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Goals of this Minicourse

against the backdrop of Barry Simon’s 21st century problems,
describe the state of affairs in the spectral theory of
Schrödinger operators around the turn of the century

state some of the major results obtained in this century

explain why the technical core of the proofs is solely of
dynamical nature

more generally, extract the dynamical aspects of recent
advances in spectral theory and indicate how further progress
can be obtained

describe recent joint work with Artur Avila and Jairo Bochi on
the denseness of uniform hyperbolicity in a context relevant to
Schrödinger operators
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Lecture 1

Barry Simon’s 21st Century Problems
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Goals of this Lecture

state three of Barry Simon’s fifteen Schrödinger operators
problems for the 21st century

explain why these problems were central issues in spectral
theory at the time

describe the results that led to complete solutions of these
three problems
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The Almost Mathieu Operator

Consider the Hilbert space

`2(Z) =
{
ψ : Z→ C :

∑
n∈Z
|ψ(n)|2 <∞

}
and, for λ, α, ω ∈ R, the linear operator

Hλ,α,ω : `2(Z)→ `2(Z)

given by

[Hλ,α,ωψ](n) = ψ(n + 1) + ψ(n − 1) + 2λ cos(2π(ω + nα))ψ(n)

and its spectrum

σ(Hλ,α,ω) = {E ∈ R : (Hλ,α,ω − E )−1 does not exist}
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Barry Simon’s 21st Century Problems

Here are the three problems problems that concern

[Hλ,α,ωψ](n) = ψ(n + 1) + ψ(n − 1) + 2λ cos(2π(ω + nα))ψ(n)

Problem 4. (Ten Martini problem) Prove for all λ 6= 0 and all
irrational α that Σλ,α = σ(Hλ,α,ω) (this set is ω-independent) is a
Cantor set, that is, it is nowhere dense.

Problem 5. Prove for all irrational α and |λ| = 1 that Σλ,α has
measure zero.

Problem 6. Prove for all irrational α and |λ| < 1 that the
spectrum is purely absolutely continuous.

Remark. Periodic potentials are well understood, so one may
restrict attention to λ 6= 0 and α irrational. One may further
restrict to α, ω ∈ [0, 1).
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Barry Simon’s 21st Century Problems

All three problems are completely solved by now. Here are the key
contributing papers:

Problem 4. Prove for all λ 6= 0 and all irrational α that Σλ,α is a
Cantor set.

Puig 2003, Avila-Jitomirskaya 2009+

Problem 5. Prove for all irrational α and |λ| = 1 that Σλ,α has
measure zero.

Avila-Krikorian 2006

Problem 6. Prove for all irrational α and |λ| < 1 that the
spectrum is purely absolutely continuous.

Avila-Jitomirskaya 2009+, Avila-D. 2008, Avila 2009+
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The Relation to Physics

We will first address the following two preliminary questions that
come to mind naturally:

Why consider Schrödinger operators?

Why consider the cosine potential in the almost Mathieu
operator?
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A Quantum Particle in a 1D Discrete World

The state of the quantum system is described by a normalized
element ψ of

`2(Z) =
{
ψ : Z→ C :

∑
n∈Z
|ψ(n)|2 <∞

}
The interpretation is as follows:

Prob ( particle is in A ) =
∑
n∈A

|ψ(n)|2
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A Quantum Particle in a 1D Discrete World

The state changes with time according to the Schrödinger
equation:

i∂tψ = Hψ

Here, H is the Schrödinger operator

[Hψ](n) = ψ(n + 1)ψ(n − 1) + V (n)ψ(n)

where the potential V : Z→ R models the environment the
quantum particle is exposed to.

Formally, the solution is given by

ψt = e−itHψ0
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A Quantum Particle in a 1D Discrete World

The Schrödinger operator is self-adjoint:

〈φ,Hψ〉 = 〈Hφ, ψ〉

and hence the spectral theorem allows one to rigorously define a
unitary operator e−itH .

The “allowed energies” are given by the spectrum of H:

σ(H) = {E ∈ R : (H − E )−1 does not exist}

Moreover, for every ψ ∈ `2(Z), there is a so-called spectral
measure dµψ so that

〈ψ, g(H)ψ〉 =

∫
σ(H)

g(E ) dµψ(E )
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A Quantum Particle in a 1D Discrete World

Spectral measures are important because they are related to the
long time behavior of the solutions to the Schrödinger equation.

Indeed, if ψ(t) solves i∂tψ = Hψ and dµ is the spectral measure
of ψ(0), then

the particle “travels freely” if dµ is absolutely continuous

the particle “travels somewhat” if dµ is singular continuous

the particle “does not travel” if dµ is pure point

We say that H has purely absolutely continuous spectrum (resp.,
purely singular continuous spectrum, pure point spectrum) if all
spectral measures are purely absolutely continuous (resp., purely
singular continuous, pure point).
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The Almost Mathieu Operator

The potential V : Z→ R models the environment the quantum
particle is exposed to. One may regard V (n) as the (relative)
height of an obstacle at site n.

Since quasi-periodic structures exist in nature, quasi-periodic
potentials

V (n) = f (ω + nα)

with f : T→ R are physically relevant. The special case of
f (ω) = 2λ cos(2πω) arises in this context as the simplest
non-constant example.

Historically, however, f (ω) = 2λ cos(2πω) arose for a slightly
different reason. It is obtained by separation of variables of a 2D
model with constant magnetic field.
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The Almost Mathieu Operator

Since the early investigations of the almost Mathieu operator,
three main issues have attracted attention.

the shape of the spectrum

the Lebesgue measure of the spectrum

the type of the spectral measures
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The Shape of the Spectrum

Based on numerics, the shape of the spectrum was conjectured to
be a Cantor set.

In 1981, Mark Kac offered ten Martinis for a proof of Cantor
spectrum for all non-periodic cases, that is, for every λ 6= 0 and
every irrational α.

In 1982, Barry Simon coined the term Ten Martini Problem.

Here is the so-called Hofstadter butterfly, which shows the
spectrum for λ = 1 and α ranging through [0, 1]:
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The Hofstadter Butterfly
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The Aubry-André Conjectures and the Role of λ

Aubry and André conjectured the following picture as the coupling
constant runs from zero to infinity.

The measure of the spectrum is piecewise affine and runs from the
value 4 down to zero and then back up. More precisely, it obeys
the formula

Leb(σ(Hλ,α,ω)) = 4|1− |λ||

Thus, the case |λ| = 1 is critical and, indeed, a phase transition
occurs at that point:

The spectral measures are absolutely continuous for |λ| < 1,
singular continuous for |λ| = 1, and pure point for |λ| > 1.
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The Almost Mathieu Operator

A great many papers were devoted to the ten Martini problem and
the Aubry-André conjectures in the 1980’s and 1990’s. All three
issues were partially resolved by 1999.

It is probably fair to say that spectral theorists had exhausted their
toolboxes and at the turn of the century, it was clear that entirely
new ideas and approaches were needed to handle the remaining
cases.

The three problems from Simon’s list addressed this situation.

Looking back now, it turned out that tools from modern dynamics
(especially the dynamics of SL(2,R)-cocycles over irrational
rotations) were exactly what was needed and, once this was
realized, the three problems were solved quite quickly.
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Generalized Eigenfunctions

Consider the difference equation

u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n)

We say that E ∈ R is a generalized eigenvalue if this equation has
a non-trivial solution uE , called the corresponding generalized
eigenfunction, satisfying

|uE (n)| ≤ C (1 + |n|)δ

Theorem

(a) Every generalized eigenvalue of H belongs to σ(H).
(b) For almost every E ∈ R with respect to any spectral measure,
there exists a generalized eigenfunction with δ = 1

2 + ε.
(c) The spectrum of H is given by the closure of the set of
generalized eigenvalues of H.
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Subordinate Solutions

A solution of u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n) is called
subordinate at ∞ if for every linearly independent solution ũ, we
have

lim
N→∞

∑N
n=1 |u(n)|2∑N
n=1 |ũ(n)|2

= 0

Subordinacy at −∞ is defined analogously.

Theorem

Consider any spectral measure of H. Then µac is supported by

{E ∈ R : at +∞ or −∞ there are no subordinate solutions}

and µsing is supported by

{E ∈ R : there is a solution that is subordinate at both ±∞}
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Transfer Matrices and Cocycles

Now that we have seen that spectral analysis essentially reduces to
a solution analysis, let us rewrite

u(n + 1) + u(n − 1) + V (n)u(n) = Eu(n)

as follows: (
u(n + 1)

u(n)

)
= TE (n)

(
u(n)

u(n − 1)

)
where

TE (n) =

(
E − V (n) −1

1 0

)
Thus, (

u(n + 1)
u(n)

)
= ME (n)

(
u(1)
u(0)

)
where

ME (n) = TE (n) · · ·TE (1)
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Transfer Matrices and Cocycles

In the case where the potential V is dynamically defined

V (n) = f (T nω)

(with f : Ω→ R, T : Ω→ Ω, and ω ∈ Ω), the transfer matrix

ME (n) = TE (n) · · ·TE (1)

=

(
E − V (n) −1

1 0

)
· · ·
(

E − V (1) −1
1 0

)
=

(
E − f (T nω) −1

1 0

)
· · ·
(

E − f (Tω) −1
1 0

)
takes the form of a linear cocycle.
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Lecture 2

The Connection Between Dynamics and the
Spectral Theory of Schrödinger Operators
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Goals of this Lecture

present the general framework: the Schrödinger operators
with dynamically defined potentials and the associated family
of Schrödinger cocycles

state, motivate, and prove Johnson’s theorem relating the
spectrum of the operators and uniform hyperbolicity of the
cocycles

use Lyapunov exponents to subdivide the complement of
uniform hyperbolicity further and discuss the connection of
this subdivision to the spectral measures of the operators
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Dynamically Defined Potentials

Now that we have seen that the spectrum and the spectral
measures are of central importance in the study of Hλ,α,ω, let us
relate them to dynamical quantities.

We consider a potential of the form

V (n) = f (T nω)

where T : Ω→ Ω is an invertible ergodic transformation (of a
compact metric space), ω ∈ Ω, and f : Ω→ R is bounded
(continuous).

The almost Mathieu case corresponds to T being the rotation of
the circle by α and f (ω) = 2λ cos(2πω).
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The (Almost Sure) Spectrum

Ergodicity of T : Ω→ Ω with respect to µ, say, implies that there
is a compact set Σ ⊂ R such that the spectrum of

[Hψ](n) = ψ(n + 1) + ψ(n − 1) + f (T nω)ψ(n)

is equal to Σ for µ-almost every ω ∈ Ω.

If Ω is compact, T is minimal, and f is continuous, then the
spectrum is equal to Σ for every ω ∈ Ω (choose any ergodic
measure, apply the result above, and use strong operator
convergence to go from almost everywhere to everywhere).

This implies the ω-independence of σ(Hλ,α,ω) mentioned in the
first lecture.



Outline Simon’s Problems Dynamics and Spectral Theory Schrödinger Cocycles Denseness of Uniform Hyperbolicity

Schrödinger Cocycles

It is clearly of interest to determine Σ. Let us discuss a dynamical
characterization of this set. For simplicity, we will restrict our
attention to the case where Ω is compact, T is minimal, and f is
continuous. This covers the almost Mathieu operator and many
other cases of interest.

For a given energy E ∈ R, we consider the following skew-product:

(T ,AE ) : Ω× R2 → Ω× R2, (ω, v) 7→ (Tω,AE (ω)v)

where

AE (ω) =

(
E − f (ω) −1

1 0

)



Outline Simon’s Problems Dynamics and Spectral Theory Schrödinger Cocycles Denseness of Uniform Hyperbolicity

Schrödinger Cocycles

The maps

(T ,AE ) : Ω× R2 → Ω× R2, (ω, v) 7→ (Tω,AE (ω)v)

form the canonical family (indexed by the energy E ) of
SL(2,R)-cocycles associated with the Schrödinger operators H.
For this reason, we will call them Schrödinger cocycles in these
lectures.

Define the matrices An
E (ω) by (T ,AE )n(ω, v) = (T nω,An

E (ω)v).

We say that (T ,AE ) (or, abusing notation, AE ) is uniformly
hyperbolic if there are constants C1,C2 > 0 such that for every
ω ∈ Ω and n ∈ Z+, we have

‖An
E (ω)‖ ≥ C1eC2|n|
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Spectrum and Uniform Hyperbolicity

Theorem (Johnson 1986)

R \ Σ = {E ∈ R : AE is uniformly hyperbolic}

Before giving the proof of this result, we recall some basic
principles.

The first is that the cocycle generates the transfer matrices which
map solution data from the origin to some other site.

Concretely, consider the difference equation

u(n + 1) + u(n − 1) + f (T nω)u(n) = Eu(n)
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Spectrum and Uniform Hyperbolicity

Rewriting u(n + 1) + u(n − 1) + f (T nω)u(n) = Eu(n) as(
u(n)

u(n − 1)

)
=

(
E − f (T n−1ω) −1

1 0

)(
u(n − 1)
u(n − 2)

)
= AE (T n−1ω)

(
u(n − 1)
u(n − 2)

)
and iterating this, we see that u solves the difference equation if
and only if (

u(n)
u(n − 1)

)
= An

E (ω)

(
u(0)

u(−1)

)
In particular, uniform hyperbolicity of the cocycle ensures that
there are pairs of solutions u±(ω) such that u±(ω) solves the
difference equation above, decays exponentially at ±∞ and grows
exponentially at ∓∞.
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Spectrum and Uniform Hyperbolicity

The second basic principle is related to generalized eigenvalues and
generalized eigenfunctions.

Suppose that the difference equation

u(n + 1) + u(n − 1) + f (T nω)u(n) = Eu(n)

has a solution u that grows sub-exponentially at both ±∞.

Then, we can truncate u at ±N and divide by its `2 norm. This
results in a normalized element uN of `2(Z).

An easy calculation then shows that

lim
N→∞

‖(H − E )uN‖ = 0

which implies that E ∈ σ(H). (Note: The choice of the interval
[−N,N] is not essential.)



Outline Simon’s Problems Dynamics and Spectral Theory Schrödinger Cocycles Denseness of Uniform Hyperbolicity

Spectrum and Uniform Hyperbolicity

Theorem (Johnson 1986)

R \ Σ = {E ∈ R : AE is uniformly hyperbolic}

Proof of “⊇.”

Suppose AE is uniformly hyperbolic. Apply the first basic principle
and deduce the existence of the special solutions u±(ω).

It is then a straightforward calculation that

〈δn, (H − E )−1δm〉 =
u−(ω,min{n,m})u+(ω,max{n,m})
u−(ω, 0)u+(ω, 1)− u−(ω, 1)u+(ω, 0)

indeed defines an inverse of (H − E ) and hence E ∈ R \ Σ.
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Spectrum and Uniform Hyperbolicity

Theorem (Johnson 1986)

R \ Σ = {E ∈ R : AE is uniformly hyperbolic}

Proof of “⊆.”

Assume that AE is not uniformly hyperbolic. Then, for suitable
εk → 0 we can find ωk and nk →∞ such that

‖Ank
E (ωk)‖ ≤ eεknk

Shifting the potential (or adjusting the origin), we can in this way
generate pieces of solutions that are of subexponential size.

The second basic principle (in combination with the first) then
allows us to show that E is a generalized eigenvalue of H for a
suitable ω and this in turn implies that E ∈ Σ.
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Spectrum and Uniform Hyperbolicity

Johnson’s theorem shows that, since everything that spectral
theory and quantum dynamics care about happens inside the
spectrum, we have to go

beyond uniform hyperbolicity

and analyze the dynamics of the cocycles AE there.

Naturally, we use Lyapunov exponents to subdivide further:

Σ = Z ∪NUH
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Lyapunov Exponents and Spectral Type

The decomposition
Σ = Z ∪NUH

is obtained as follows.

Consider the Lyapunov exponent

L(E ) = inf
n≥1

1

n

∫
Ω

log ‖An
E (ω)‖ dµ(ω) = lim

n→∞

1

n
log ‖An

E (ω)‖

(for µ-almost every ω ∈ Ω) and set

Z = {E ∈ R : L(E ) = 0}
NUH = {E ∈ R : AE is not uniformly hyperbolic and L(E ) > 0}
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Lyapunov Exponents and Spectral Type

The decomposition
Σ = Z ∪NUH

is closely related to the decomposition of spectral measures into
a.c, s.c., and p.p. parts.

Unfortunately, this connection is not as clean and as general as
Johnson’s result for the spectrum. The rule of thumb is the
following:

Inside Z, spectral measures are absolutely continuous.

Inside NUH, spectral measures are pure point.

In exceptional cases, singular continuous spectral measures can
appear in both Z and NUH. (Note: Avila’s recent work!)
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Lyapunov Exponents and Spectral Type

There is one result connecting Lyapunov exponents and the
spectral type that holds in complete generality.

Denote by Σac the (almost sure) absolutely continuous spectrum
of H. In other words, Σac is the smallest closed set that supports
all purely absolutely continuous spectral measures of H (for almost
every ω ∈ Ω).

Theorem (Ishii 1973, Pastur 1980, Kotani 1984)

Σac = Zess
= {E ∈ R : Leb (Z ∩ (E − ε,E + ε)) > 0 ∀ε > 0}
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Lyapunov Exponents and Spectral Type

Theorem (Ishii 1973, Pastur 1980, Kotani 1984)

Σac = Zess
= {E ∈ R : Leb (Z ∩ (E − ε,E + ε)) > 0 ∀ε > 0}

Instead of giving a proof of the Ishii-Pastur-Kotani theorem (which
would take another minicourse), we try to elucidate the result with
some remarks and some weaker, and yet still interesting,
statements.
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Lyapunov Exponents and Spectral Type

Let us first comment on the easier half of the theorem: Σac ⊆ Z
ess

.

Consider E ∈ NUH, that is, an energy in the spectrum with
L(E ) > 0. The Osceledec theorem shows that, for µ-almost every
ω ∈ Ω, there are solutions u±(ω) that decay exponentially at ±∞.

If they are linearly independent, we can construct (H − E )−1 as
explained earlier and deduce that E ∈ R \ Σ; contradiction.

Thus, the solutions must be linearly dependent (and hence be
multiples of each other), which implies that E is in fact an
eigenvalue of H with an exponentially decaying eigenfunction.

Problem: The energy-dependence of the exceptional sets of
measure zero.
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Lyapunov Exponents and Spectral Type

Consider now the harder half of the theorem: Σac ⊇ Z
ess

.

It is much easier to show that Σac ⊇ B
ess

, where

B =

{
E ∈ R : sup

ω,n
‖An

E (ω)‖ <∞
}

Boundedness of the cocycle can be shown, for example, by proving
reducibility. In this way one gets (useful!) additional information
about the dynamics of the cocycle, apart from the mere vanishing
of the Lyapunov exponent.

The Avila-Krikorian result goes in this direction. We will say more
about this in the next lecture.
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Kotani’s Little Known Gem

Here we describe a result of Kotani (hidden in a long survey paper)
that was the key to my work with Avila on Simon’s 6th problem.

Problem 6. Prove for all irrational α and |λ| < 1 that the
spectrum is purely absolutely continuous.

We will see in the next lecture that by the turn of the century, this
statement was known for Diophantine frequencies but the proof
was clearly limited to such frequencies.

The key realization of Kotani is that averaging of spectral
measures over the phase does not lose any information about
absolute continuity in the regime of zero Lyapunov exponents!
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Kotani’s Little Known Gem

Consider the ω-dependent spectral measure associated with H and
δ0, νω, which obeys∫

Σ
g(E ) dνω(E ) = 〈δ0, g(H)δ0〉

Now average with respect to the underlying ergodic measure to
obtain the measure ν, so that∫

Σ
g(E ) dν(E ) =

∫
Ω
〈δ0, g(H)δ0〉 dµ(ω)

The measure ν is called the density of states measure. It is always
continuous and often even more regular. In fact, it is absolutely
continuous with a smooth density for sufficiently random potentials
(where the operators have pure point spectrum).
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Kotani’s Little Known Gem

Thus, the regularity of ν is in general (much) better than that of
the individual spectral measures.

However, Kotani has shown that this phenomenon can only occur
in the regime of positive Lyapunov exponents:

Theorem (Kotani 1997)

Consider the restriction of all measures in question to Z. Then the
following are equivalent:
(a) The measure ν is absolutely continuous.
(b) For µ-almost every ω ∈ Ω, all spectral measures of H are
absolutely continuous.
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Lecture 3

Almost Mathieu Schrödinger Cocycles, Aubry
Duality, and Localization
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Goals of this Lecture

We will try to explain as much as possible about the three 21st
century problems concerning the almost Mathieu operator and
their solutions.

Recall that they concern the nowhere denseness of the spectrum,
the Lebesgue measure of the spectrum, and the spectral type:

Problem 4. Prove for all λ 6= 0 and all irrational α that Σλ,α is a
Cantor set.

Problem 5. Prove for all irrational α and |λ| = 1 that Σλ,α has
measure zero.

Problem 6. Prove for all irrational α and |λ| < 1 that the
spectrum is purely absolutely continuous.



Outline Simon’s Problems Dynamics and Spectral Theory Schrödinger Cocycles Denseness of Uniform Hyperbolicity

Some Key Insights

Herman’s estimate for the Lyapunov exponent: The Lyapunov
exponent is strictly positive for |λ| > 1.

Jitomirskaya’s localization result: For non-Liouville rotations,
the positivity of the Lyapunov exponent implies pure point
spectrum with exponentially decaying eigenfunctions.

Aubry duality, which is essentially the Fourier transform,
relates the coupling constants λ and λ−1.

Aubry duality and localization for λ imply purely absolutely
continuous spectrum for λ−1.

Puig’s approach to Cantor spectrum: Aubry duality and
localization for λ imply Cantor spectrum for λ−1.

Avila-Krikorian’s approach to zero measure spectrum at
critical coupling: for almost every E ∈ Z, the cocycle is
reducible



Outline Simon’s Problems Dynamics and Spectral Theory Schrödinger Cocycles Denseness of Uniform Hyperbolicity

Positivity of the LE: The Herman Estimate

Theorem (Herman 1983)

L(E ) ≥ log |λ|

Recall that V (n) = 2λ cos(2π(ω + nα)). Setting z = e2πiω, we see
that Vω(n) = λ

(
e2πiαnz + e−2πiαnz−1

)
. Thus,

AE (T nω) =

(
E − λ

(
e2πiαnz + e−2πiαnz−1

)
−1

1 0

)
If we define, initially on |z | = 1,

Nn
E (z) = znAn

E (ω) = (zAE (T n−1ω)) · · · (zAE (ω)),

we see that Nn
E extends to an entire function and hence

z 7→ log ‖Nn(z)‖ is subharmonic. Note: log ‖Nn
E (0)‖ = log |λ|.
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Positivity of the LE: The Herman Estimate

Proof of the Herman Estimate.

L(E ) = inf
n≥1

1

n

∫ 1

0
log ‖An

E (ω)‖ dω

= inf
n≥1

1

n

∫ 1

0
log ‖e2πinωAn

E (e2πiω)‖ dω

= inf
n≥1

1

n

∫ 1

0
log ‖Nn

E (e2πiω)‖ dω

≥ log ‖Nn
E (0)‖

= log |λ|.
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Positivity of the LE: The Herman Estimate

In fact, the Herman estimate is optimal:

Theorem (Bourgain-Jitomirskaya 2002)

For every E ∈ Σλ,α, we have

Lλ,α(E ) = max{log |λ|, 0}

The proof is based on continuity properties of the Lyapunov
exponent and computations in the case of rational α due to
Krasovsky.
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The Central Localization Result

Theorem (Jitomirskaya 1999)

Suppose that α is Diophantine and Σ = NUH. Then, for an
explicit full measure set of ω’s that contains zero, H has pure point
spectrum with exponentially decaying eigenfunctions.

The Diophantine condition used in the 1999 paper reads as follows:
There are c > 0 and r > 1 such that for every m ∈ Z \ {0},

| sin(2πmα)| ≥ c

|m|r

The assumption was weakened by Avila and Jitomirskaya (2009+).
It suffices to assume that the continued fraction approximants
pk/qk of α obey

lim
k→∞

q−1
k log qk+1 = 0
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Aubry Duality

Consider the operator Hλ,α : L2(T× Z)→ L2(T× Z) given by

[Hλ,αϕ](ω, n) = ϕ(ω, n+1)+ϕ(ω, n−1)+2λ cos(2π(ω+nα))ϕ(ω, n).

Introduce the duality transform A : L2(T× Z)→ L2(T× Z),

[Aϕ](ω, n) =
∑
m∈Z

∫
T

e−2πi(ω+nα)me−2πinηϕ(η,m) dη.

This definition assumes initially that ϕ is such that the sum in m
converges, but note that in terms of the Fourier transform on
L2(T× Z), we have [Aϕ](ω, n) = ϕ̂(n, ω + nα), which may be
used to extend the definition to all of L2(T× Z) and shows that A
is unitary.
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Aubry Duality

Theorem

Suppose λ 6= 0 and α ∈ T is irrational.
(a) Hλ,αA = λAHλ−1,α.
(b) Σλ,α = λΣλ−1,α.

(c) Lλ,α(E ) = log |λ|+ Lλ−1,α(E
λ ).

(d) If Hλ,α,ω has pure point spectrum for almost every ω ∈ T, then
Hλ−1,α,ω has purely absolutely continuous spectrum for almost
every ω ∈ T.

See Avron-Simon 1983 and Gordon-Jitomirskaya-Last-Simon 1997.
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Localization and Duality Imply Cantor Spectrum

Theorem (Puig 2004)

If α is Diophantine and |λ| 6= 0, 1, then Σλ,α is a Cantor set.

Cantor spectrum was known for Liouville α (Choi-Elliott-Yui 1990).
Note also that for |λ| = 1, zero measure spectrum (known for
almost every α, Last 1994) implies Cantor spectrum.

Given this situation, Puig addressed the Cantor spectrum issue
precisely in the regime where previous methods were inadequate.
Moreover, it covers full measure sets of coupling constants and
frequencies.

The “real” result of Puig, in itself an amazing discovery, is that
localization and duality imply Cantor spectrum.
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Localization and Duality Imply Cantor Spectrum

Lemma

(a) Suppose u is an exponentially decaying solution of

u(n + 1) + u(n − 1) + 2λ cos(2πnα)u(n) = Eu(n) (1)

Consider its Fourier series û(ω) =
∑

m∈Z u(m)e2πimω. Then, û is
real-analytic on T and the sequence ũ(n) = û(ω + nα) is a solution
of

u(n+1)+u(n−1)+2λ−1 cos(2π(ω+nα))u(n) = (λ−1E )u(n) (2)

(b) Conversely, suppose u is a solution of (2) with ω = 0 of the
form u(n) = g(nα) for some real-analytic function g on T.
Consider the Fourier series g(ω) =

∑
n∈Z ĝ(n)e2πinω. Then, the

sequence {ĝ(n)} is an exponentially decaying solution of (1).
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Localization and Duality Imply Cantor Spectrum

Lemma

Suppose α ∈ T is Diophantine and A : T→ SL(2,R) is analytic.
Assume that there is a non-vanishing analytic map v : T→ R2

such that

v(ω + α) = A(ω)v(ω) for every ω ∈ T

Then, there are c ∈ R and an analytic map B : T→ SL(2,R) such
that

B(ω + α)−1A(ω)B(ω) =

(
1 c
0 1

)
for every ω ∈ T.



Outline Simon’s Problems Dynamics and Spectral Theory Schrödinger Cocycles Denseness of Uniform Hyperbolicity

Localization and Duality Imply Cantor Spectrum

Proof.

Let B1(ω) =

(
v1(ω) − v2(ω)

d(ω)

v2(ω) v1(ω)
d(ω)

)
∈ SL(2,R) where

v(ω) =

(
v1(ω)
v2(ω)

)
and d(ω) = v1(ω)2 + v2(ω)2 > 0. We have

B1(ω + α)−1A(ω)B1(ω) =

(
1 c̃(ω)
0 1

)
Now let c =

∫
T c̃(ω) dω and use the Diophantine condition to find

b : T→ R analytic such that b(ω+α)− b(ω) = c̃(ω)− c for every

ω ∈ T. Conjugating again with B2(ω) =

(
1 b(ω)
0 1

)
∈ SL(2,R),

yields the desired matrix, so we set B(ω) = B1(ω)B2(ω).
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Localization and Duality Imply Cantor Spectrum

Proof of Puig’s theorem.

Consider a coupling constant λ > 1, an eigenvalue E of Hλ,α,0 and
a corresponding exponentially decaying eigenfunction.

Apply the lemmas and conjugate the λ−1-cocycle to

(
1 c
0 1

)
.

The constant c cannot be zero, otherwise we would get two
linearly independent `2 solutions by the first lemma.

Use c 6= 0 to show that a small perturbation of the energy can
make the cocycle uniformly hyperbolic.

Since the eigenvalues of Hλ,α,0 are dense in Σλ,α, Aubry duality
now implies that Σλ−1,α is nowhere dense.

Apply Aubry duality again to find that Σλ,α is nowhere dense.
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Reducibility

Recall that the second lemma in the proof of Puig’s theorem
concerned the conjugation of the cocycle to a constant matrix.
This is a central concept:

Definition

The cocycle AE is called reducible if there exist an analytic map
B : T→ SL(2,R) and a matrix CE ∈ SL(2,R) such that

B(ω + α)−1A(ω)B(ω) = CE

More precisely, in the case the cocycle is called analytically
reducible modulo Z.
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Reducibility Almost Everywhere in Z

Theorem (Avila-Krikorian 2006)

Suppose α satisfies a recurrent Diophantine condition and |λ| = 1.
Then, Σλ,α has zero Lebesgue measure.

One says that α satisfies a recurrent Diophantine condition if
infinitely many iterates of α under the Gauss map obey a uniform
Diophantine condition. This is a full measure condition.

Moreover, for all other α’s, the zero measure property was already
known at the time and hence this result solved Simon’s fifth
problem completely.

The “real” result of Avila and Krikorian is that reducibility holds
almost everywhere in Z.
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Reducibility Almost Everywhere in Z

Theorem (Avila-Krikorian 2006)

Suppose α satisfies a recurrent Diophantine condition. Then, for
almost every E ∈ Z, the cocycle AE is reducible.

A.E. Reducibility Implies Zero Measure Spectrum.

Consider the case |λ| = 1. Then, Σλ,α = Z and Hλ,α is self-dual.

Suppose Z has positive measure. Then, there exists an energy
E ∈ Z for which AE is reducible.

Thus, by duality, there exists an ω so that E is an eigenvalue of
the (dual operator) Hλ,α,ω with an exponentially decaying
eigenfunction.

This shows that Lλ,α(E ) > 0; contradiction since E ∈ Z.
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Absolute Continuity of the Density of States
Measure

Theorem (Avila-D. 2008)

For |λ| < 1, α irrational, and almost every ω, Hλ,α,ω has purely
absolutely continuous spectrum.

Again, there is a “real result” behind this statement, and it is the
following:

Theorem (Avila-D. 2008)

The density of states measure of the almost Mathieu operator is
absolutely continuous if and only if |λ| 6= 1.

Kotani’s gem and Σλ,α = Z for |λ| ≤ 1 then imply the first
statement.
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Absolute Continuity of the Density of States
Measure

Theorem (Avila-D. 2008)

The density of states measure of the almost Mathieu operator is
absolutely continuous if and only if |λ| 6= 1.

Recall that if
β(α) = lim sup

k→∞
q−1
k log qk+1

vanishes, the theorem follows from duality and localization.

Thus, one may assume β(α) > 0. The good approximation of α by
rational numbers then allows one to deduce absolute continuity by
approximation from absolute continuity results for the rational
AMO. (Note that |λ| = 1 is exceptional due to Leb(Σλ,α) = 0.)
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Lecture 4

Denseness of Uniform Hyperbolicity and
Genericity of Cantor Spectrum
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