Essential hyperbolicity versus homoclinic bifurcations

Global dynamics beyond uniform hyperbolicity, Beijing 2009 Sylvain Crovisier - Enrique Pujals

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Generic dynamics

Consider:

- M: compact boundaryless manifold,
- $\operatorname{Diff}(M)$.

Goal: understand the dynamics of "most" $f \in \text{Diff}(M)$. "Most": at least a dense part.

Our viewpoint: describe a *generic* subset of $\text{Diff}^1(M)$. *Generic* (Baire): a countable intersection of open and dense subsets.

Hyperbolic diffeomorphisms: definition

Definition

 $f \in \text{Diff}(M)$ is *hyperbolic* if there exists $K_0, \ldots, K_d \subset M$ s.t.:

- each K_i is a hyperbolic invariant compact set

$$T_{\mathcal{K}}M=E^{s}\oplus E^{u},$$

- for any $x \in M \setminus (\bigcup_i K_i)$, there exists $U \subset M$ open such that

 $f(\overline{U}) \subset U$ and $x \in U \setminus f(\overline{U})$.

Hyperbolic diffeomorphisms: properties

Good properties of hyperbolic diffeomorphisms: Ω -stability, coding, physical measures,...

The set $hyp(M) \subset \text{Diff}^r(M)$ of hyperbolic dynamics is

- open,

and:

- *dense*, when dim(M) = 1, $r \ge 1$ (*Peixoto*),
- not dense,

when dim(M) = 2, $r \ge 2$ (*Newhouse*) or when dim(M) > 2 and $r \ge 1$ (*Abraham-Smale*),

- dense??, when dim(M) = 2, r = 1 (Smale'conjecture = yes).

Obstructions to hyperbolicity

Homoclinic tangency associated to a hyperbolic periodic point *p*.

Heterodimensional cycle associated to two hyperbolic periodic points p, q such that $\dim(E^s(p)) \neq \dim(E^s(q))$.

Palis' conjecture

Describe of the dynamics in Diff(M) by phenomena/mechanisms.

Conjecture (Palis)

Any $f \in \text{Diff}(M)$ can be approximated by a hyperbolic diffeomorphism or by a diffeomorphism exhibiting a homoclinic bifurcation (tangency or cycle).

This holds when dim(M) = 1. In higher dimensions, there are progresses for Diff¹(M).

Theorem (Pujals-Sambarino)

The Palis conjecture holds for C^1 -diffeomorphisms of surfaces.

Remark (Bonatti-Díaz). For the C^1 -topology, it could be enough to consider only the heterodimensional cycles.

Essential hyperbolicity far from homoclinic bifurcations

Theorem (Pujals, C-) Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

Definition

 $f \in \text{Diff}(M)$ is *essentially hyperbolic* if there exists K_1, \ldots, K_s s.t.:

- each K_i is a hyperbolic attractor,
- the union of the basins of the K_i is (open and) dense in M.

Remarks.

- The set of these diffeomorphisms is not open apriori.
- There was a previous result by Pujals about attractors in dimension 3.

Partial hyperbolicity far from homoclinic bifurcations

Theorem 1 (C-)

Any generic diffeomorphism $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is partially hyperbolic.

More precizely, there exists $K_0, \ldots, K_d \subset M$ such that:

- each K_i is a partially hyperbolic invariant compact set $T_{\mathcal{K}}M = E^s \oplus E^u$ or $E^s \oplus E^c \oplus_{<} E^u$ or $E^s \oplus E_1^c \oplus E_2^c \oplus E^u$, and E^c, E_1^c, E_2^c are one-dimensional.

- for any $x \in M \setminus (\bigcup_i K_i)$, there exists $U \subset M$ open such that

 $f(\overline{U}) \subset U$ and $x \in U \setminus f(\overline{U})$.

Theorem 2 (Pujals, Sambarino, C-)

For any

- generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$,
- partially hyperbolic transitive set K,

the extremal bundles E^s , E^u on K are non-degenerated, or K is a sink/source.

Program of the lectures

Goal. Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

Part 1. Topological hyperbolicity

Obtain the existence of a finite number of "attractors" that are "topologically hyperbolic" and have dense basin.

- *Lecture 1.* How Theorems 1 & 2 are used to prove the essential topological hyperbolicity?
- Lecture 2. Theorem 1 (partial hyperbolicity).
- Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity

- Lectures 4,5,6.

I- Decomposition of the dynamics: the chain-recurrence classes

The *chain-recurrent set* $\mathcal{R}(f)$: the set of $x \in M$ s.t. for any $\varepsilon > 0$, there exists a ε -pseudo-orbit $x = x_0, x_1, \ldots, x_n = x$, $n \ge 1$.

The *chain-recurrence classes*: the equivalence classes of the relation "for any $\varepsilon > 0$, there is a periodic ε -pseudo-orbit containing x, y".

• This gives a partition of $\mathcal{R}(f)$ into compact invariant subsets.

Theorem (Bonatti, C-)

For $f \in \text{Diff}^1(M)$ generic, any chain-recurrence class which contains a periodic point p coincides with the homoclinic class of p:

$$H(p) = \overline{W^{s}(O(p)) \oplus W^{u}(O(p))}.$$

The other chain-recurrence classes are called *aperiodic classes*.

I- Decomposition of the dynamics: the quasi-attractors

A *quasi-attractor* is a chain-recurrence class having a basis of neighborhoods U which satisfy $f(\overline{U}) \subset U$.

There always exist quasi-attractors.

Theorem (Morales, Pacifico, Bonatti, C-)

For a generic $f \in \text{Diff}^1(M)$, the basins of the quasi-attractors of f are dense in M.

In order to prove the main theorem we have to prove that the quasi-attractors are hyperbolic and finite.

II- Weak hyperbolicity of the quasi-attractors

One uses:

Theorem 1

Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is partially hyperbolic.

More precizely:

- Each aperiodic class K has a partially hyperbolic structure $T_K M = E^s \oplus E^c \oplus E^u$ with dim $(E^c) = 1$. The dynamics in the central is neutral.

$$\longrightarrow \cdot \longleftrightarrow \cdot \diamond \cdot \diamond \cdot \diamond \cdot \diamond \cdot \diamond \cdot \diamond \cdot \leftarrow \leftarrow \leftarrow$$

- Each homoclinic class H(p) has a partially hyperbolic structure $T_{H(p)}M = E^{cs} \oplus E^{cu} = (E^s \oplus E_1^c) \oplus (E_2^c \oplus E^u)$ with $\dim(E_i^c) = 0$ or 1. The stable dimension of p coincides with $\dim(E^{cs})$. II- Weak hyperbolicity of the quasi-attractors

Corollary

For a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$, each quasi-attractor is a homoclinic class H(p).

Proof. Consider

- an aperiodic class and $x \in K$ point x in an aperiodic class K,
- a periodic point p close to x.

Then, $W^{uu}(x)$ meets the center-stable plaque of p.

Since each quasi-attractors contain its strong unstable manifolds, K is not a quasi-attractor.

A D F A B F A B F A B F

II- Weak hyperbolicity of the quasi-attractors

Corollary

For a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$, each non-hyperbolic quasi-attractor H(p) is a partially hyperbolic:

$$T_{H(p)} = E^s \oplus E^c \oplus E^u$$
 with dim $(E^c) = 1$.

 E^c is "center-stable": the stable dimension of p is dim $(E^s \oplus E^c)$.

Proof. Consider H(p) with a "center-unstable" bundle E^c .

• There exists periodic $p' \in H(p)$ with short unstable manifolds.

$$W^c(p') \xrightarrow{p' q'} q'$$

- Since H(p) is a quasi-attractor, it contains q'.
- p' and q' have different stable dimension. By perturbation, one gets a heterodimensional cycle between p' and q'.

Corollary

For a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$, the union of the non-trivial quasi-attractors is closed.

Proof. Consider a collection of non-trivial quasi-attractors:

$$A_n \xrightarrow[Hausdroff]{} \Lambda.$$

Then, Λ has a partially hyperbolic structure.

- The A_n are saturated by their strong unstable manifolds ⇒ Λ is saturated by the invariant manifolds tangent to E^u ⇒ Λ is a non-trivial homoclinic class H(p).
- If the unstable dimension of p equals dim(E^u), then, H(p) contains W^u(p) ⇒ H(p) is a quasi attractor (we are done). Otherwise Λ ⊂ H(p) has a partially hyperbolic structure E^{cs} ⊕ E^c ⊕ E^u and E^c is center-unstable.

Consider a sequence of quasi-attractors $A_n \longrightarrow \Lambda \subset H(p)$ and a splitting $T_{H(p)}M = E^{cs} \oplus E^c \oplus E^u$ with E^c center-unstable.

- Consider z ∈ Λ. By expansivity, each A_n contains a periodic orbit O_n which avoids a neighborhood of z.
- ► For the A_n , E^c is center-stable. Otherwise Λ is saturated by plaques tangent to $E^c \oplus E^u$. One concludes as before.
- Consequently, O_n has a point whose stable manifold tangent to E^{cs} is uniform. ⇒ Robustly W^u(p) intersects W^s(O_n).

Conclusion.

- Since the A_n converge towards Λ, the unstable manifold of O_n meets the neighborhoods of z.
- ► The stable manifold of p meets the neighborhoods of z ∈ H(p).
- The connecting lemma allows to create a connection between W^u(O_n) and W^s(p).
- ▶ The connection between $W^s(O_n)$ and $W^u(p)$ is preserved. ⇒ One gets a heterodimensional cycle by perturbation.

Proposition

For a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$, the number of sinks is finite.

Proof. Consider a sequence of sinks $O_n \xrightarrow[Hausdorff]{} \Lambda$.

- Λ is contained in a chain-recurrence class.
- By Theorem 1, it is partially hyperbolic.
- By Theorem 2, E^u is non trivial.

Proof of the essential hyperbolicity

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$.

- The union of the basin of the quasi-attractors is dense (residual) in *M*.
- From theorem 1:
 - the quasi-attractors are homoclinic classes;
 - their central bundle (when it exists) has dimension 1 and is center-stable;
 - there are only finitely many non-trivial quasi-attractors.
- From theorems 1 and 2, there are only finitely many sinks.

\Rightarrow one has obtained the essential topological hyperbolicity.

Essential hyperbolicity versus homoclinic bifurcations (2)

Partial hyperbolicity far from homoclinic bifurcations

(ロ)、(型)、(E)、(E)、 E) の(の)

Partial hyperbolicity far from homoclinic bifurcations

Conjecture (Palis) Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is hyperbolic.

Theorem 1

Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is partially hyperbolic.

More precizely, each (chain-)transitive invariant compact set K of f has a partially hyperbolic structure of one of the following types:

$$- T_K M = E^s \oplus_{<} E^u,$$

-
$$T_{\mathcal{K}}M = E^{s} \oplus_{<} E^{c} \oplus_{<} E^{u}$$
 with dim $(E^{c}) = 1$,

 $- T_{\mathcal{K}}M = E^{s} \oplus_{<} E_{1}^{c} \oplus_{<} E_{2}^{c} \oplus_{<} E^{u} \text{ with } \dim(E_{1}^{c}), \dim(E_{2}^{c}) = 1.$

 $(\oplus_{<} \text{ means that the sum is dominated.})$

Program of the lectures

Goal. Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

Part 1. Topological hyperbolicity

Obtain the existence of a finite number of "attractors" that are "topologically hyperbolic" and have dense basin.

- Lecture 1. How Theorems 1 & 2 are used to prove the essential topological hyperbolicity?
- Lecture 2. Theorem 1 (partial hyperbolicity).
- Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity

- Lectures 4,5,6.

How to use "far from heterodimensional cycles"?

In the last lecture, we have seen:

- The non-trivial dynamics splits into the (disjoint, compact, invariant) chain-recurrence classes.
- Generically, any chain-recurrence class that contains a hyperbolic periodic point is a homoclinic class

 $H(p) = \overline{W^s(O(p)) \oplus W^u(O(p))}.$

(= closure of the hyperbolic periodic orbits *O* homoclincally related to *p*: $W^{s}(O) \oplus W^{u}(p)$ and $W^{s}(p) \oplus W^{u}(O)$ are $\neq \emptyset$.)

Proposition

For a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Cycle}}$, all the periodic points in a same homoclinic class have the same stable dimension.

How to use "far from homoclinic tangencies"?

Theorem (Wen)

Consider $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and a sequence of hyperbolic periodic orbits (O_n) with the same stable dimension d_s . Then $\Lambda = \overline{\bigcup_n O_n}$ has a splitting $T_{\Lambda}M = E \oplus_{\leq} F$ with dim $(E) = d_s$.

This allows to build dominated splittings.

Corollary (Wen)

If the O_n have a weak Lyapunov exponent (i.e. ~ 0), there is a corresponding splitting $T_{\Lambda}M = E' \oplus_{<} E^c \oplus_{<} F'$ with dim $(E^c) = 1$.

A periodic orbit has at most one weak exponent.

Decomposition of non-uniform bundles

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and an invariant compact set Λ with a splitting $T_{\Lambda}M = E \oplus_{<} F$.

Proposition

If E is not uniformly contracted then one of the following holds:

- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) < \dim(E)$.
- $\Lambda \subset H(p)$ for some periodic p with dim $(E^{s}(p)) = dim(E)$. H(p) contains periodic orbits with a weak stable exponent.
- Λ contains K partially hyperbolic: $T_K M = E^s \oplus_{<} E^c \oplus_{<} E^u$, with dim $(E^c) = 1$, dim $(E^s) < \dim(E)$. Any measure on K has a zero Lyapunov exponent along E^c .

▶ In the two first cases, the bundle *E* splits $E = E' \oplus_{<} E^{c}$.

Decomposition of non-uniform bundles: proof.

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$, an invariant compact set Λ with a splitting $T_{\Lambda}M = E \oplus_{<} F$. Assume that E is not uniformly contracted.

- There exists an ergodic measure µ with a non-negative Lyapunov exponent along E.
- ► Mañé's ergodic closing lemma ⇒ µ is the limit of periodic orbits O_n with Lyapunov exponents close to those of µ.
- If μ is hyperbolic, the O_n are homoclinically related \Rightarrow case 1.
- Otherwise μ has an exponent equal to zero. Let $K = \text{Supp}(\mu)$. One has $T_K M = E' \oplus_{<} E^c \oplus_{<} F'$.
- ► Taking dim(E') minimal, the central exponent of any measure supported on K is ≤ 0.
- ► Taking K minimal for the inclusion, if some measure has a negative central exponent, Liao's selecting lemma ⇒ case 2.
- Otherwise, all the central exponents are zero \Rightarrow case 3.

Wen's local result

Any non-hyperbolic diffeomorphism has a non-hyperbolic chain-transitive set which is minimal for the inclusion.

Corollary (Wen)

For a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$, any minimally non-hyperbolic (chain-)transitive set Λ is partially hyperbolic.

Proof. Consider the finest splitting $T_{\Lambda}M = E_1 \oplus_{<} E_2 \oplus_{<} \cdots \oplus_{<} E_s$ and E_i is not uniformly contracted nor expanded.

- If Λ contains K partially hyperbolic, $\Lambda = K$ by minimality.
- Otherwise Λ is contained in a homoclinic class H(p).
- ▶ Far from heterodimentional cycles \Rightarrow all the periodic points in H(p) have the same stable dimension d_s .
- ▶ If dim $(E_1 \oplus \cdots \oplus E_i) \leq d_s$, then dim $(E_i) = 1$ and dim $(E_1 \oplus \cdots \oplus E_i) = d_s$.
- Otherwise dim $(E_i) = 1$ and dim $(E_1 \oplus \cdots \oplus E_{i-1}) = d_s$.

From local to global: principle

Consider

- a generic $f \in \mathsf{Diff}^1(M) \setminus \overline{\mathsf{Tangency}}$,
- a chain-recurrence class Λ with a splitting $E \oplus F$.
- 1. If E is not uniformly contracted,
 - either it splits as $E = E' \oplus_{<} E^{c}$,
 - ▶ or Λ contains K with $T_K M = E^s \oplus_{<} E^c \oplus_{<} E^u$, dim $(E^c) = 1$ and dim $(E^s) < \dim(E)$.

In the second case,

- ► One looks for periodic orbits that shadows A and spends most of its time close to K.
- The splitting on K extends on Λ as $T_K M = E' \oplus_{<} E^c \oplus_{<} F$.

- 2. One repeats step 1 with the bundle E'.
- 3. One argues similarly with F.

(Topological) dynamics in the central direction

In order to go from local to global: one has to consider,

- a transitive set K,
- with a splitting $T_{\mathcal{K}}M = E^{s} \oplus_{<} E^{c} \oplus_{<} E^{u}$, dim $(E^{c}) = 1$.

The dynamics in the central direction can be lifted.

Proposition

There exists a local continuous dynamics $(K \times \mathbb{R}, h)$ and a projection $\pi: K \times \mathbb{R} \to M$ such that

- $(K \times \mathbb{R}, h)$ is a skew product above (K, f),
- π semi-conjugates h to f and sends $K \times \{0\}$ on K,
- π sends the $\{x\} \times \mathbb{R}$ on a familly of central plaques.

 $(K \times \mathbb{R}, h)$ is called a *central model* for the central dynamics on K. It is in general not unique.

Classification of the dynamics in the central direction

Let $(K \times \mathbb{R}, h)$ be a central model. One of the following holds.

Hyperbolic type: the chain-stable set of K × {0} contains small attracting neighborhoods.

► Neutral type: there are small attracting and small repelling neighborhoods of K × {0}.

- Parabolic type: one side has small attracting neigborhoods, the other one has small repelling neighborhoods.
- ► Recurrent type: the intersection of the chain-stable and chain-unstable sets contains a segment {x} × [0, ε].

The type does not depend on the choice of a central model.

From local to global: one easy example

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$ and

- K transitive with $T_K M = E^s \oplus_{<} E^c \oplus_{<} E^u$, dim $(E^c) = 1$, s.t. any measure on K has central exponent equal to zero,
- Λ the chain-recurrence class containing K.

Proposition

If K has hyperbolic type, then Λ satisfies $T_{\Lambda}M = E \oplus_{<} E^{c} \oplus_{<} F$. It is a homoclinic class H(p). The stable dimension of p is dim(E).

Proof. Assume *K* with hyperbolic repelling type.

- There are periodic orbits $O_n \xrightarrow[Hausdorff]{} K$, with stable dimension $d_s = \dim(E^s)$ and homoclinically related.
- ► $\Lambda = H(O_n)$ for each *n*. There is a splitting $T_{\Lambda}M = E \oplus_{<} F_0$ with dim $(E) = d_s$.
- ▶ The central exponents of O_n is weak $\Rightarrow H(O_n)$ contains a dense set of weak periodic orbits. Hence $F_0 = E^c \oplus_{<} F$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Central dynamics: the different cases

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency}}$,

a chain-recurrence class Λ and a minimal set $\mathcal{K}\subset\Lambda$ s.t.:

-
$$T_K M = E^s \oplus_{<} E^c \oplus_{<} E^u$$
, dim $(E^c) = 1$,

- all the measure on K have a zero central Lyapunov exponent.

The central type of K is hyperbolic, recurrent, parabolic untwisted $\Rightarrow \Lambda$ is a homoclinic class.

It contains periodic orbits whose central exponent is weak.

The central type of K is parabolic twisted

 \Rightarrow one can create a heterodimensional cycle by perturbation.

The central type of K is neutral and $K \subsetneq \Lambda$

 \Rightarrow one creates a cycle or Λ is a homoclinic class as before.

The central type is neutral and $K = \Lambda$ \Rightarrow the class is aperiodic.

Proof of theorem 1

Chain-hyperbolic classes

Consider an invariant compact set Λ with a dominated splitting $T_{\Lambda}M = E \oplus F$ such that.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Essential hyperbolicity versus homoclinic bifurcations (3)

Hyperbolicity of the extremal bundles

(ロ)、(型)、(E)、(E)、 E) の(の)

Dynamics far from homoclinic bifurcations

Consider a generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$.

Theorem 1 Any non-hyperbolic chain-recurrence class K is partially hyperbolic:

 $T_{\mathcal{K}}M = E^{s} \oplus_{<} E^{c} \oplus_{<} E^{u} \text{ or } E^{s} \oplus_{<} E_{1}^{c} \oplus_{<} E_{2}^{c} \oplus_{<} E^{u},$

where E^{c} , E_{1}^{c} , E_{2}^{c} are one-dimensional bundles.

Theorem 2 The cases $E^s \oplus_{<} E^c$ and $E^s \oplus_{<} E_1^c \oplus_{<} E_2^c$ don't appear.

Corollary f has only finitely many sinks.

Setting

Consider

- $f \in \operatorname{Diff}^1(M),$
- $-\Lambda$: an invariant compact set,
- $T_{\Lambda}M = E \oplus_{<} F$: a dominated splitting with dim(F) = 1.

Under general assumptions we expect that

F is uniformly expanded unless Λ contains a sink.

Motivation: the 1D case

Theorem (Mañé)

Consider

- f: a C^2 endomorphism of the circle,
- Λ: an invariant compact set.

Assume furthermore that

– $f_{|\Lambda}$ is not topologically conjugated to an irrational rotation,

- all the periodic points of f in Λ are hyperbolic.

Then $Df_{|\Lambda}$ is uniformly expanding unless Λ contains a sink.

The surface case

Theorem (Pujals-Sambarino)

Consider

- f: a C² surface diffeomorphism,
- Λ : an invariant compact set with a dominated splitting $T_{\Lambda}M = E \oplus_{<} F$, dim(F) = 1.

Assume furthermore that

- Λ does not contain irrational curves,
- all the periodic points of f in Λ are hyperbolic.

Then F is uniformly expanding unless Λ contains a sink.

Irrational curve: a simple closed curve γ , invariant by an iterate f^n such that $f^n_{|\gamma}$ is topologically conjugated to an irrational rotation.

The surface generic case

Corollary

Consider

- f: a C¹-generic surface diffeomorphism,
- Λ : an invariant compact set with a dominated splitting $T_{\Lambda}M = E \oplus_{<} F$, dim(F) = 1.

Then Λ is a hyperbolic set or contains a sink/source.

The one-codimensional uniform bundle case

Theorem (Pujals-Sambarino)

Consider $f \in \text{Diff}^2(M)$ and H(p) a homoclinic class such that:

- $T_{H(p)}M = E^{s} \oplus_{<} F$: a dominated splitting with dim(F) = 1,
- E^s is uniformly contracted,
- all the periodic orbits in H(p) are hyperbolic saddles,
- H(p) does not contain irrational curves.

Then, F is uniformly expanded.

Corollary

Consider $f \in \text{Diff}^1(M)$ generic and H(p), invariant compact set s.t.:

- $T_{H(p)}M = E^s \oplus_{<} F$: a dominated splitting with dim(F) = 1,
- E^s is uniformly contracted,
- H(p) does not contain sinks.
 Then H(p) is a hyperbolic set.

How to replace the uniform contraction on E?

Consider Λ with a splitting $T_{\Lambda}M = E \oplus F$.

By Hirsch-Pugh-Shub, there exists a *locally invariant plaque* family tangent to E,

i.e. a continuous collection of C^1 -plaques $(\mathcal{D}_x)_{x\in\Lambda}$ such that

–
$$\mathcal{D}_x$$
 is tangent to E_x at x ,

- $f(\mathcal{D}_x)$ contains a uniform neighborhood of f(x) in $\mathcal{D}_{f(x)}$.

The plaques are *trapped* if for each x, $\overline{f(\mathcal{D}_x)}$ is contained in the open plaque $\mathcal{D}_{f(x)}$.

In this case, the plaques are essentially unique.

The bundle *E* is *thin trapped* if there exists trapped plaque families with arbitrarily small diameter.

The one-codimensional non-uniform bundle case

Theorem

Consider $f \in \text{Diff}^2(M)$ and Λ a chain-recurrence class such that:

- $T_{\Lambda}M = E \oplus_{<} F$: a dominated splitting with dim(F) = 1,

- E is thin trapped,
- Λ is totally disconnected in the center-stable plaques,
- all the periodic orbits in Λ are hyperbolic saddles,
- Λ does not contain irrational curves.

Then, F is uniformly expanded.

Summary of the different cases

If Λ has a dominated splitting $T_{\Lambda}M = E \oplus_{<} F$ with dim(F) = 1, and if E satisfies one of these properties :

- $-\dim(E) = 1$,
- E is uniformly contracted,
- E is thin trapped + Λ is totally disconnected along the plaques tangent to E.

then, F is uniformly contracted or Λ contains a sink.

Strategy

 $f \in \text{Diff}^2(M)$ and Λ with a splitting $E \oplus_{<} F$, dim(F) = 1. Λ does not contain irrational curves nor non-saddle periodic points.

Assuming that any proper invariant compact set $\Lambda' \subsetneq \Lambda$ is hyperbolic, we have to prove that Λ is hyperbolic.

- Step 1: topological hyperbolicity. (Pujals-Sambarino)
 Each point x ∈ Λ has a well defined one-dimensional unstable manifold W^u(x) which is (topologically) contracted by f⁻¹.
- Step 2: existence of a markov box *B*. (Specific in each case)
- Step 3: uniform expansion along F. (Pujals-Sambarino)
 Obtained by inducing in B.

Markov boxes

Step $1 \Rightarrow \exists$ thin trapped plaque families $\mathcal{D}^s, \mathcal{D}^u$ tangent to E, F.

A box *B* is a union of curves (J_x) that are

- contained in the plaques \mathcal{D}^u ,
- bounded by two plaques of \mathcal{D}^{s} .

We assume furthermore that

- B has interior \hat{B} in Λ . \triangleright allows to induce
- B is Markovian: for each $z \in \overset{\,\,{}_\circ}{B} \cap f^{-n}(\overset{\,\,{}_\circ}{B})$, one has
 - $f^n(J_z) \supset J_{f^n(z)}$. $\triangleright B$ sees the expansion along F
 - z is contained in a sub-box $B' \subset B$ that meets all the curves J_x and $f^n(B')$ is a union of curves of B.

▷ quotient the dynamics along center-unstable plaques

Construction of Markov boxes

E, F are thin trapped $+ \Lambda$ transitive

 \Rightarrow there exists a periodic orbit *O* that shadows Λ .

Consider the one-codimensional plaques \mathcal{D}_y^s for $y \in O$. *B* is the region bounded by two such "consecutive" plaques.

B is Markovian along the center-unstable curves.

E thin trapped $+ \Lambda$ totally disconnected along the center-stable \Rightarrow one can choose open trapped plaques \mathcal{D}^s such that:

- for each x, $\Lambda \cap \mathcal{D}_x^s$ is a compact subset Δ_x of \mathcal{D}_x^s ,
- for each x, y, the sets Δ_x, Δ_y coincide or are disjoint.
- B is Markovian along the center-stable plaques.

How to get disconnectedness?

H(p): a homoclinic class for a generic $f \in \text{Diff}^1 \setminus \overline{\text{Tangency} \cup \text{Cycle}}$. **Goal:** rule out the splitting $T_{H(p)}M = E^s \oplus_{<} E_1^c \oplus_{<} E_2^c$.

H(p) contains q periodic with weak (stable) exponent along E_1^c .

Lemma

If q has a strong homoclinic intersection:

 $W^u(O(q))\cap W^{ss}(O(q))
eq \emptyset,$

then, one can create a heterodimensional cycle by perturbation.

For any $q \in H(p)$ periodic, one has $W^{ss}(q) \cap H(p) = \{q\}$.

A geometrical result on partially hyperbolic sets

Let H(p) be a homoclinic class with a splitting

$$T_{H(p)}M = E^{cs} \oplus_{<} E^{cu} = (E^s \oplus_{<} E_1^c) \oplus_{<} E_2^c,$$

such that E^{cs} , E^{cu} are thin trapped for f, f^{-1} respectively.

Theorem (Pujals, C-)

If for any $q \in H(p)$ periodic, one has $W^{ss}(q) \cap H(p) = \{q\}$, then

- either H(p) is contained in an invariant submanifold tangent to $E_1^c \oplus E_2^c$,

 or H(p) is totally disconnected along the center-stable plaques.

Codimensional dynamics

We use:

Theorem (Bonatti, C-)

Consider Λ with a splitting $E^{s}\oplus_{<}F.$ Then,

- either Λ is contained in an invariant submanifold tangent to F,
- or there exists $x \in \Lambda$ such that $W^{ss}(x) \cap \Lambda \setminus \{x\}$ is non-empty.

In our case, x is not periodic.

Program of the lectures

Goal. Any generic $f \in \text{Diff}^1(M) \setminus \overline{\text{Tangency} \cup \text{Cycle}}$ is essentially hyperbolic.

Part 1. Topological hyperbolicity

Obtain the existence of a finite number of "attractors" that are "topologically hyperbolic" and have dense basin.

- Lecture 1. How Theorems 1 & 2 are used to prove the essential topological hyperbolicity?
- Lecture 2. Theorem 1 (partial hyperbolicity).
- Lecture 3. Theorem 2 (extremal bundles).

Part 2. From topological to uniform hyperbolicity

- Lectures 4,5,6.

Uniform hyperbolicity of quasi-attractors

We need another result on the geometry of partially hyp. sets. Theorem (Pujals,C-)

Consider H(p) with $T_{H(p)}M = E^s \oplus_{<} E^c \oplus_{<} E^u$, $dim(E^s) = 1$ s.t.

 $- E^{cs} = E^s \oplus E^c$ is thin trapped,

- for each $x \in H(p)$, one has $W^u(x) \subset H(p)$.

Then, there exists $g \in \text{Diff}^1(M)$ close to f such that

- a) either for any $x \in H(p_g)$ one has $W^{ss}(x) \cap H(p_g) = \{x\}$,
- b) or there exists $q \in H(p_g)$ periodic with a strong connection.

In case a), for f generic, H(p) is contained in an invariant submanifold tangent to $E^c \oplus E^u \Rightarrow H(p)$ is hyperbolic.

In case b), if E^c is not uniformly contracted, one can create a heterodimensional cycle.