

is the inclusion.
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The Lifting Problem

Question
Which subgroups of MCG(S) lift to Homeo(S)[Diff(S)]?

MCG(T 2) lifts to Diff(T 2) so assume that g ≥ 2.

Any free group or any free abelian group
Any finite group [Kerckhoff]
MCG(S) does not lift to Diff(S) for g ≥ 5 [Morita]
MCG(S) does not lift to Homeo(S) for g ≥ 6 [Markovic]
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An elementary proof of Morita’s Theorem.

Theorem (F, Handel [6])

If S has genus g ≥ 3 then MCG(S) does not lift to Diff(S).

Strategy of Proof

Let S = M#T 2, where M has genus g − 1 ≥ 2.
If there is a lift Φ of MCG(S) to Diff(S) we will show there is are
infinitely many global fixed point for Φ(MCG(M, ∂M)). This
leads to a contradiction.
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Thurston’s stability theorem again

Theorem (Thurston)
Suppose G is a finitely generated group,

φ : G → Diff1(Mn)

is a homomorphism and there is x0 ∈ M such that for all g ∈ G

φ(g)(x0) = x0 and Dφ(g)(x0) = I.

Then either φ is trivial or there is a non-trivial homomorphism
from G to R.
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Theorem (Korkmaz (see [11]))
If the genus g of S is ≥ 2 there is no non-trivial homomorphism
to R from MCG(S) or from MCG(S, ∂S) if ∂S is connected.
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Lemma
Let f : X → X be a homeomorphism of a locally compact metric
space with a global attracting point x0 i.e., suppose in the
Hausdorf topology

lim
n→∞

f n(Y ) = {x0}

for any compact subset Y of X . If g : X → X is a
homeomorphism which commutes with f then there exists
m > 0 such that h = f mg satisfies

lim
n→∞

hn(Y ) = {x0}

for any compact subset Y of X .
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A Fixed point Theorem

Theorem (F, Handel [6])

Let G be a subgroup of Homeo(D2) and let f be an element of
the center of G. Suppose Fix(f ) ∩ ∂D2 consists of a finite set
with more than two elements each of which is either an
attracting or repelling fixed point for f : D → D. Let G0 ⊂ G
denote the finite index subgroup whose elements pointwise fix
Fix(f ) ∩ ∂D2. Then Fix(G0) ∩ int(D) is non-empty.
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MCG(M) acting on S1.

Theorem (Parwani [16])
Let M be a connected orientable surface with finitely many
punctures, finitely many boundary components, and genus at
least 6. Then any C1 action of the mapping class group
MCG(M) on the circle S1 is trivial.

Let M = M1#M2, where each Mi has genus g ≥ 3. Also let
Gi = MCG(Mi , ∂Mi) (each of which we consider as a subgroup
of MCG(M)).
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MCG(M) acting on S1.

Then we apply the following theorem.

Theorem (Parwani [16])
Let H and G be two finitely generated groups such that
H1(G,Z) = H1(H,Z) = 0. Then for any C1 action of H× G on
the circle, either H× id acts trivially or id × G acts trivially.

Theorem (Deroin, Kleptsyn and Navas [2])

Let G be a countable group with an orientation preserving C1

action on the circle. If there is no G-invariant probability
measure for the action, then there exists an element g ∈ G
whose fixed point set is non-empty and finite.
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